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Abstract: This paper proposes a novel WOA-based robust control scheme with two kinds of prop-
agation latencies and external disturbance implemented in Software-Defined Wireless Networks
(SDWNs) to maximize overall throughput and enhance the stability of the global network. Firstly, an
adjustment model developed using the Additive-Increase Multiplicative-Decrease (AIMD) adjust-
ment scheme with propagation latency in device-to-device paths and a closed-loop congestion control
model with propagation latency in device–controller pairs are proposed, and the effect of channel
competition from neighboring forwarding devices is analyzed. Subsequently, a robust congestion
control model with two kinds of propagation latencies and external disturbance is established. Then,
a new WOA-based scheduling strategy that considers each individual whale as a specific scheduling
plan to allocate appropriate sending rates at the source side is presented to maximize the global
network throughput. Afterward, the sufficient conditions are derived using Lyapunov–Krasovskii
functionals and formulated using Linear Matrix Inequalities (LMIs). Finally, a numerical simulation
is conducted to verify the effectiveness of this proposed scheme.

Keywords: AIMD adjustment scheme; Lyapunov–Krasovskii functionals; robust congestion control
scheme; SDWN; two kinds of propagation latencies and external disturbance; WOA algorithm

1. Introduction

With the rapid development of large-scale network deployments, traditional wireless
networks, such as Wi-Fi or cellular networks, have adopted a distributed architecture,
where network intelligence is embedded in each access point or base station. This makes it
difficult to manage and configure a network as a whole, especially in large-scale deploy-
ments. Software-Defined Networking (SDN) is an architectural approach that separates the
control plane and data plane in network devices, thereby enabling centralized control and
management of the network through a programmable software controller [1–5]. Software-
Defined Wireless Networking (SDWN) is a concept that extends the principles of SDNs
to wireless communication networks, which apply these principles to wireless networks,
enabling greater flexibility, scalability, and control over wireless infrastructure.

In SDWNs, similar to SDN, the control plane is separated from the data plane [1–8].
The control plane consists of a centralized software controller that manages and orchestrates
the network resources, makes decisions about network policies and configurations, and
dynamically controls the behavior of the wireless network infrastructure. The data plane
comprises the wireless access points or base stations that handle the transmission and
reception of data. The control plane of each forwarding device can only operate correctly
when connected to SDWN-centralized controllers [1–9].
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With the continuous expansion of the scale of networks and user populations, an
excessive number of network services may cause network congestion in SDWNs [10,11],
which has provoked research into effectively controlling network congestion and stabilizing
networks [12,13]. Congestion control is a crucial technology used in wireless networks
to manage and prevent network congestion, employing congestion control mechanisms
to regulate the sending rate when there is a high demand for wireless network resources
that exceeds the available capacity. Congestion control technologies play a vital role in
maintaining the stability, efficiency, and performance of wireless networks, thus ensuring
that wireless network resources are utilized optimally. Stability congestion control, which
is intended to maximize the throughput and enhance the stability of global networks, has
drawn widespread attention and research interest [14,15]. Propagation latency and external
disturbance are often considered to constitute two critical factors that affect global network
stability. Propagation latency may lead to additional network costs and unreliability [16],
while the variability of external disturbance based on the relevant wireless characteristics
leads to abrupt structural variations [17]. Even if a wireless network is stable via stability
congestion control, the global network may become unstable again because of these two
factors and may not be able to maintain long-term stability.

Therefore, it is essential to restabilize SDWNs’ network parameters with optimal
values to maintain long-term stability. Robust control, which maintains a global network
under long-term control with propagation latency and external disturbance, is likely a
solution with which to tackle this re-stabilization problem. Thus, robust congestion control
is defined as a robust control scheme acting on network congestion in order to enable
higher network efficiency and lower network congestion.

Some existing solutions favor the adoption of traditional network control methods
to analyze the congestion control problem in SDWNs. A traditional network control sys-
tem is modeled using stochastic network-induced latency [18], in which the analytical
study of network stability has been implemented to solve network-induced latency and
design feedback control algorithms. In the SDWN architecture, a global network con-
troller is responsible for the rate management of each OpenFlow device [1,2,19–23]. In the
separation of the control and data planes, control plane unification is implemented for
different kinds of networks, including wired Internet Protocol (IP) networks [5,6,8,20,23],
Wavelength-Division Multiplexings (WDMs) [24], and wireless networks [25–27]. In re-
cently published works, the AIMD adjustment scheme has been further optimized using
Lyapunov–Krasovskii functionals for network congestion control in SDWNs [28,29]. In
terms of the congestion control framework, the Additive-Increase Multiplicative-Decrease
(AIMD) adjustment scheme is used to tackle network congestion control problems through
the execution of proper source adjustments in SDWNs [30–32]. In terms of robust con-
trol algorithms, various forwarding information control algorithms have been proposed
through analyses of SDWN-centralized controllers with respect to improving network ro-
bustness and reacting to failures [2,23,33–35]. In [36–38], robust congestion control schemes
have been proposed in order to achieve maximal network throughput in device-to-device
paths by using Lyapunov–Krasovskii functionals. In terms of meta-heuristic optimization
algorithms, several meta-heuristic optimization algorithms, such as the Social Spider Opti-
mization (SSO) algorithm [39], Bat Algorithm [40], and Particle Swarm Optimization (PSO)
algorithm [41], have been utilized in wireless networks to greatly reduce the number of
network data required to solve the network congestion problem [42]. In this paper, we use
the Whale Optimization Algorithm (WOA) to more effectively achieve optimization objec-
tives using a new global scheduling strategy for solving the network congestion problem.
The WOA algorithm, which simulates the foraging behavior of humpback whales, was
first proposed in [43]. It is often used to find the optimal solution for global optimization
problems in various fields, among which those covered in reviews include engineering,
clustering, classification, robot paths, image processing, networks, task scheduling, and
other engineering applications [44–48].

However, these solutions are limited by the following aspects.
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(i) The control laws are separated from the centralized controllers but integrated into the
forwarding devices in the form of flow tables;

(ii) An SDWN architecture with two kinds of propagation latency is seldom considered
for robust congestion control;

(iii) The traditional theories are not compatible with the robust congestion control theory
pertaining to SDWNs.

The major contributions of this paper are summarized as follows:
(i) First, we provide a novel sending rate adjustment model with propagation latency

in device-to-device paths as the fundamental model in the forwarding layer. Then, we
establish a closed-loop congestion control model with propagation latency in device–
controller pairs as a supplementary model. The propagation latency strengthens the
veracity of the stability analysis, and its influence is considered in both device-to-device
paths and device–controller pairs from a global perspective. Moreover, we consider channel
competition near the forwarding devices in order to more effectively design the congestion
control model based on the broadcasting nature of the wireless medium.

(ii) We design a new, weighted, fair scheduling strategy to pre-set the control objective
of the stability congestion control scheme in order to solve the global robust congestion
problems faced by SDWNs, which is utilized to calculate the optimized values of network
parameters. Moreover, external disturbance is also considered for robust congestion control.
To eliminate external disturbance from the global network system, the stability congestion
control model had to be converted into a robust congestion control model; consequently,
the optimized status was maintained via the transformation of two closed-loop congestion
control models into a normal robust H∞ control model.

(iii) An interdisciplinary effort is made to construct a robust congestion control scheme
by combining stability analysis theory and congestion control principles in SDWNs. Ex-
ploiting the applicability of Lyapunov–Krasovskii functionals in stability analysis, this
paper constructs novel optimized Lyapunov–Krasovskii functionals acting on the robust
H∞ control model to achieve the desired global robust control system for solving network
congestion.

(iv) We design experiments on both the variations of error states and the energy
trajectories for a robust H∞ control scheme implemented in the SDWN, including the
AIMD adjustment scheme and the information-forwarding and control algorithm acting as
benchmark algorithms. To evaluate the control performance, ablation experiments were
conducted, which demonstrated the superiority of our proposed robust control scheme
over the AIMD adjustment scheme and the information-forwarding and control algorithm
with respect to maximizing the global SDWN throughput to maintain long-term stability
with two kinds of propagation latencies and external disturbance.

In SDWNs, the forwarding devices first record their congestion state information and
explicitly advertise it to the centralized controllers. The centralized controllers provide
some control policies and send control instructions to the forwarding devices. Next, the
forwarding devices follow these control instructions and make proper adjustments to
the sending rates at the source-side. Previous works, such as [36–38], studied the robust
congestion control scheme with propagation latency in device–controller pairs, while this
paper defines the propagation latency in both device–controller pairs and device-to-device
paths as an upper bound of latency. Thus, two closed-loop congestion control models
are established for the further research of the robust congestion control scheme. In our
study, the AIMD adjustment scheme is still initially adopted to analyze network congestion
with propagation latency in device–controller pairs, and two basic congestion control
models are established. Next, a novel WOA-based scheduling strategy that considers each
individual whale as a specific scheduling plan to allocate appropriate sending rates at the
source side is proposed in the SDWN-centralized controllers to make proper adjustments
in each forwarding device. Then, a novel robust congestion control model is proposed
through the use of Lyapunov–Krasovskii functionals [49,50], and a theorem is proposed to
determine the sufficient conditions for the robust control. These sufficient conditions are



Biomimetics 2023, 8, 249 4 of 28

expressed as Linear Matrix Inequalities (LMIs). Finally, numerical instances are provided
to demonstrate the effectiveness of our proposed scheme, which is able to more realistically
analyze robust congestion control schemes under the influence of propagation latencies
and external disturbance, over traditional schemes and those from previous works.

The following are also discussed in the remaining sections of this paper. Section 2
presents a brief overview of related works. In Section 3, an analytical network model, which
was developed by implementing an AIMD adjustment scheme, is established to adjust the
sending rate at the source side, and a WOA-based scheduling strategy that considers each
individual whale as a specific scheduling plan to allocate appropriate sending rates at the
source side is presented to address the error states of the sending rate. Section 4 proposes
a robust congestion control problem formulation, and some preliminaries are introduced.
Section 5 addresses network congestion control by using Lyapunov–Krasovskii functionals
and calculates sufficient conditions. Section 6 reports the results of a numerical network
simulation to demonstrate the effectiveness of our proposed robust congestion control
scheme, and comparisons with other congestion control approaches applied in SDWNs are
also provided. Section 7 presents the conclusions and directions for future work.

2. Related Works and Problem Motivation
2.1. Related Works

SDN is a network paradigm separating the control and data planes of a network. The
OpenFlow protocol was first introduced at Stanford University in 2008 [1]. Since then,
SDN controllers and the OpenFlow protocol have been advanced to improve network
performance [2–6]. SDWN has applications in various domains, including enterprise
networks, campus environments, public Wi-Fi facilitation, Internet of Things (IoT) networks,
and 5G cellular networks. By leveraging the principles of SDN, SDWN offers a more flexible,
manageable, and scalable approach to wireless network management, thereby paving the
way for innovation and improved performance in wireless communications [5–9].

To solve the network congestion problem experienced by SDWNs, the traditional
robust control methods rely on either an AIMD adjustment scheme or an information-
forwarding and control algorithm.

2.1.1. AIMD Adjustment Scheme

As a traditional form of network control, the AIMD adjustment scheme is often
employed at the source side. It has been researched for decades, and many reliable robust
control solutions have been proposed for SDWNs. By utilizing improved AIMD adjustment
schemes and queue congestion management, the author of [30] proposed an SDN-based
Explicit-Deadline-Aware Transmission Control Protocol (TCP) mechanism for cloud data
center networks. In [31], the authors adopted the AIMD adjustment scheme and introduced
an Additive-Decrease Multiplicative-Increase (ADMI) approach to preserve bandwidth.
The author of [30] proposed a load balancer application using an AIMD adjustment scheme
based on various features of SDN and OpenFlow. In recently published works, Lyapunov–
Krasovskii functionals were utilized, along with the AIMD adjustment scheme, for network
congestion control in SDNs. In [28], the authors modeled a multi-objective minimization
allocation scheme of energy and delay using traditional Lyapunov–Krasovskii functionals.
The authors of [29] proposed a queueing model and solved a problem regarding long-term
network utility maximization using traditional Lyapunov–Krasovskii functionals. However,
the key limitation of these approaches is that congestion control was implemented at the
source side, which does not allow for the achievement of network robustness with a global
view of SDWN.

2.1.2. Information-Forwarding and Control Algorithm

The SDWN architecture provides logically centralized controllers for receiving updates
and implementing control policies. Most of the current reliable robust control solutions are
information-forwarding and control algorithms. In [2], Vissicchio and Cittadini introduced
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an operational sequences computation algorithm to compute operational sequences that
preserves the correctness of forwarding and policies to ensure the robustness of SDN up-
dates. During the update, this algorithm robustly implements unpredictable factors, such
as delayed message delivery and processing. In [23], the authors proposed a distributed
OpenFlow-based routing protocol to improve network robustness, reaction to failures, and
controller scalability. This protocol can provide robustness for topological failures and
rapidly reduce the path stretch. The authors of [31] presented a congestion-aware and
robust, reliable multicast method for small groups in data centers that can dynamically
bypass congested and failing links and then achieve high efficiency and robustness. In [34],
the author analyzed the requirements of a secure, robust, and resilient controller for provid-
ing security improvements. The authors of [35] proposed a fault-prone, concurrent control
scheme for robust policy implementation in distributed SDNs. The authors of [36–38]
proposed robust congestion control schemes for achieving maximal network throughput
by considering the propagation latency in device-to-device paths.

However, propagation latency, especially in device–controller pairs, must be further
considered and discussed as a key factor for robust congestion control in SDWNs. Simul-
taneously, external disturbance needs to be analyzed as the other key factor. Moreover,
previous approaches to addressing network congestion implemented the robust control of
partial networks instead of considering a global view of SDWN.

Despite the abundant literature on SDWNs, both approaches are limited in terms of
implementing global robust congestion control in the presence of propagation latency and
external disturbance.

2.2. Motivation

Due to an SDWN’s characteristics, its wireless environment is susceptible to network
congestion due to its limited available spectrum and bandwidth, shared medium, and
varying channel conditions. SDWNs have finite bandwidth, in which network congestion
can significantly impact data rates and throughput. By effectively controlling network
congestion in SDWNs, bandwidth utilization can be optimized by allocating the network
resources reasonably in order to facilitate the fair sharing of available bandwidth between
all the devices. Moreover, the network congestion in SDWNs may lead to wasteful retrans-
missions and inefficient utilization of all network resources. By mitigating congestion in
SDWNs, our method can reduce unnecessary retransmissions and improve overall resource
efficiency, thereby enhancing network sustainability.

Therefore, this paper focuses on solving the re-stabilization problem pertaining to a
typical SDWN architecture with two kinds of propagation latency and external disturbance
via the robust congestion control scheme, aiming to maximize global network throughput
and re-stabilize network parameters at their optimal values. This can better address the
network congestion problem in SDWNs, which is essential to ensure the network’s optimal
performance and reliability. By leveraging an SDWN’s centralized control and dynamic
management capabilities, network congestion can be proactively managed, and network
resources can be reasonably allocated to enhance the efficiency and effectiveness of SDWN
operations.

(i) To maximize the global SDWN throughput, this paper presents a novel WOA-based
scheduling strategy that considers each individual whale as a specific scheduling plan in
order to pre-set the network parameters at optimal values. The sending rate at the source
side, constituting a key network parameter, is the target of the robust congestion control
scheme for network congestion control.

(ii) To re-stabilize the network parameters at their optimal values, the differences
between the current and optimized states are first assigned to the error states. Next, the
robust congestion control problem with propagation latency and external disturbance is
viewed as a robust control problem. Finally, the robust control problem based on the error
states is addressed by referencing Lyapunov–Krasovskii functionals.
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3. Model and Analysis

A typical SDWN architecture with two kinds of propagation latency is presented in
Figure 1. Two kinds of propagation latency exist in SDWN: (1) propagation latency in the
device-to-device path, and (2) propagation latency in device–controller pairs, which divides
the entirety of SDWN into two closed-loop networks for analyzing network congestion.
SDWN-centralized controllers consist of a series of controllers with distributed designs
for enhancing network reliability, scalability, and resiliency [35]. The OpenFlow-based
forwarding devices at the source side advertise their state information to the centralized
controllers via a wireless channel and properly adjust their sending rates via the AIMD
adjustment scheme after receiving the control instructions from the centralized controllers.
These control instructions are provided to process individual network services by means
of the WOA-based scheduling strategy. In order to maintain the network parameters’
long-term stability in the SDWN, this paper focuses on maximizing the global SDWN
throughput and stabilizing global network parameters at their optimal values under the
robust congestion control scheme with two kinds of propagation latency and external
disturbance. Thus, a new WOA-based scheduling strategy that considers each individual
whale as a specific scheduling plan to allocate appropriate sending rates at the source side
is adopted to optimize global network performance by properly arranging the network
parameters. There is an optimized stable state constituting a key network parameter in
each forwarding device for the robust congestion control scheme.

The analysis of these two closed-loop congestion control systems is classified into four
parts in the subsections below.
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Figure 1. A typical SDWN architecture with two kinds of propagation latency and external distur-
bance.

3.1. A Sending Rate Adjustment Model with Propagation Latency in Device-to-Device Paths

First, in order to analyze the sending rate adjustment at the source side, the following
assumptions and definitions are proposed.

Assumption 1. There exist infinite flows at the source side that await transmission.

Definition 1. There exists an ideal queue length x∗l that has been verified as being capable of achiev-
ing the best performance with respect to the sending rate arrangement after multiple experiments.

Assumption 2. Define two queue lengths in any forwarding device, where one is the current
queue length xl and the other is the ideal queue length x∗l . At the source side, the variation in the
sending rate is represented as the difference of the queue length xl , xl = xl − x∗l . If the difference
value xl > 0, the sending rate additively increases; otherwise, when xl < 0, the sending rate
multiplicatively decreases. The magnitude of the difference value positively correlates with the
level of rate variation at the source side. An AIMD adjustment scheme is implemented in every
forwarding device based on the difference value xl .

Assumption 3. The neighboring forwarding devices record their congestion state information and
periodically send them to the SDWN-centralized controllers. Then, the centralized controllers opti-
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mize some control laws via the congestion state information and send them to the source-forwarding
device according to the control instructions. We assume the existence of a local Congestion State
(CS) value that is incorporated into the control instruction. This feedback control instruction shows
the CS reflected in the current condition of the neighboring links in the whole round-trip. The CS
is either non-positive (xl > 0, i.e., no congestion occurred) or positive (xl < 0, i.e., congestion
occurred).

Figure 2 presents an example of the data transmission process with propagation latency
in device-to-device paths in the SDWN, which can be modeled as a closed-loop congestion
control system. By incorporating the CS feedback from the centralized controllers and
using the AIMD adjustment scheme to tackle the congestion control problems, the AIMD
parameters are analyzed, and the basic network congestion model is established as a linear
continuous closed-loop congestion control system.
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In the SDWN, the neighboring forwarding devices shift their congestion state informa-
tion to the centralized controllers, in which the global network traffic state messages are
concentrated. After an essential analysis, the centralized controllers optimize their control
laws and make proper adjustments to every sending rate at the source side. If network
congestion has occurred in the neighboring forwarding devices, said devices feed control
instructions (CS > 0) back to the source forwarding devices within fixed time intervals to
communicate the adjustments of the sending rates; when a state of non-congestion occurs
in the neighboring forwarding devices, they feed control instructions (CS < 0) back.

At the source side, suppose that the CS occurs at the moment t, t ≥ 0, for which the
time-varying sending rate is denoted as r(ti). τr(t) and τf (t) denote process latency and
forward channel propagation latency, respectively. Using the AIMD adjustment scheme,
this section considers the fixed constant weight A f as indicating an additive-increase and
D f as indicating a multiplicative-decrease, respectively. At the source side, if the CS is
non-positive, the sending rate increases by weight Ar; otherwise, CS is positive, and the
sending rate decreases by weight Dr. Thus, the behavioral equation can be expressed as
follows:

r(ti) = r(ti−1)−
{

Ar
[
1− η

(
xl(t− τr(t))− x∗l

)]
−Drr(t)

[
η
(
xl(t− τr(t))− x∗l

)]}
,

Then, we obtain

r(ti)−r(ti−1)
ti−ti−1

= 1
ti−ti−1

{
Ar
[
1− η

(
xl(t− τr(t))− x∗l

)]
−Drr(t)

[
η
(
xl(t− τr(t))− x∗l

)]}
= −Brr(ti − τ(t))

{
Ar
[
1− η

(
xl(t− τr(t))− x∗l

)]
−Drr(t)

[
η
(
xl(t− τr(t))− x∗l

)]}
,
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where Br is defined as a fixed constant weight, Brr(ti − τ(t)) = 1
ti−ti−1

. η is the sensitivity
degree of the adjustment, η

(
xl − x∗l

)
denotes the probability parameter, xl(t) represents

instantaneous queue length, and t is the current moment.
Let a = ArBr, b = DrBr, and suppose r = c, xl = x∗l in an equilibrium state; thus, the

following is yielded:


.
r(t) =

(
−acη − bc2η

)
(xl(t− τr(t)))− bc

(
a

a+bc r(t)
)

,
.
xl(t) = r

(
t− τf (t)

)
.

(1)

Eliminating xl(t) from (1) yields the second-order differential equation

..
r(t) + κ

.
r(t) + ϑr(t− τ1(t)) = 0, (2)

where κ = abc
a+bc , ϑ = cη(a + bc) are the parameters of this second-order system, and

τ1(t) = τr(t) + τf (t) denotes the round-trip of propagation latency from the source for-
warding device to the destination. Note that the second-order dynamic Equation (2) can be
rewritten in a matrix form, as follows.

.
r(t) =

(
0 1
0 −κ

)
r(t) +

(
0 0
−ϑ 0

)
r(t− τ1(t)). (3)

Note that Â =

(
0 1
0 −κ

)
, Ad =

(
0 0
−ϑ 0

)
are the weights of the network parameters.

Thus, Equation (3) can be converted into

.
r(t) = Âr(t) + Adr(t− τ1(t)). (4)

In this section, Equation (4), as the state variable equation, represents a closed-loop
congestion control system, which utilizes an AIMD adjustment scheme at the source
side after receiving state feedback. Obviously, the congestion control system shown in
Figure 2 can be modeled using Equation (4). Solving Equation (4) yields the solution to the
congestion control problem.

3.2. A Closed-Loop Congestion Control Model with Propagation Latency in
Device–Controller Pairs

As shown in Figure 3, the propagation latency from a forwarding device to the
centralized controllers (DC) and that from the centralized controllers to a forwarding
device (CD) are defined as τdc(t) and τcd(t), respectively. Assume that the centralized
controllers can monitor τdc(t) and that the forwarding devices can receive the CS from the
centralized controllers with τcd(t). Let τ2(t) = τdc(t) + τcd(t), which is termed propagation
latency in device–controller pairs.
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When a flow joins the SDWN or is generated in an OpenFlow forwarding device, it is
first placed in a queue, in which is waits to be processed and sent. When a communication
channel is free, the centralized controllers establish a device-to-device path after receiving
all communications from the whole network. Then, they design a control policy and sends
the control instructions to adjust the sending rate at the source side. The whole process is
described as follows.

First, the flow entry in the source forwarding device sends a complete or partial copy
of the sending rate r(t) to the centralized controllers (a packet-in message). Next, the
centralized controllers calculate the state of the forwarding device by means of the packet-
in message, classify the global state information, and create a control policy to stabilize
the sending rate. The control policy is utilized to re-stabilize the sending rate via control
instructions u(t). Then, the controllers adjust the weighted matrix (matrix Bu, Bu ∈ Rn×n)
accordingly, where Bu represents the completion of the flow (which generates the packet-in
message) associated with the control instructions.

Therefore, the SDWN architecture with propagation latency in device–controller pairs
can be modeled as

.
r(t) = Ar(t) + Buu(t), (5)

where A is the matrix of the network parameters.
Let the control instruction u(t) = Kr(t), K ∈ Rn×n is denote control strength, and

the control instruction be represented as u(t) = Kr(t− tk), t ∈ [tk, tk+1), where u(t) is the
control input in the forwarding device, and tk is the sample time at moment k. Rewrite r(t)
as r(tl) = r(t− (t− tk)) = r(t− τ2(t)), t ∈ [tk, tk+1), where τ2(t) = τdc(t) + τcd(t) denotes
the entirety of propagation latency in the device–controller pairs.

Substitute r(t− τ2(t)) into Equation (5); consequently, the SDWN architecture with
propagation latency in device–controller pairs becomes a linear closed-loop congestion
control system.

.
r(t) = Ar(t) + Buu(t) = Ar(t) + BuKr(t− τ2(t)),
t ∈ [tk, tk+1).

(6)

3.3. Effect of Channel Competition from Neighboring Forwarding Devices

The problem of wireless channel competition is a critical issue impacting the sending
rate adjustment at the source side in the SDWN. The centralized controllers contain infor-
mation on global topology. Due to the broadcasting nature of the wireless medium, the
forwarding devices cannot use and occupy the same wireless channel at the same moment.
The other forwarding devices around the source forwarding device may contain data that
can be transmitted simultaneously. Thus, every forwarding device needs to compete for the
shared channel in order to send data, as shown in Figure 4. Optimizing the sending rates
of the different source forwarding devices is essential in a period of channel competition.
By centralizing control in the SDWN, the effect of coupling connection is reflected in the
control instructions received from the centralized controllers. All network information
is aggregated, and the control laws are designed in the centralized controllers to control
network congestion.

Figure 4 shows an instance of channel competition in the SDWN. When there are
data that have been sent from the forwarding device A to the forwarding device B, A
provides updated information to the centralized controllers. At this moment, forwarding
device C communicates with forwarding device D, occupying the wireless channel. Thus,
forwarding device A receives the control instructions and must wait until the wireless
channel is free. Meanwhile, when forwarding device E coupled with forwarding device
F also have data to transmit, they must also compete with forwarding device A. The
centralized controllers require all information and make proper adjustments of the control
laws of the different forwarding devices, which feed this information back to the forwarding
devices via the control instructions.
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Assumption 4. The coupled forwarding devices are defined as the reciprocal channel effect in
SDWNs. The whole network is diffusively coupled, and all network information is sent to the
centralized controllers. Define L = (lij)N×N as the Laplace coupling matrix, whose diagonal
elements are considered to correspond to lii = −ΣN

j=1,j 6=ilij, lij ≥ 0. This represents the network
topology of the global SDWN. If there is a connection between forwarding device i and j (i.e., i and j
are neighbors), lij = lji = 1; otherwise, lij = lji = 0 (i 6= j). The row sum of L is zero. The whole
SDWN is connected, and matrix L is irreducible.

Based on the Laplace coupling matrix L in Assumption 4, the control policies ûi(t)
in the forwarding device i that represent the topology relationship between all neighbor
forwarding devices can be described as follows

ûi(t) = K
{

ΣN
i=1lij

[
Grj(t) + Gdrj(t− τ1(t))

]}
, (7)

where appropriate dimensions G, Gd denote the coupling weights of the proper adjust-
ments. The information on global network topology and wireless channel competition with
propagation latency in the device-to-device path τ1(t) is used to update the information
sent to the centralized controllers. Then, the centralized controllers send the control instruc-
tions to the forwarding device at the source side based on analyzing the global network
topology and wireless channel competition with a global view.

Therefore, all control instructions in the centralized controllers are expressed by
Equation (7) to implement stable congestion control in the SDWN, which consists of
topology information and the influence of the other forwarding devices with propagation
latency in device-to-device paths.

Now, when the forwarding device at the source side receives the control instructions
from the centralized controllers, the propagation latency in the device–controller pairs τ2(t)
must be considered. This means that the forwarding device makes an adjustment in latency
τ2(t) behind the centralized controllers sending the control instructions. Additionally,
considering the presence of external disturbance, this closed-loop congestion control model
can be converted into a robust control model. In addition, by combining Equations (4) with
(6) as a data transmission process model and considering the global topology expressed
by Equation (7), the linear closed-loop SDWN architecture incorporating the external
disturbance can be described as follows{ .

ri(t) = Ari(t) + Adri(t− τ1(t)) + Buui(t) + Bww(t),
ui(t) = K

{
r(t− τ2(t)) + ΣN

i=1lij
[
Grj(t) + Gdrj(t− τ1(t))

]}
,

(8)

where A is the weight of the network parameters, and Bw is the weight of the external
disturbance. Let Ari(t) = Âri(t) + Ari(t) and ui(t) = ûi(t) + u(t).

Therefore, the congestion control system with two kinds of propagation latencies is
converted into a robust congestion control model, which can be modeled by Equation (8).
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3.4. A WOA-Based Scheduling Strategy Designed to Maximize Global SDWN Throughput

This section describes a WOA-based scheduling strategy designed to maximize global
SDWN throughput, which can be non-preemptively pre-set to determine the network
parameters of each forwarding device stabilization process.

3.4.1. Whale Optimization Algorithm

First, the WOA algorithm, used as a preliminary strategy, is briefly introduced as
follows. The WOA is a meta-heuristic optimization algorithm that simulates the foraging
behavior of humpback whales, including their encircling of prey, bubble-net attacking
strategies, and prey detection behavior [37–40].

Encircling Prey

Humpback whales have the capacity to identify the location of prey and hem them in.
Owing to the optimal position designed such that it is not a priori, this paper assumes that
the current best candidate solution is the location of prey. Each whale tries to update their
position with respect to approaching to the prey. This foraging behavior can be modeled as
follows.

→
D =

→
C ·
∣∣∣∣ →X∗(k)−→X(k)

∣∣∣∣,
→
X(k + 1) =

→
X∗(k)−

→
A·
→
D,

where k indicates the kth iteration,
→
A and

→
C are coefficient vectors, the position vector of

prey X∗ signifies the best solution,
→
X∗ is the position vector, |·| presents the absolute value,

and · represents Hadamard’s product of vectors. In addition,
→
X∗ should be updated in each

iteration if there is a better solution.
The vectors

→
A and

→
C are described as follows.

→
A = 2

→
a ·→r ,

→
C = 2

→
r ,

where
→
r ∈ [0, 1] is a random vector, and

→
a ∈ [0, 2] is convergence vector from 2 to 0 with

the iterations.
a = (2− 2k/Kmax),

where Kmax is the maximum number of the iterations.

Bubble-Net Attacking

Figure 5 presents an image of the humpback whale’s hunting strategy, in which it
prefers to attack its prey close to the surface. It swims down, generates bubbles in a spiral
shape around its prey, and then dives up toward the surface to consume them.
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While engaging in this foraging behavior, the whale generates distinctive bubbles
arranged in a circle, including a coral loop, a lobtail, and a capture loop.

The WOA can be divided into two approaches:

1. Shrinking Encircling Mechanism

By analyzing the value of
→
a , our study can mathematically model the foraging behav-

ior of a humpback whale.

2. Spiral Updating Position

By calculating the distance between the current position of the whale and the location
of its prey, this approach mathematically simulates the whale’s foraging behavior, which
can be expressed as follows.

→
X(k + 1) =

→
D′·ebl · cos(2πl) +

→
X∗(k),

where
→
D =

∣∣∣∣ →X∗(k)−→X(k)
∣∣∣∣ represents the distance of the ith whale to its prey; b, as a

constant, indicates the shape of the logarithmic spiral; and l ∈ [0, 1] is a random number.
It has been reported that the whale swims around the prey within a shrinking circle and
along a spiral-shaped path simultaneously.

Then, we assume that both the shrinking encircling mechanism and the spiral updating
position can be selected with a probability of 50% to optimize the position of the whale.

Therefore, the bubble-net attacking method can be modelled as follows

→
X(k + 1) =


→
X∗(k)−

→
A·
→
D i f p < 0.5,

→
D′·ebl · cos(2πl) +

→
X∗(k) i f p ≥ 0.5,

where p ∈ [0, 1] is a random value.

Search for Prey

As discussed in the above-mentioned analysis, the variation of the vector
→
A is consid-

ered to be a critical parameter with respect to the random search for prey according to the
position of each whale. Consequently, the whale should be forced to move far away from a

reference position if
∣∣∣∣→A∣∣∣∣ > 1. The position of the whale is updated according to a randomly

selected whale rather than the best solution, for which a global search is performed. The
model is described as follows.

→
D =

→
C ·
∣∣∣∣→Xrand(k)−

→
X(k)

∣∣∣∣,
→
X(k + 1) =

→
Xrand(k)−

→
A·
→
D,

where
→
Xrand(k) is a random position vector of a whale, which is selected from the current

population.

3.4.2. The Details of the WOA-Based Scheduling Strategy

The centralized controllers are considered to constitute a criterion device, in which
a scheduling problem must be pre-set in order to solve the network congestion problem.
Hence, each individual whale is considered to represent a specific scheduling plan in order
to allocate appropriate sending rates at the source side based on the control instructions
from the centralized controllers. After multiple iterations, the optimal individual whale out-
put is selected as the best scheduling scheme according to an evaluation of the effectiveness
of each scheduling scheme.
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Ideally, the sending rate in each forwarding device remains stable and needs to be
optimized under congestion control in order to maximize the global SDWN throughput
with limited wireless network resources.

The specific steps of the WOA-based scheduling strategy are as follows.
Step 1. Represent the number of whales as N for defining all specific scheduling plans

and consider a set of n forwarding devices f1, f2, · · · , fn that has a maximum processing
capacity of Ci, i = 1, 2, · · · , n. Suppose that only n levels of the sending rate exist at the
source side with a weight wi, i = 1, 2, · · · , n.

Step 2. Configurate a set of m data flows Pj(t), j = 1, 2, · · · , m waiting to be processed
at the moment t. All of them must be processed and then transmitted to the destination.

Step 3. Suppose that 0 < C1 ≤ · · · ≤ Cn < +∞ and ignore the process latency of the
forwarding devices to simplify the optimized scheduling model.

Step 4. Process each data flow Pj using a series of forwarding devices (not all for-
warding devices). Thus, define the processing data flow Pj of these forwarding devices
as uij ∈ { f1, · · · , fn}, for which the maximum process capability is Cuij , i, j = 1, 2, · · · , n,
respectively.

Step 5. To maximize the global throughput, the optimized whale with an appropriate
ideal rate of each forwarding device is denoted as Si(t), i = 1, 2, · · · , n. Define S(t) =
{S1(t), S2(t), · · · , Sn(t)}.

Therefore, the optimization problem can be described as follows.

max
wi>0,Si(t)>0

∑
i

Si(t)

s.t. Si = ∑
j

Cuij ≤ Ci,

0 ≤ Cuij ≤ min{Ci} = C1,
s1(t)
W1

= · · · = si(t)
wi

= · · · = sk(t)
wk

∑
j

Cuij = Pj(t),

Si(t), Pj(t), Ci ≥ 0.

(9)

The optimized whale with an appropriate ideal rate Si(t) of forwarding devices
can be set under the above-mentioned constraints before data transmission in Equation
(9). Initially, the optimized problem of maximizing the global SDWN throughput can be
easily solved, and an uncomplicated allocated weighted proportion is defined as an ideal,
optimized pre-set state by calculating each Si(t). Therefore, the WOA-based scheduling
strategy has been presented to pre-set the goal of the stability congestion control scheme.

Based on the above-mentioned analysis, the stability congestion control model can be
established. Then, external disturbance is incorporated to convert the stability congestion
control model into a robust congestion control model in order to develop our global robust
congestion control algorithm.

Remark 1. In this section, our study utilizes the WOA algorithm to implement the weighted fair
scheduling strategy, which provides the control target of maximizing the global SDWN throughput
for stability congestion control. The WOA algorithm can obtain solutions of required precision due
to its low computational complexity and time consumption. Furthermore, a WOA algorithm that
must be pre-set only provides the goal of the robust congestion control before executing the robust
congestion control algorithm, which means that the WOA algorithm cannot be used in discussion
regarding robust H∞ control performance.

4. Problem Formulation of Robust Congestion Control

This section proposes a continuous, robust congestion control scheme with two kinds
of propagation latencies in the SDWN. Its specific steps are as follows.
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Step 1. The AIMD adjustment scheme is analyzed based on the congestion control
system with propagation latency in device-to-device paths, and the values κ and ϑ are
calculated after receiving the CS at the source side.

Step 2. A closed-loop congestion control model with propagation latency in device–
controller pairs is proposed, and the data transmission process model is analyzed to provide
decisions regarding control instructions in the centralized controllers.

Step 3. The effect of channel competition between neighboring forwarding devices
is analyzed. Based on the global network topology and considering the effect of channel
competition, all control instructions in the centralized controllers are expressed to stabilize
congestion control.

Step 4. The WOA-based scheduling strategy is analyzed to calculate each optimized pa-
rameter value Si(t), and the target of the congestion control stability procedure is proposed
in order to maximize the global SDWN throughput.

Step 5. Based on the first four steps, the stability congestion control model is estab-
lished. Then, external disturbance is accounted for to convert the stability congestion
control model into a robust congestion control model.

Step 6. A novel, robust H∞ control model is proposed to solve the robust congestion
control model, thereby necessitating the determination of a robustness condition.

At the current stage, this paper focuses on establishing the robust H∞ control model
and determining its robustness condition, which are introduced in the following two
subsections.

4.1. Sending Rates at Source Side Approaching the Ideal Optimized Rates

Our study first considers the sending rates at the source side approaching the ideal
optimized rates for establishing the robust H∞ control model. By means of optimized
scheduling, the data flows are assigned for maximizing the throughput of global SDWN
under the aforementioned satisfactory conditions. Then, the problem becomes keeping the
optimization model network stable in the SDWN, which maintains an allocated weighted
proportion at the source side according to the ideal optimized state S(t). If the global
SDWN achieves robustness, it is stable at the maximal network throughput influenced by
propagation latencies and external disturbance. Therefore, when S(t) is calculated and
achieved, the sending rate of each forwarding device needs to approach its value.

It is preferred to keep the ideal optimized state S(t) stable under robust conges-
tion control. The sending rate of each forwarding device needs to be unified as follows:
r1(t)→ S1(t), r2(t)→ S2(t), · · · , rn(t)→ Sn(t) ( ri(t)→ Si(t), which means
lim

t→+∞
||ri(t)→ Si(t)|| = 0).

To unify the sending rates at the source side, the variable
x(t) =

{[
r1(t)− S1(t)]T ,[ r2(t)− S2(t)]

T , · · · , [rn(t)− Sn(t)]
T
}

is defined as the error state.
Thus, the robust congestion control system (modeled by Equation (8)) can be converted
into a global error system of the robust congestion control, which is described below:

.
xi(t) = Axi(t) + Adxi(t− τ1(t)) + BuK{x(t− τ2(t))

+ΣN
i=1lij

[
Gxj(t) + Gdxj(t− τ1(t))

]}
).

4.2. Robust H∞ Control Model

Our study also considers the linear closed-loop SDWN with two kinds of propagation
latency and external disturbance as the robust H∞ control model, which is described as
follows. 

.
xi(t) = Axi(t) + Adxi(t− τ1(t)) + Buui(t) + Bww(t)
ui(t) = K

{
x(t− τ2(t)) + ΣN

i=1lij
[
Gxj(t) + Gdxj(t− τ1(t))

]}
z(t) = Ix(t)
x(t) = φ(t),

(10)
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where xi(t) ∈ Rn is the error state denoting the state of the difference between the real-time
state and the ideal optimized pre-set state; ui(t) ∈ Rn represents the control instruction in
the centralized controllers; z(t) is the controlled output, which can reflect the energy trajec-
tory; w(t) is the external disturbance with a covariance matrix equal to w and expectation
equal to zero; and τi(t), i = 1, 2 as the continuous time satisfies

0 ≤ τi ≤ hi, µmi,≤
.
τ(t) ≤ µMi,

where µmi, µMi, and hi, i = 1, 2 are constants.
At this stage, definitions required for the analysis of the robust H∞ control model are

provided as follows.

Definition 2. There exists a description of the energy relation between the controlled output z(t)
and the external disturbance output w(t). By considering the real SDWN, the energy relationship of
these two outputs is believed to be

∫ ∞
0 {z

T(t)z(t)− γ2wT(t)w(t)}dt, ||Twz(z)||∞ < γ, where
γ is a prescribed positive scalar. This shows that the energy of the external disturbance has been
absorbed after being controlled, which implies that robust H∞ control has been achieved.

Lemma 1 (Kronecker product): Let ⊗ denote the notation of Kronecker product. Accordingly, the
following properties are satisfied in appropriate dimensions:

(i) (αA)⊗ B = A⊗ (αB),
(ii) (A + B)⊗ C = A⊗ C + B⊗ C,
(iii) (A⊗ B)(C⊗ D) = (AC)⊗ (BD).

Lemma 2 [51]: For any matrix R > 0 and a vector function x : [α, β]→ Rn , if the integrals
concerned are well defined, the following inequality holds:{[∫ β

α
xT(s)ds

]
R
[∫ β

α
x(s)ds

]
≤ (β− α)

∫ β

α
xT(s)Rx(s)ds.

Lemma 3 [52]: For any matrices R ∈ Rn×n, Y ∈ R2n×n, and X ∈ R2n×2n with
[

X Y
∗ R

]
≥ 0,

and a vector function x : [α, β]→ Rn , if the integrals concerned are well defined, then the following
inequality holds:

−
∫ β

α

.
xT

(s)R
.
x(s) ≤ ϑT [He{YΠ}+ (β− α)X]ϑ,

Lemma 4 [53]: For any matrix R > 0 and a differentiable signal x in [α, β]→ Rn , the following
inequality holds:

−
∫ β

α

.
xT

(s)Rx(s)ds ≤ vTΩ̂v/(β− α),

where

Ω̂ =

−4R −2R 6R
∗ −4R 6R
∗ ∗ −12R

,

v = [xT(β) xT(α)
∫ β

α
xT(s)ds/(β− α)].

Lemma 5 [54]: Let x be a differentiable function: [α, β]→ Rn . For symmetric matrices R ∈ Rn×n

and Z1, Z3 ∈ R3n×3n, and any matrices Z2 ∈ R3n×3n and N1, N2 ∈ R3n×n satisfying
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Ψ =

Z1 Z2 N1
∗ Z3 N2
∗ ∗ R

 ≥ 0,

the following inequality holds:

−
∫ β

α

.
sT
(t)R

.
x(s)ds ≤ vTΩv,

where
Ω = (β− α)(Z1 + Z3/3) + He

{
N1Π1 + N2Π2

}
,

Π1 = e1 − e2, Π2 = 2e3 − e1 − e2,
e1 = [I 0 0], e2 = [0 I 0], e3 = [0 0 I],

and v is similarly defined in Lemma 4.

5. Criterion and Robustness Condition of Robust H∞ Control Model in the SDWN

In this section, a new criterion of a robust H∞ control model in the SDWN is proposed
to determine a robustness condition using matrix-based integral inequality. The criterion is
first established based on the LMI control toolbox. We provide the following definition:

Ã = IN ⊗ A, Ãd = IN ⊗ Ad, B̃ = IN ⊗ Bw, B̃u = IN ⊗ Bu,
G̃ = G⊗ L, G̃d = Gd ⊗ L.

According to the Kronecker product, the second-order system can be rewritten as a
new, robust H∞ control model.

.
x(t) = Ãx(t) + Ãdx(t− τ1(t)) + u(t) + B̃w(t)

u(t) = K
{

B̃ux(t− τ2(t)) + G̃x(t) + G̃dx(t− τ1(t))
}

z(t) = IN x(t)
x(t) = φ(t).

(11)

The following nomenclature for vectors and matrices simplifies the representation:

η1(t) = [ηT
3
∫ t

t−τ1(t)
xT(s)ds

∫ t−τ1(t)
t−h1

xT(s)ds]
T

,

η2(t) = [xT(t)
.
xT

(t)]
T

,
η3(t) = [xT(t)xT(t− τ1(t)) xT(t− h1) xT(t− τ2(t)) xT(t− h2)]

T ,

η4(t) = [
.
xT

(t)
.
xT

(t− τ1(t))
.
xT

(t− h1)
.
xT

(t− τ2(t))
.
xT

(t− h2)]
T

,

η5(t) = [
∫ t

t−τ1(t)
xT(s)ds/τ1(t)

∫ t−τ1(t)
t−h1

xT(s)ds/(h1 − τ1(t))]
T

,

η6(t) = [
∫ t

t−τ2(t)
xT(s)ds/τ2(t)

∫ t−τ2(t)
t−h2

xT(s)ds/(h2 − τ2(t))]
T

,

ξ(t) = [ηT
3 (t) ηT

4 (t) ηT
5 (t) ηT

6 (t)]
T ,

ξ(t) = [ξ
T
(t) wT(t)]

T
,

ei = [0n×(i−1)n In 0n×(15−i)n], i = 1, 2, · · · , 15.

Theorem 1. For given scalars h1, h2 > 0 and µ11 <
.
d1(t) < µ12 < 1, µ21 <

.
d2(t) < µ22 < 1,

the global error system is robust under robust congestion control if there exist appropriate dimension
matrices P > 0, Qi ≥ 0 and R > 0, i = 1, 2, appropriate dimension symmetrical matrices
X(i)

11 , X(i)
13 , X(i)

21 , X(i)
23 , i = 1, 2, and any matrices X(i)

12 , X(i)
22 , N(i)

11 , N(i)
12 , N(i)

21 , N(i)
21 , i = 1, 2, thus

allowing the following conditions in (12) to (13) to hold:

Ξ < 0, (12)
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Ψ
(1)
1 =

X(1)
11 X(1)

12 N(1)
11

∗ X(1)
13 N(1)

12
∗ ∗ R1

 ≥ 0, Ψ
(1)
2 =

X(1)
21 X(1)

22 N(1)
21

∗ X(1)
23 N(1)

22
∗ ∗ R1

 ≥ 0,

Ψ
(2)
1 =

X(2)
11 X(2)

12 N(2)
11

∗ X(2)
13 N(2)

12
∗ ∗ R2

 ≥ 0, Ψ
(2)
2 =

X(2)
21 X(2)

22 N(2)
21

∗ X(2)
23 N(2)

22
∗ ∗ R2

 ≥ 0,

(13)

where

Ξ = He
{

ΠT
1 PΠ18 + ΠT

6 N(1)
11 Π10 + ΠT

6 N(1)
12 Π11 + ΠT

7 N(1)
21 Π12 + ΠT

7 N(1)
22 Π13 + ΠT

8 N(2)
11 Π14

+ΠT
8 N(2)

12 Π15 + ΠT
9 N(2)

21 Π16 + ΠT
9 N(2)

12 Π17

}
−
(
1− .

τ(t)
)
ΠT

4 (Q1 −Q2)Π4 −ΠT
5 Q2Π5

+
2
∑

j=1
hjeT

6 Rje6 − γ2eT
15e15

+ τ1(t)ΠT
6

(
X(1)

11 +
X(1)

13
3

)
Π6

+(h1 − τ1(t))ΠT
7

(
X(1)

21 +
X(1)

23
3

)
Π7 + τ2(t)ΠT

8

(
X(2)

11 +
X(2)

13
3

)
Π8

+(h1 − τ1(t))ΠT
9

(
X(2)

21 +
X(2)

23
3

)
Π9 + ΠT

1 PΠ19 + ΠT
1 PΠ20

+ΠT
1 PΠ21 + ΠT

3 Q1Π3 + ΠT
22Π22 + eT

1 e1

and

Π1 = [eT
1 eT

2 eT
3 eT

4 eT
5 τ1(t)eT

11 (h− τ1(t))eT
12]

T ,
Π2 = [eT

6 eT
7 eT

8 eT
9 eT

10 eT
1 −

(
1− .

τ(t)
)
eT

2
(
1− .

τ(t)
)
eT

2 − eT
3 ]

T ,
Π3 = [eT

1 eT
4 ]

T ,
Π4 = [eT

2 eT
5 ]

T ,
Π5 = [eT

3 eT
6 ]

T ,
Π6 = [eT

1 eT
2 eT

11]
T ,

Π7 = [eT
2 eT

3 eT
12]

T ,
Π8 = [eT

1 eT
4 eT

13]
T ,

Π9 = [eT
4 eT

5 eT
14]

T ,
Π10 = e1 − e2,
Π11 = 2e11 − e1 − e2,
Π12 = e2 − e3,
Π13 = 2e12 − e2 − e3,
Π14 = e1 − e4,
Π15 = 2e13 − e1 − e4,
Π16 = e4 − e5,
Π17 = 2e14 − e4 − e5,

Π18 = [
(

Ã + G̃
)

eT
1 eT

7 eT
8 eT

9 eT
10 eT

1 −
(
1− .

τ(t)
)
eT

2
(
1− .

τ(t)
)
eT

2 − eT
3 ]

T
,

Π19 = [
(

Ãd + G̃d

)
eT

2 eT
7 eT

8 eT
9 eT

10 eT
1 −

(
1− .

τ(t)
)
eT

2
(
1− .

τ(t)
)
eT

2

Π20 = [KB̃ueT
4 eT

7 eT
8 eT

9 eT
10 eT

1 −
(
1− .

τ(t)
)
eT

2
(
1− .

τ(t)
)
eT

2 − eT
3 ]

T
,

Π21 = [B̃eT
15 eT

7 eT
8 eT

9 eT
10 eT

1 −
(
1− .

τ(t)
)
eT

2
(
1− .

τ(t)
)
eT

2 − eT
3 ]

T
,

Π22 = [eT
1 eT

15]
T .

Proof: Consider the following Lyapunov–Krasovskii functionals acting on this closed-loop
robust H∞ control model:

V(t) = ηT
1 (t)Pη1(t) +

∫ t
t−τ1(t)

xT(s)Q1x(s)ds +
∫ t−τ1(t)

t−h1
xT(s)Q2x(s)ds

+
2
∑

j=1

∫ 0
−hj

∫ t
t+θ

.
xT

(s)Rj
.
x(s)dsdθ.
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The derivative of V(t) is

.
V(t) = ξ

T
(t)
{

HeΠ1PΠ2 + ΠT
3 Q1Π3 −

(
1− .

τ(t)
)
ΠT

4 (Q1 −Q2)Π4

−ΠT
5 Q2Π5 +

2
∑

j=1
hjeT

6 Rje6}ξ(t)−
2
∑

j=1

∫ t
t−hj

.
xT

(s)Rj
.
x(s)ds

= ξ
T
(t)Ξ1ξ(t)−

2
∑

j=1

∫ t
t−hj

.
xT

(s)Rj
.
x(s)ds.

Since Ψ
(i)
j ≥ 0, i, j = 1, 2 in Lemma 5, the following is yielded:

−
2
∑

j=1

∫ t
t−hj

.
xT

(s)Rj
.
x(s)ds

= −
∫ t

t−τ1(t)
.
xT

(s)Rj
.
x(s)ds−

∫ t−τ1(t)
t−h1

.
xT

(s)Rj
.
x(s)ds

−
∫ t

t−τ2(t)
.
xT

(s)Rj
.
x(s)ds−

∫ t−τ2(t)
t−h2

.
xT

(s)Rj
.
x(s)ds

≤ ξ
T
(t)
{

τ1(t)ΠT
6

(
X(1)

11 + X(1)
13 /3

)
Π6 + (h1 − τ1(t))ΠT

7

(
X(1)

21 + X(1)
23 /3

)
Π7

+τ2(t)ΠT
8

(
X(2)

11 + X(2)
13 /3

)
Π8 + (h1 − τ1(t))ΠT

9

(
X(2)

21 + X(2)
23 /3

)
Π9

+He
{

ΠT
6 N(1)

11 Π10 + ΠT
6 N(1)

12 Π11 + ΠT
7 N(1)

21 Π12 + ΠT
7 N(1)

22 Π13

+ΠT
8 N(2)

11 Π14 + ΠT
8 N(2)

12 Π15 + ΠT
9 N(2)

21 Π16 + ΠT
9 N(2)

12 Π17

}
}ξ(t)

Thus, the continuous linear closed-loop congestion control system (10) is considered,
and the derivative of V(t) is

.
V(t) = ξ(t)Ξξ(t) + γ2wT(t)w(t) = ξT(t)

{
Ξ + ΠT

22Π22

}
ξ(t),

where

Ξ = He
{

ΠT
1 PΠ18 + ΠT

6 N(1)
11 Π10 + ΠT

6 N(1)
12 Π11 + ΠT

7 N(1)
21 Π12 + ΠT

7 N(1)
22 Π13

+ΠT
8 N(2)

11 Π14 + ΠT
8 N(2)

12 Π15 + ΠT
9 N(2)

21 Π16 + ΠT
9 N(2)

12 Π17

}
+ΠT

1 PΠ19 + ΠT
1 PΠ20 + ΠT

1 PΠ21 + ΠT
3 Q1Π3 −

(
1− .

τ(t)
)
ΠT

4 (Q1 −Q2)Π4

−ΠT
5 Q2Π5 +

2
∑

j=1
hjeT

6 Rje6 − γ2eT
15e15

+ τ1(t)ΠT
6

(
X(1)

11 + X(1)
13 /3

)
Π6

+(h1 − τ1(t))ΠT
7

(
X(1)

21 + X(1)
23 /3

)
Π7 + τ2(t)ΠT

8

(
X(2)

11 + X(2)
13 /3

)
Π8

+(h1 − τ1(t))ΠT
9

(
X(2)

21 + X(2)
23 /3

)
Π9.

The following H∞ performance index J is considered:

J =
∫ ∞

0
{zT(t)z(t)− γ2wT(t)w(t)}dt, ||Twz(z)||

∞
< γ,

where γ is a prescribed positive scalar.
H∞ performance index J displays the energy relationship between the controlled

output and the external interference. J < 0 indicates that the energy of external interference
has been expended under the control law and that robust control has been achieved.

Consider w(t) 6= 0, where the following relation bas been obtained:

.
V(t) + zT(t)z(t)− γ2wT(t)w(t) ≤ ξT(t)

{
Ξ + ΠT

22Π22 + eT
1 e1

}
ξ(t) = ξT(t)Ξξ(t).

Following from inequalities (12) and (13) and the Schur Complement Lemma, we
obtain .

V(t) + zT(t)z(t)− γ2wT(t)w(t) < 0.
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Sum t from 0 to ∞ so that∫ ∞

0
{zT(t)z(t)− γ2wT(t)w(t)}dt < V(0)−V(∞).

With the zero initial condition V(0) = 0, we obtain∫ ∞

0
{zT(t)z(t)− γ2wT(t)w(t)}dt < 0.

Based on the Lyapunov–Krasovskii theory, the continuous linear delay closed-loop
system with external interference can achieve robust control J < 0 with a desirable H∞
performance index ||Twz(z)||∞ < γ according to (12) and (13).

Thus, the proof is complete. �

6. Simulation

In Section 6, a numerical network simulation is conducted to illustrate the effectiveness
of our proposed robust congestion control scheme in the SDWN scenario and the robustness
conditions given in Theorem 1. Furthermore, a comparison with the AIMD adjustment
scheme and the scheme incorporating information-forwarding and the control algorithm is
given to demonstrate the superiority of our proposed robust congestion control scheme
over the other congestion control approaches that are applied in SDWNs to maximize global
SDWN throughput and thus maintain long-term stability with two kinds of propagation
latency and external disturbance.

6.1. Scenario Establishment

An SDWN scenario is established for the numerical simulation (as shown in Figure 6),
which consists of a group of SDWN-centralized controllers and four forwarding devices.
Each forwarding device is connected to one another and the centralized controllers by a
wireless channel. In the wireless channel, the influence of propagation latency and external
disturbance is present in every device-to-device path and device–controller pair. Thus, the
forwarding devices first record their CS information and periodically broadcast it to the
centralized controllers. Next, the centralized controllers yield control policies for robust
congestion control and send control instructions to the four forwarding devices. Finally,
the four forwarding devices follow these control instructions and make proper adjustments
to the sending rates at the source side in order to achieve the desired global robust control
for network congestion in the SDWN.

Biomimetics 2023, 8, x FOR PEER REVIEW 20 of 28 
 

 

Based on the Lyapunov–Krasovskii theory, the continuous linear delay closed-loop 
system with external interference can achieve robust control 𝐽 < 0  with a desirable 𝐻∞performance index ||𝑇௪௭(𝑧)||ஶ < 𝛾 according to (12) and (13). 

Thus, the proof is complete. 

6. Simulation 
In Section 6, a numerical network simulation is conducted to illustrate the effective-

ness of our proposed robust congestion control scheme in the SDWN scenario and the 
robustness conditions given in Theorem 1. Furthermore, a comparison with the AIMD 
adjustment scheme and the scheme incorporating information-forwarding and the control 
algorithm is given to demonstrate the superiority of our proposed robust congestion con-
trol scheme over the other congestion control approaches that are applied in SDWNs to 
maximize global SDWN throughput and thus maintain long-term stability with two kinds 
of propagation latency and external disturbance. 

6.1. Scenario Establishment 
An SDWN scenario is established for the numerical simulation (as shown in Figure 

6), which consists of a group of SDWN-centralized controllers and four forwarding de-
vices. Each forwarding device is connected to one another and the centralized controllers 
by a wireless channel. In the wireless channel, the influence of propagation latency and 
external disturbance is present in every device-to-device path and device–controller pair. 
Thus, the forwarding devices first record their CS information and periodically broadcast 
it to the centralized controllers. Next, the centralized controllers yield control policies for 
robust congestion control and send control instructions to the four forwarding devices. 
Finally, the four forwarding devices follow these control instructions and make proper 
adjustments to the sending rates at the source side in order to achieve the desired global 
robust control for network congestion in the SDWN. 

 
Figure 6. A typical SDWN scenario for the numerical simulation. 

6.2. Parameter Description 
Now, to analyze Theorem 1 (inequations (12) and (13)), the parameters in Equation 

(11) are considered as follows. 𝑘 = 1.55,  𝜗 = 16.5, 𝐴 = ቂ0 10 −𝑘ቃ , 𝐴ௗ = ቂ 0 0−𝜗 0ቃ, 
and 𝐵௪ = (2.2,1.4,3.6,2.8,1.2,2.4,0.6,1.8)். The inner coupling matrices are defined as 𝐺 = 𝑑𝑖𝑎𝑔{3,2}, 𝐺ௗ = 𝑑𝑖𝑎𝑔{3,5}, and the coupling matrix 𝐿 is as follows 

Figure 6. A typical SDWN scenario for the numerical simulation.



Biomimetics 2023, 8, 249 20 of 28

6.2. Parameter Description

Now, to analyze Theorem 1 (inequations (12) and (13)), the parameters in Equation
(11) are considered as follows.

k = 1.55, ϑ = 16.5, A =

[
0 1
0 −k

]
, Ad =

[
0 0
−ϑ 0

]
,

and Bw = (2.2, 1.4, 3.6, 2.8, 1.2, 2.4, 0.6, 1.8)T . The inner coupling matrices are defined as
G = diag{3, 2}, Gd = diag{3, 5}, and the coupling matrix L is as follows

k = 1.55, ϑ = 16.5, A =

[
0 1
0 −k

]
, Ad =

[
0 0
−ϑ 0

]
,

and Bw = (2.2, 1.4, 3.6, 2.8, 1.2, 2.4, 0.6, 1.8)T . Define the inner coupling matrices as G =
diag{3, 2}, Gd = diag{3, 5}, and the coupling matrix L is as follows.

L =


−3 1 1 1
1 −2 1 0
1 1 −3 1
1 0 1 −2

.

A robust congestion control scheme in SDWN is researched in this paper. In ad-
dition, recall that an essential precondition for solving the re-stabilization problem is
determined by global asymptotic stability. As a necessary condition for global asymp-
totic stability, x(t) indicates that the error state satisfies lim

t→0
x(t) = 0. Therefore, we

consider a stability congestion control pattern with zero initial conditions to correspond to
x(t) = (0 0 0 0 0 0 0 0)T .

A four-dimensional matrix is proposed to describe four forwarding devices under ro-
bust H∞ control in the SDWN. There exists a feasible solution to LMIs (inequations (12) and
(13)) according to Theorem 1. Now, suppose the control strength

K = diag{2.5, 1.2, 1.8, 1.6, 2, 2.5, 2.2, 5} and the control instruction Bu =

[
1 2

0.3 2

]
.

To render the simulation tractable, the external disturbance output is denoted as
follows:

w(t) =

{
1 0 ≤ t ≤ 1,
0 otherwise,

which is a function with limited energy and duration.

6.3. Simulation Results

We conducted experiments on both the variations in the error states and the energy
trajectories in the robust H∞ control scheme in the SDWN. The experiments included the
AIMD adjustment scheme and the information-forwarding and control algorithm as the
benchmark algorithms.

Now, short descriptions of all the benchmark algorithms under the condition of
Theorem 1 are given as follows.

Short descriptions of all the benchmark algorithms

- AIMD adjustment scheme [28,29]: This is a traditional network control scheme,
which is often used at the source side without considering both the propagation
latency in device–controller pairs and channel competition in order to achieve network
robustness with a global view of the SDWN.

- Information forwarding and control algorithm [36–38]: The previous algorithm that
addresses network congestion implements the robust control of partial networks
instead of control incorporating a global view of the SDWN, which is often used
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for robust congestion control without considering the propagation latency in device–
controller pairs.

The definitions of both the variation in the error state and energy trajectory are given
as follows.

Definition 3. Variation in error state: The variation in error state is defined as the trajectory of
the current state approaching the ideal state in SDWNs, which is believed to be close to 0 when the
second-order system is under robust congestion control. Moreover, due to the characteristics of the
second-order system, each variation in the error state is described by two trajectories that should
converge at 0, i.e., the error equals 0 over a period of time.

Definition 4. Energy trajectory: Energy trajectory is defined as the trajectory of the energy
output, which is utilized to describe the energy trajectories of the controlled output z(t) and the
external disturbance w(t). As J < 0, a necessary condition for the achievement of robust H∞
congestion control is that the energy of the external disturbance must not have been absorbed after
being controlled, and its corollary is that the controlled output z(t) is lower than the external
disturbance output w(t) after being controlled.

According to Theorem 1, there exists a feasible solution to LMIs from Inequality (12)
to Inequality (13). The variation in the error state xi(t), i = 1, 2, 3, 4 with two trajectories
is displayed in Figure 7, each of which, as second-order systems, has two trajectories to
display its variations. Notably, all the sending rates at the source side are initially stable,
and the value of all the error states is initially zero due to the global asymptotic stability of
the SDWN. Next, when the external disturbance appears at the initial moment, jitter occurs,
and all error states become unstable. This indicates that all the source forwarding devices
adopted the robust congestion control scheme to carry out the sending rate adjustments
for re-stabilization under the presence of two kinds of propagation latency and external
disturbance. Then, the error states converge after a finite length of time. This indicates that
the error state x(t) is under robust congestion control and that the whole wireless network
has achieved global SDWN robustness.
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Figure 8 displays the energy relation between the controlled output z(t) and the
external disturbance output w(t). It is notable that the energy trajectory z(t) is lower than
w(t), which means that the energy of the external disturbance has been restrained under
the robust congestion control scheme. Thus, the effectiveness of our proposed robust
congestion control scheme has been validated.
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robust congestion control scheme.

To better reflect the control performance by making simulation-based comparisons
with other schemes, including the AIMD adjustment scheme and the information-forwarding
and control algorithm, important design elements of the robust H∞ control scheme are
ablated to verify the efficiency and robustness of the conditions we determined to be suffi-
cient for achieving global SDWN robustness. The detailed results of the experiments on
the robust H∞ control scheme are exhibited in Figures 9–14 and listed in Tables 1 and 2.
Table 1 shows the results of the convex optimization after the achievement of global SDWN
robustness, in which the iteration number is 60 and the consumption time is 0.0004972 s. It
is clear that the convex optimization that implements the weighted fair scheduling strategy
for stability congestion control is simple and presents low computational complexity and
short time consumption, which satisfies the analysis of Remark. Table 2 shows the results
of the robust H∞ control schemes, which include our proposed robust congestion con-
trol scheme, the AIMD adjustment scheme, and the information-forwarding and control
algorithm. Short discussions comparing the robust H∞ control schemes with the AIMD
adjustment scheme and the information-forwarding and control algorithm are presented in
the following subsections.
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Table 1. The results for the WOA algorithm.

WOA Algorithm

Iteration number 60

Consumption time (sec) 0.0004972

Table 2. The results for the robust H∞ control schemes.

Schemes Characteristics Convergence Energy Trajectories

Our proposed robust
congestion control

scheme

Two kinds of
propagation latency

and channel
competition

Convergence J < 0

AIMD adjustment
scheme

Propagation latency
in device-to-device

paths
Non-convergence J > 0
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Table 2. Cont.

Schemes Characteristics Convergence Energy Trajectories

Information-
forwarding and

control algorithm

Propagation latency
in device-to-device
paths and channel

competition

Non-convergence J > 0

6.3.1. Comparison with AIMD Adjustment Scheme

The error states and energy trajectories corresponding to the traditional AIMD ad-
justment scheme are shown in Figures 9 and 10, respectively. Obviously, the variations
in the error state xi(t), i = 1, 2, 3, 4 with two trajectories diverge at 1.2 s in Figure 9. This
finding shows that it is impossible for the sending rates of the forwarding devices at the
source side to approach the ideal, optimized state. In Figure 10, it is obvious that the energy
trajectory z(t) is higher than w(t), i.e., it is impossible for the external disturbance to be
restrained under network congestion control. Due to the lack of global information from
the SDWN-centralized controllers, the traditional AIMD adjustment scheme cannot satisfy
the robustness condition given in Theorem 1.

Upon comparing the traditional AIMD adjustment scheme with our proposed scheme,
it can be clearly seen that it is impossible for the sending rates of the forwarding devices at
the source side to maintain long-term stability via the traditional AIMD adjustment scheme.
This means that the sending rates at the source side diverge from the ideal, optimized
states as time passes, which are also incapable of satisfying the demands of global SDWN
throughput maximization.

Therefore, this paper demonstrates the superiority of our proposed scheme over the
traditional AIMD adjustment scheme in terms of maximizing global SDWN throughput
for maintaining long-term stability with two kinds of propagation latencies and external
disturbance.

6.3.2. Comparison with Information-Forwarding and Control Algorithm

In terms of the information-forwarding and control algorithm, to solve the network
congestion problem, existing works such as [2,34–36] emphasize the robust control of partial
networks instead of employing a global view of SDWN. This may result in the wireless
network failing to achieve global SDWN robustness when the propagation latencies in
device–controller pairs are not considered. This paper presents the superiority of our robust
congestion control scheme, with two kinds of propagation latency and external disturbance,
over the other information-forwarding and control algorithms.

As shown in Figure 11, the variations in error state xi(t), i = 1, 2, 3, 4 with two trajecto-
ries can indicate network robustness by utilizing the information-forwarding and control
algorithm. Clearly, the variations in error state xi(t), i = 1, 2 correspond to convergence
at 1.5 s, while the variations in xi(t), i = 3, 4 correspond to continuous oscillation (non-
convergence). This finding reveals that the information-forwarding and control algorithm
for network congestion is suitable for the robust control of partial networks but not for
global robust congestion control. Figure 12 shows that the energy trajectory z(t) is notably
higher than w(t), which signifies that it is impossible to constrain external disturbance
under the network congestion control scheme.

We compared the information-forwarding and control algorithm with our proposed
scheme, as shown in Figures 13 and 14. Figure 13 shows the variations in x3(t) in the case
of our proposed scheme and those in the information-forwarding and control algorithm.
Obviously, the variations in x3(t) are under robust control in our proposed scheme, while
they are outside of robust control in the information-forwarding and control algorithm.
Similarly, in Figure 14, the energy trajectory z(t) in our proposed scheme is also under
robust control, while that in the information-forwarding and control algorithm is still
outside of robust control.
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Therefore, our proposed scheme has been proven to provide more favorable results
than the information-forwarding and control algorithm in terms of maximizing the global
SDWN throughput for maintaining long-term stability with two kinds of propagation
latency and external disturbance.

7. Conclusions

In this paper, we have proposed a novel WOA-based robust control scheme, which
has been dubbed robust congestion control scheme, with two kinds of propagation la-
tency and external disturbance in SDWNs that has been designed to solve the long-term
stabilization problem. First, the sending rate adjustment model was proposed by using
the AIMD adjustment scheme with propagation latency in device-to-device paths and
the closed-loop congestion control model with propagation latency in device–controller
pairs, and the effect of channel competition between neighboring forwarding devices has
been analyzed. Next, a robust congestion control model with two kinds of propagation
latency and external disturbance was established. Then, an efficient WOA-based schedul-
ing strategy was presented in order maximize global network throughput. Afterward, the
sufficient conditions were derived using Lyapunov–Krasovskii functionals and formulated
by LMIs. Finally, after comparing the traditional AIMD adjustment scheme with an ex-
isting information-forwarding and control algorithm, we conducted numerical network
simulations to demonstrate the effectiveness of our robust congestion control scheme. This
scheme could also be utilized to analyze other efficient robust control methods in SDWNs.
For future research, more applicable control algorithms modeled in SDWNs could be dis-
cussed in order to improve reliability and scalability. Simultaneously, more efficient SDN
scheduling strategies could be further studied and improved.
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