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Abstract: The Internet of Things technology provides convenience for data acquisition in environ-
mental monitoring and environmental protection and can also avoid invasive damage caused by
traditional data acquisition methods. An adaptive cooperative optimization seagull algorithm for
optimal coverage of heterogeneous sensor networks is proposed in order to address the issue of
coverage blind zone and coverage redundancy in the initial random deployment of heterogeneous
sensor network nodes in the sensing layer of the Internet of Things. Calculate the individual fitness
value according to the total number of nodes, coverage radius, and area edge length, select the
initial population, and aim at the maximum coverage rate to determine the position of the current
optimal solution. After continuous updating, when the number of iterations is maximum, the global
output is output. The optimal solution is the node’s mobile position. A scaling factor is introduced to
dynamically adjust the relative displacement between the current seagull individual and the optimal
individual, which improves the exploration and development ability of the algorithm. Finally, the
optimal seagull individual position is fine-tuned by random opposite learning, leading the whole
seagull to move to the correct position in the given search space, improving the ability to jump out of
the local optimum, and further increasing the optimization accuracy. The experimental simulation
results demonstrate that, compared with the coverage and network energy consumption of the
PSO algorithm, the GWO algorithm, and the basic SOA algorithm, the coverage of the PSO-SOA
algorithm proposed in this paper is 6.1%, 4.8%, and 1.2% higher than them, respectively, and the
energy consumption of the network is reduced by 86.8%, 68.4%, and 52.6%, respectively. The optimal
deployment method based on the adaptive cooperative optimization seagull algorithm can improve
the network coverage and reduce the network cost, and effectively avoid the coverage blind zone
and coverage redundancy in the network.

Keywords: environmental monitoring; Internet of Things; heterogeneous wireless sensor network;
node deployment; seagull optimization algorithm; coverage

1. Introduction

At present, environmental protection and monitoring are becoming more and more
important, and there are many types of operating environment monitoring targets and
large demand [1,2]. When using the existing traditional wired monitoring network for
environmental monitoring, there will be high network construction costs, complex net-
work node deployment, future maintenance will be difficult, and other problems [3,4].
The mature development and wide application of Wireless Sensor Networks (WSNs)
technology will provide more reliable and efficient technical support for environmental
monitoring [5]. WSNs have the characteristics of low power consumption, strong robust-
ness, self-organization, and scalability. It can realize large-scale deployment in target
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areas, ensure the breadth and accuracy of data collection, reduce the cost of monitoring
network construction, and reduce network deployment and maintenance costs [6,7]. The
difficulty of post-maintenance can effectively meet the needs of large-scale deployment of
environmental monitoring and long-term online monitoring. According to whether the
node structure, function and link are the same, it can be divided into homogeneous wire-
less sensor networks (WSNs) and heterogeneous wireless sensor networks (HWSNs) [8,9].
Compared with homogeneous WSNs, HWSNs can better reflect the heterogeneity and
polymorphism of the physical world, so it is easier to achieve a synchronous perception
of multiple targets with the collaborative execution of multiple tasks, and its application
range is becoming wider and wider [10].

The heterogeneous wireless sensor network is an advanced form of wireless sensor
network that is not only compatible with various key technologies of the homogeneous
network but also utilizes the heterogeneous characteristics of nodes to improve network
performance [11]. Combining the optimal coverage algorithm into the heterogeneous
network environment can better meet the different needs of practical applications. The
core issues that need to be solved urgently in heterogeneous wireless sensor networks–
network coverage, energy consumption, and network connection reliability are closely
related [12,13]. Network coverage determines the ability of wireless sensor networks to
monitor the physical world, reflecting the “perceived” quality of service that the network
can provide [14].

Due to the limited energy of nodes and the heterogeneous characteristics of the net-
work itself, the redundancy of sensing data and the timeliness of aggregation, the data
collection method of heterogeneous sensor networks has become one of the key and diffi-
cult issues in the current sensor network research field. Construct a heterogeneous sensor
network QoS support system framework that meets the quality-of-service requirements
such as reliability, connectivity, fault tolerance, and energy efficiency, and propose an effi-
cient coverage control algorithm oriented to application requirements and heterogeneous
characteristics. Reasonably utilize the limited resources in the wireless sensor network,
reduce the energy consumption of sensor nodes, improve the life cycle and service quality
of the network, optimize the deployment location of wireless sensors, and maximize the
coverage of the target area.

1.1. Problem Description and Research Motivation

Node deployment technology is a key technology of heterogeneous wireless sensor
networks, which has an important impact on the performance of sensor networks [15].
According to the deployment method, node deployment is divided into deterministic
deployment and random deployment. Deterministic deployment refers to a deployment
technology in which node location information or network status is known before deploy-
ment [16]. How to ensure the connectivity and coverage performance of the network in a
deterministic deployment method is favored by researchers [17].

Although the current research on the coverage problem of sensor networks has
achieved certain results, most of them ignore the problem of network connectivity, which
is not only to ensure that the object is monitored and perceived but also to transmit the
monitored data to the background for further monitoring. It should also be noted that the
sensors used in engineering practice have different parameters, such as sensing radius,
communication radius, and cost, due to different manufacturing processes or types (such as
temperature sensors, humidity sensors, infrared sensors, etc.). Most of the existing research
results assume that the sensor network is composed of nodes with the same parameters,
and there are great limitations in applying these research results to sensor networks com-
posed of nodes with different parameters. Furthermore, sensor network nodes are often
deployed in harsh working environments, and the failure rate of nodes is high due to
energy depletion, physical environment, and man-made damage. Ensuring fault tolerance
of the network and providing reliable monitoring services is very important for the target-
oriented monitoring sensor network. Finally, most of the above research results assume
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that the cost of nodes in the area is the same when deploying nodes and do not take into
account the different deployment costs caused by differences in deployment locations.

1.2. Contribution

Compared with the traditional method, the particle swarm collaborative optimization
seagull algorithm proposed in this paper comprehensively considers issues such as energy
consumption, the network’s lifetime, and the network coverage. The main contributions of
this paper:

1. While proposing the coverage control algorithm problem, we described the coverage
control method problem of HWSNs.

2. We proposed a coverage deployment strategy based on the particle swarm collabora-
tive optimization seagull algorithm.

3. We performed a large number of simulation calculations to improve the efficiency
and coverage of the network coverage optimization algorithm.

4. We evaluated the superior performance of the proposed algorithm by comparing it
with the algorithms of PSO, GWO, and SOA.

2. Related Work

The heterogeneity of HWSNs is reflected in node heterogeneity, link heterogeneity, and
network protocol heterogeneity. The problem of network coverage refers to how to ensure
that the coverage formed by the deployed nodes meets the requirements of the monitoring
environment. Network coverage is usually divided into two types: deterministic coverage
and random coverage.

2.1. Deterministic Coverage

Deterministic coverage is subdivided into how to achieve the maximum coverage
with a fixed number of nodes rate and how to achieve the target coverage with the least
number of nodes. Liu et al. consider a new problem in rechargeable wireless sensor
networks, given a set of locations with one or more targets, to determine the minimum
number of sensor nodes that need to be deployed to ensure a given coverage quality [18].
Karimi et al. modeled the heterogeneous node deployment problem as an optimization
problem with the total power consumption of the network as its cost function and proposed
a heterogeneous two-layer Lloyd algorithm to optimize node deployment and improve
network coverage [19]. Djenouri et al. [20] considered the communication coverage of
sustainable data forwarding in wireless sensor networks and proposed an energy-aware
deployment model for relay nodes. Compared with existing heuristic algorithms, the
running time of the proposed heuristic algorithm is shorter. Due to the limited node
energy and high node mobility performance consumption, it is necessary to reduce energy
consumption through the node deployment process. In order to solve these problems, Liu
et al. [21] proposed a distributed node deployment algorithm DABVF based on virtual
forces to improve the network coverage of underwater wireless sensor networks. How to
effectively deploy all wireless sensors and save system energy consumption is a key issue
in current wireless sensor network applications. Deng et al. [22] proposed an optimization
strategy by adding an external central force to deploy sensors from the center of the target
area to avoid covering holes or abnormal structures.

2.2. Random Coverage

Random coverage refers to the optimization of reducing energy consumption of
nodes and prolonging the life cycle of the network by adjusting the state switching of
nodes after the implementation of uniform distribution of nodes in a specific environment.
Priyadarshi et al. [23] divided various coverage technologies into four main parts: compu-
tational geometry-based technology, force-based technology, grid-based technology, and
meta-heuristic-based technology. Akram et al. [24] used different parameters to verify the
consistency of the method used for scheduling sensor nodes, allowing it to cover all targets
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while using less power. The experiment proved that this method used an effective method
for scheduling sensor nodes to monitor all targets with less power consumption. Bhat
et al. [25] proposed a localization and deployment model that uses arithmetic optimization
algorithms (AOA) for localization and node deployment, and further utilized the results of
this algorithm to develop deployment models to achieve fully connected networks. Tiran-
dazi et al. [26] proposed a new algorithm that improves connectivity and full area coverage
by utilizing some mobile robots to change the initial topology and position of sensors. The
proposed algorithm has shown significant improvements in connectivity and area coverage.
Narayan et al. [27] proposed a coverage optimization and vulnerability repair protocol to
optimize the overlap and coverage vulnerability problems in the network and maximize
coverage. Using probability theory and statistical theory, they established the relationship
between the coverage area and the radius of SN. This protocol improves the stability period
of the network and improves the network coverage. In the literature [28–31], the author
uses swarm intelligence optimization algorithms, such as particle swarm optimization, arti-
ficial bee colony algorithm, artificial fish swarm algorithm, shark optimization algorithm,
and other methods to transform the problem into a combinatorial optimization problem.
It is good to employ the high-performance optimization capability of swarm intelligence
optimization algorithms and improve the connectivity of wireless sensor networks.

In response to these problems, the characteristics of numerous deployment nodes,
low network connectivity and target coverage performance, and poor fault tolerance in
target monitoring applications are considered. In this paper, how to deploy sensor nodes
with different performance parameters in a given deployment location with different
costs, so that the cost optimization problem under the condition of multiple coverage of
monitoring targets and multiple connectivity between deployed sensor nodes is studied
and proposed. A minimum-cost fault-tolerant deployment strategy for heterogeneous
sensor networks is proposed for target monitoring. By constructing the mathematical
model of connectivity and coverage of heterogeneous sensor nodes, the optimization
problem is solved with the help of the improved Seagull optimization algorithm, and the
coverage and connectivity performance of the sensor network are guaranteed under the
condition of optimal deployment cost. In heterogeneous wireless sensor networks, there are
problems of high node deployment density, poor target coverage and network connectivity
fault tolerance, and high deployment cost. A cost-optimized fault-tolerant deployment
strategy for node heterogeneous sensor networks based on particle swarm collaborative
optimization seagull algorithm is proposed.

3. Mathematical Model

For the two-dimensional sensor network coverage problem in HWSNs, it is assumed
that there are n monitoring target points to be covered in the deployment area of the
two-dimensional plane, and the deployed sensor nodes adopt isomorphic sensors, that
is, the sensing radius of the sensors is the same [32,33]. Let the sensing radius be Rs,
the communication radius be Rc, the unit of the network coverage is m, and 2Rs ≤ Rc.
Assuming that there are n monitoring target points in the area to be covered and setting the
position coordinates of the i-th sensor node as (xs, ys), the Euclidean distance of the target
point to be monitored that the sensor node can cover is shown in Formula (1):

d(i, s) =
√
(xs − xi)

2 + (ys − yi)
2 (1)

The probability p(i, s) of the target point i to be monitored while being covered by the
sensor node s is shown in Formula (2):

p(i, s) =
{

0, d(i, s) > Rs
1, d(i, s) ≤ Rs

(2)

The two-dimensional planar area to be deployed is equally divided along the x and y
axes with a step size q, then the length of each segment is l = q, and the intersection point of
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the deployment area grid is q2. Then, the probability that the monitoring point set T in the
deployment area is sensed by the sensor node set Q, the node coverage rate, is shown in
Formula (3).

Cov =
pcov

q2 =

S
∑

i=1
p(i, s)

q2 (3)

The number of sensors in the node set Q is S.
Suppose the deployment area is a square with side length L. Theoretically, in the set

deployment area, the number of deployment nodes can be obtained by calculation, and the
schematic diagram of the full coverage deployment of nodes is shown in Figure 1.
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In Figure 1, O1, O2, and O3, respectively, represent the positions of the three sensor
nodes. At this time, the triangle O1O2O3 is an equilateral triangle, and O3A = Rs is the
sensing radius of the sensor. If ∠AO3B = π/3, AB = BO3 = O3A = Rs, according to the nature
of the circle, then AB⊥O2O3, ∠AO3C = 1/2∠AO3B = π/6. According to the cosine theorem,
the length of the line segment O3C is shown in Formula (4).

LO3C = LO3 A × cos(∠AO3C) = Rs × cos(π/6) = (

√
3

2
)Rs (4)

Theoretically, the number of nodes in the deployment area is shown in Formula (5):

M = (
L

(
√

3/2)× Rs + Rs
+ 1)

2
(5)

According to the above analysis, the node deployment problem can be simplified as a
constrained engineering optimization problem, as shown in Formula (6):

s.t.



g1 =
S
∑

i=1
p(i, s) ≥ 0

g2 =
S
∑

i=1
p(i, s)− q2

g3 = d(i, s)− Rs ≥ 0
g4 = S−M ≥ 0

(6)
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Based on the situation of energy balance in the network, the definition of energy
balance coefficient η is introduced, in detail: the parameter Ei is used to define the remaining
energy of sensor node i, and the parameter k is the number of valid sensor nodes.

η =
Max(Ei)−Min(Ei)

1
k

k
∑

i=1
Ei

(7)

The parameter η reflects the balance of network energy consumption. The more
balanced the network energy consumption is, the lower the network energy consumption,
and the smaller the value.

4. Seagull Optimization Algorithm Optimized by PSO (PSO-SOA)
4.1. Seagull Optimization Algorithm (SOA)

Seagull optimization algorithm (Seagull optimization algorithm, SOA) is a new type
of intelligent optimization algorithm based on mathematical models established by Gaurav
et al., based on the migration and attack behavior of seagulls [34]. The algorithm has many
advantages [35–37], including but not limited to simple structure, fewer parameters, and
lower time complexity, but at the same time, it also has disadvantages such as weak global
optimization ability, low population diversity, and falls easily into local optimum [38,39].
There are also many advantages. In the seagull optimization algorithm, a mathematical
model for global exploration of the algorithm is established for long-distance migration,
and a mathematical model for local development is established for spiral attacks [40].

4.1.1. Migration (Global Exploration)

The seagull optimization algorithm simulates the movement trajectory of seagull
flocks in the air when they are flying. When it changes position, the following conditions
need to be met [41]:

(a) Avoid collisions. To prevent collisions with other individual seagulls during flight,
the seagull optimization algorithm uses an additional control variable of inertia weight A
to update the position of a single seagull.

Ci(t) = A× Xi(t) (8)

Among them, Ci is the non-collision part, and t is the repeated number. Xi(t) is the
update times of the position Xi(t). The inertia weight A is the behavior of the seagull in the
specified space, and the calculation formula is:

A = fc −
(

t× fc

MaxIter

)
(9)

Among them, MaxIter is the maximum number of iterative updates, and t is the
current number of iterations. The initial value of fc is a constant of two, which is used
to control the change in A value with the number of iterative updates. As the number of
updates increases, A linearly decreases from the initial value fc to 0.

(b) Adjacent to each other. Under the control of A, individual seagulls will approach
the nearest seagull with the best fitness value under the premise of preventing collision
with other individual seagulls.

Mi(t) = B× (Xbest(t)− Xi(t)) (10)

B = 2× A2 × rand (11)

Among them, Ms(t) indicates that the seagull is moving in the best direction. Xbest
indicates the best position of the seagull. B represents the random factor that controls A in
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order to balance the exploration and development of the algorithm, and rand represents
the value number of the random (0, 1).

(c) Approach the position of the optimal seagull until it arrives. Individual seagulls
are updated relative to the optimal seagull position.

Di(t) = |Ci(t) + Mi(t)| (12)

Among them, Di(t) is the interval between the seagull and the best seagull at the
iteration number t. In summary, the seagull population avoids collisions while increasing
the search area, and then moves to the optimal seagull.

4.1.2. Attack (Partial Exploitation)

It is our purpose to make more use of the experience in the search process [42]. After
the seagull arrives in a new area, it will use its own advantage to rush towards the prey’s
speed and angle to make a spiral attack when it is preying on the prey. The calculation
method of the spiral attack is shown by the vectors x, y, z.

r = u× eθv (13)

x′ = r× cos(θ) (14)

y′ = r× sin(θ) (15)

z′ = r× θ (16)

Among them, the parameter r is the radius of the spiral movement during the attack.
θ is the random value of [0, 2π]. u and v represent constants (take one in the paper), and
the parameter e is the natural logarithm base.

Xi(t) =
(

Di(t)× x′ × y′ × z′
)
+ Xbest(t) (17)

Wherein, Xi(t) is the new position of the seagull after the attack [43].

4.2. Implementation Process of Seagull Optimization Algorithm Optimized by PSO (PSO-SOA)

The particle swarm optimization algorithm is a more convenient and efficient intelli-
gent algorithm discovered and proposed by Kennedy et al. [44]. Particle swarm optimiza-
tion simulates birds in a flock of birds by designing a massless particle. The particle has
only two attributes: speed and position. The speed represents the speed of movement, and
the position represents the direction of movement. Each particle searches for the optimal
solution independently in the search space, records it as the current individual extremum,
shares the individual extremum with other particles in the entire particle swarm, and finds
the optimal individual extremum as the entire particle, the current global optimal solution
of the group. The core idea of this algorithm is that all individuals in the particle swarm will
move towards the two optimal directions during each iteration [45]. Additionally, based
on this, it iteratively updates its position several times, and there is no guarantee of global
optimization when dealing with the PSO [46,47]. Current researchers are more focused on
improving and optimizing SOA based on the two aspects of individual population and
optimal position, and do not pay attention to the optimization of the worst position of
seagulls. However, when implementing the SOA algorithm, the distribution of the worst
position of seagulls in the entire space will affect the optimization of the entire iterative
process, so the optimization of its worst position can make it closer to the optimal position,
thereby improving the optimization speed of the entire algorithm [48].
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4.2.1. Particle Swarm Optimization Algorithm with Jump Operator

In the later stage of the iteration of the particle swarm algorithm, the optimal coordi-
nates will be limited to the local area, making it difficult to jump out of the local extremum.
Therefore, an adaptive jump operator is added in the iterative process to compare the simi-
larity between the optimal coordinates of individual particles and the optimal coordinates
of group particles, giving particles different jump probabilities. After the N-th iteration,
the probability formula and jump formula of the i-th particle jumping out of the current
position are:

p = exp
(

f
(

pN
gbest

)
− f

(
pN

i
))

; (18)

xN
i = xN

i + rand× (ub− lb); (19)

Among them: the parameter rand is a random number between [0, 1]. The parameters
ub and lb are upper and lower limits. It can be obtained from the formula that when
the optimal position of the particle is close to the optimal position of the population,
the particle has a greater probability of jumping out, so as to avoid falling into the local
optimal situation.

4.2.2. Seagull Optimization Algorithm Optimized by PSO (PSO-SOA)

Based on the particle swarm optimization algorithm, this paper takes the global
optimal position of SOA and any position whose fitness is better than the worst position and
sets these two positions as two “extreme” positions, and then distributes them uniformly.
The worst position of individual seagulls is close to the direction of the other two positions.
The expression is shown in Formula (20). Finally, based on the calculation of Formula (20),
it is determined whether the worst position of the seagull needs to be replaced by a position
with better fitness.

Xtemp = Xt
worst × rand +

(
Xt

worst − Xt
ri
)
× rand

+
(
Xt

worst − Xt
best
)
× rand

(20)

Xt+1
worst =

{
Xtemp f

(
Xtemp

)
< f

(
Xt

i
)

Xt
i otherwise

(21)

In Formulas (20) and (21), Xtemp represents the intermediate temporary position after
being processed, Xt

best is the optimal seagull position, Xt
worst is the worst seagull position,

and Xt
ri is any position of the seagull population. The essence of this strategy is to intersect

the global optimal position and the global worst position, make the worst position move
towards the optimal position, and combine any position to make it approach any position
better than itself. In the iterative process of the SOA algorithm, the original worst-case
position will be replaced by any improved position that is better than it. Under such
iterative calculation, continuous optimization of seagull individuals can be achieved, which
helps the algorithm accelerate its optimization speed.

4.3. Algorithm Complexity Analysis

Assuming that the number of populations of the algorithm is N, the dimension of
the search space is D, and the maximum number of searches is Tmax, the complexity of
PSO-SOA includes: the initialization complexity of the population O(ND), the fitness value
calculation complexity O(ND), the position update complexity of the global and local
search is O(N2logD), the fitness value sorting complexity of the algorithm is O(N2), and the
control parameter update complexity of the algorithm is O(ND). Then, the complexity of
the PSO-SOA algorithm is shown in Formula (22):

O(PSO− SOA) = O(ND) + O(Tmax)O(ND + N2 log N + N2 + ND) (22)
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The algorithm time complexity of SOA is shown in Formula (23):

O(SOA) = O(ND) + O(Tmax)O(N2 log N + N + ND) (23)

5. Node Deployment Strategy of HWSNs Based on the PSO-SOA Algorithm

The improved seagull algorithm, to solve the sensor node deployment optimization
problem of the heterogeneous sensor network, firstly, is aimed at the initialization of the
HWSNs system and seagull algorithm. The information of each individual seagull is
updated through group learning of the best individuals after screening out the best indi-
viduals of the individual seagulls, including the spatial position, coverage, etc. The initial
population is generated by the chaotic initialization method so that the overall convergence
speed of the seagull algorithm is improved. In addition, due to the poor convergence speed
and search ability of the seagull algorithm, the PSO algorithm is used to improve the overall
search ability. When iteratively optimizing, the seagull community movement law is used
to cooperate with individuals, attract each other, and conduct information interaction. It is
necessary to obtain the optimal solution to obtain better convergence speed and the optimal
individual. The improved Seagull algorithm will speed up the convergence, the diversity
of the population will increase, and the coverage of HWSNs will also be improved in the
subsequent search process. To design the optimal coverage strategy of HWSNs based on
the particle swarm optimization seagull algorithm, one needs to solve the maximum value
of the objective function of the coverage optimization for HWSNs, obtain the distribution
positions of all sensor nodes in the area to be tested after optimal deployment, and output
the optimized coverage rate. The algorithm flow chart of the seagull algorithm based on
particle swarm optimization is shown in Figure 2.

The specific experimental steps are as follows:

(1) Set the coverage model parameters of the sensor nodes in HWSNs, and generate
and calculate the sensor node positions that initialize the corresponding network
coverage according to the objective function. Set the total number N of the initial gull
population and the maximum number of iterations Tmax;

(2) Calculate fitness. Each individual seagull is evaluated based on its position. The
initialization of individual optimal coverage Pbest and population optimal coverage
Pg for each individual seagull;

(3) Calculate the position of the seagull after the collision through the migratory behavior
of the individual seagull, and move to the optimal individual and calculate the relative
displacement position;

(4) Calculate the position of the spiral attack according to Formulas (13)–(16);
(5) Use the PSO mechanism to update the worst seagull individual position, and calculate

the worst seagull individual position according to Formulas (20) and (21);
(6) According to the average optimal position of the calculated population, the position

of each individual seagull is updated, and the coverage rate of HWSNS of each
individual seagull position after the update is calculated according to the objective
function f ;

(7) Compare the individual coverage rate of each seagull after updating the position,
corresponding to the coverage rate of the individual optimal Pbest, if the former is
larger, the Pbest will be updated;

(8) Perform backtracking iterative update, update the seagull population and update the
optimal coverage, and output the optimal solution found;

(9) If the cycle does not reach the preset maximum number of iterations, return to 2);
otherwise, it ends, and the optimal solution is output.
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6. Algorithm Simulation Comparison and Analysis
6.1. Simulation Environment Settings

In order to reflect the superior performance of the Particle Swarm Optimization Seagull
Algorithm (PSO-SOA) proposed in this paper, we need to accurately test and improve the
performance of the SOA algorithm, and when simulating various algorithms, to ensure the
fairness of the comparison algorithm conditions and set consistent parameters. At the same
time, the proposed PSO-SOA algorithm is compared with particle swarm optimization
algorithm (PSO) [49], gray wolf optimization algorithm (GWO) [50], and seagull algorithm
(SOA), and its performance is tested by a unimodal function and a multimodal function.
Additionally, a large number of experiments are carried out on the coverage performance
of HWSNS to verify the superior performance of the algorithm proposed in this paper.
Each algorithm was run 50 times in the simulated parameter settings of HWSNS coverage
to obtain an average value reflecting its coverage performance. In total, 40 sensor nodes
were set to be randomly deployed in a monitoring area of 100 × 100 m2, and the initial
energy of each node was 1 J. Considering that the heterogeneity of HWSNS is mainly
reflected in the sensing range of the nodes, we set the sensing radius of each sensor node
as a random number within a range of [5,15]. In order to compare the performance of the
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analysis algorithms, the initial positions of the sensor nodes were randomly generated in
the monitored area, using consistent simulation conditions. The experimental operating
environment was IntelCoreTMI7-8700CPU, 3.2 GHz, 32 GB memory, 64-bit operating
system Windows10, and the simulation software used MATLABR2020B.

6.2. Test Objective Function Optimization

In order to verify that the improved PSO-SOA algorithm has better performance
in terms of convergence and optimization speed, this paper conducted comparative ex-
periments on the basis of the six test functions in Table 1 for the standard test function
information. If the algorithm ran to the maximum number of iterations, the algorithm ter-
minated the optimization problem for the selected six functions. In order to avoid randomly
affecting the experimental results, the three algorithms independently conducted 200 exper-
iments on each optimization problem and recorded the average of the 200 running results.

Table 1. Basic information of test functions.

Function Formula Dimension Bounds Optimum

Sphere F01 =
d
∑

i=1
x2

i
30 [−100, 100] 0

Step F02 =
d
∑

i=1
(|xi+0.5|)2 30 [−100, 100] 0

Quartic F03 =
d
∑

i=1
ix4

i + rand(0, 1) 30 [−1.28, 1.28] 0

Alpine F04 =
d
∑

i=1
|xi sin(xi) + 0.1xi| 30 [−10, 100] 0

Rastrigin F05 = 10d +
d
∑

i=1

[
x2

i − 10 cos(2πxi)
] 30 [−5.12, 5.12] 0

Ackley F6 =− 20 exp

(
−0.2

√
1
d

d
∑

i=1
x2

i

)
− exp

(
1
d

d
∑

i=1
cos(2πxi)

)
+ 20+ exp(1) 30 [−32, 32] 0

Table 2 presents the experimental results obtained by independently running PSO-
SOA, SOA, GWO, and PSO algorithms on multiple test functions 200 times.

Table 2. Experimental results of function testing.

Function
PSO-SOA SOA GWO PSO

Max Mean Std Max Mean Std Max Mean Std Max Mean Std

F1 1.98 × 102 3.21 × 102 2.19 × 102 4.89 × 103 5.24 × 103 4.79 3.04 × 104 4.87 × 104 5.24 × 103 2.27 × 102 5.87 × 102 3.04
F2 5.97 × 101 1.41 × 102 2.87 2.98 × 103 3.05 × 103 7.07 × 101 8.28 × 103 9.05 × 103 6.34 × 102 1.97 × 102 2.03 × 102 2.34
F3 1.15 4.07 3.09 1.27 1.95 3.01 × 10−1 1.57 × 101 5.98 × 101 2.84 × 101 3.02 2.87 × 102 4.27 × 102

F4 2.23 5.12 1.74 1.23 × 101 1.16 × 101 1.35 × 10−1 4.04 5.86 1.48 4.07 6.87 3.04
F5 1.32 × 102 1.24 × 102 1.98 × 101 1.58 × 102 1.82 × 102 1.64 × 10−1 1.31 × 102 1.56 × 102 1.64 × 101 1.57 × 102 2.34 × 102 6.01 × 101

F6 2.65 3.21 2.07 × 10−1 1.29 × 101 1.53 × 101 3.24 × 10−3 5.48 4.57 2.12 × 10−1 3.05 4.12 4.01 × 10−1

Table 2 lists the optimal values, average values, and standard deviations obtained
by independently running PSO-SOA, SOA, GWO, and PSO algorithms 200 times. It
can be seen that for the selected test functions, PSO-SOA has the strongest optimization
performance, which is obviously better than SOA, GWO, and PSO. For function F4, the PSO-
SOA algorithm improves accuracy by two compared with the basic SOA algorithm, and the
algorithm as a whole has better stability. For functions F2 and F3, the optimal value of the
PSO-SOA algorithm is close to 0, but in terms of stability, the optimization performance of
PSO-SOA is much better than that of SOA and GWO. The effect is relatively poor, and it can
be seen that the improved algorithm has obvious competitive advantages in performance.
In order to visually demonstrate the optimization performance of PSO-SOA, we selected
six benchmark functions such as the convergence iteration curve shown in Figure 3.
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From the convergence curves of the above six test function optimizations, it can be
seen that the improved PSO-SOA algorithm is better than the PSO, GWO, and basic SOA
algorithms in terms of convergence speed. The functions of F1 and F3 are unimodal
functions, in which it is easier to achieve the optimum, so they are mostly used to examine
the connection ability. The improved PSO-SOA algorithm has higher convergence precision,
which overcomes the problem of low precision of basic SOA optimization, which can be seen
intuitively from the function convergence curve. At the same time, it can be seen from the
convergence curve that the improved algorithm can easily jump out of the local optimum
and converge to the optimal value at a faster speed, and there are multiple inflection points
in the iterative process. Compared with the basic SOA algorithm, the improved PSO-SOA
algorithm improves the accuracy of optimization. For the multimodal functions F5 and F6,
the improved PSO-SOA algorithm has a faster convergence speed than PSO, GWO, and
basic SOA algorithm and finds the best optimal solution with the best performance. As
mentioned above, it can be known from the convergence curve that the convergence of the
PSO-SOA algorithm is better than the basic PSO, GWO, and SOA algorithms.

6.3. Simulation Results and Analysis
6.3.1. Comparison of Coverage Effects of Sensor Node Deployment

In order to verify the coverage effect of the algorithm PSO-SOA proposed in this paper,
the optimal coverage simulation results of the three algorithms of the GWO algorithm and
the basic SOA algorithm under different iterations from the PSO algorithm are shown in
Figures 4–7 below. Figure 4 is the simulation coverage effect of the PSO algorithm, Figure 5
is the simulation coverage effect of the GWO algorithm, Figure 6 is the simulation coverage
effect of the SOA algorithm, and Figure 7 is the simulation coverage effect of the PSO-SOA
algorithm proposed in this paper.
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From Figures 4–7, it can be seen that the coverage of the four algorithms’ HWSNS
increases with the increase in the number of iterations, and the increase is relatively large.
From the perspective of 1000 iterations, the coverage effect of HWSNs of PSO algorithm
is poor, the coverage effect of HWSNs of GWO algorithm is average, the coverage effect
of HWSNs of SOA algorithm is better, and the coverage effect of HWSNs of PSO-SOA
algorithm is the best. The network coverage effects of the four algorithms are superimposed
when the algorithm is iterated 100 times. However, at 1000 iterations, the PSO-SOA
algorithm proposed in this paper has the least overlapping coverage of different nodes, the
PSO algorithm has the most overlapping coverage of nodes, the GWO algorithm has more
overlapping coverage of nodes, and the SOA algorithm has more overlapping coverage.
The overlapping parts of the coverage of the nodes of the algorithm are less. In this paper,
the PSO-SOA algorithm is proposed to improve the node work efficiency and reduce the
network cost, and at the same time, the coverage effect is the best.
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6.3.2. Comparison of Network Coverage with Different Number of Nodes

We increased the network coverage effect in the case of different numbers of nodes to
increase the experimental effect. Figures 8 and 9 show the network coverage effect of 40
and 50 sensor nodes in the case of 1000 iterations. In addition, we compared the 40 and
50 nodes covered by the network, as shown in Figure 10. It can be seen from Figures 8–10
that the network coverage of the four algorithms gradually increases with the increase in
the number of iterations. The 100-iteration network coverage of the four algorithms is a
reference, the network coverage of 40 nodes is above 0.68, and the network coverage of
50 nodes is above 0.72. After 1000 iterations, the network coverage of 40 nodes is above
0.58, and the network coverage of 50 nodes is above 0.92. In addition, it can be seen from
Figures 8–10 that no matter whether the number of nodes is 40 or 50, the network coverage
rate of the PSO algorithm is the lowest, the network coverage rate of the GWO algorithm
is low, and the network coverage rate of the SOA algorithm is high. It is proposed that
the PSO-SOA algorithm has the highest network coverage. While improving the working
efficiency of nodes and reducing network costs, the PSO-SOA algorithm proposed in this
paper improves the coverage effect of nodes. Taking the number of sensor nodes as 40 in
Figure 8 as an example, the network coverage rate of the PSO algorithm is 87.8%, the GWO
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algorithm is 89.1%, the SOA algorithm is 92.9%, and the PSO-SOA algorithm proposed in
this paper is 93.9%. Compared with the coverage rates of the PSO algorithm, the GWO
algorithm and the basic SOA algorithm, the PSO-SOA algorithm proposed in this paper
improves over them by 6.1%, 4.8%, and 1.2%, respectively.
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6.3.3. Comparison of 3D Energy Consumption

The problem of network energy consumption has always been a hot topic in HWSNS
research, and it is also a problem that everyone is very concerned about, which also
restricts the progress of network coverage research. By deploying reasonable nodes into the
network, coupled with node sleep/wake control, power control, etc., the energy utilization
rate of the network is maximized, and at the same time, energy balance is achieved for
optimal network coverage performance. Figure 11 shows the comparison of network
three-dimensional energy consumption of the four algorithms proposed in this paper: PSO,
GWO, SOA, and PSO-SOA.

It can be seen from Figure 11 that the network energy consumption of the four al-
gorithms is relatively small when the number of sensor nodes and the communication
radius are the same. At the same time, it can be seen from the four figures that the energy
consumption of the network gradually increases with the increase in the number of nodes
and the increase in the communication radius. Among them, the PSO algorithm has the
largest energy consumption in the network, and the energy consumption of most nodes
is relatively high, and the energy consumption is uneven, reaching a maximum of 0.38 J.
The energy consumption of the GWO algorithm is also relatively large, and the energy
consumption of most nodes is also relatively high, and the energy consumption is also
relatively balanced. The highest energy consumption of the sensor nodes reaches 0.18 J. The
network energy consumption of the basic SOA algorithm is relatively small, and the energy
consumption of network nodes can reach up to 0.12 J. The PSO-SOA algorithm proposed
in this paper has the smallest network energy consumption, the energy consumption of
sensor nodes is more balanced, and the energy consumption of network nodes can reach
up to 0.02 J. Overall, the energy consumption of the PSO algorithm is the largest, the energy
consumption of the GWO algorithm is high, the network energy consumption of the basic
SOA algorithm is small, and the average energy consumption of the PSO-SOA algorithm
proposed in this paper is the smallest. Compared with the network energy consumption
of PSO algorithm, GWO algorithm, and basic SOA algorithm, the PSO-SOA algorithm
proposed in this paper reduces 86.8%, 68.4%, and 52.6%, respectively, over them.
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Simulation time of the algorithm: The calculation speed of the response algorithm is also
one of the important indicators of network performance. In the case of 30, 40, and 50 sensor
nodes, the simulation time comparison chart of the four algorithms is shown in Figure 12.

It can be seen from Figure 12 that the network of the four algorithms takes a short
time when the number of sensor nodes is 40, and the PSO algorithm takes the shortest
time, which is 20.77 s. The PSO-SOA algorithm proposed in this paper takes 51.2 s, and
the SOA algorithm takes 19.8 s. When the network of four algorithms has 50 sensor nodes,
the required time is relatively long, mainly due to the increase in the number of nodes, the
intelligent optimization algorithm with increased calculation and the relatively increased
simulation time. The PSO-SOA algorithm proposed in this paper takes 60.6 s, and the
simulation time is relatively long. This is the problem we will solve next.

Based on the above simulation results, it can be seen that since the scaling factor is
introduced into the PSO-SOA algorithm proposed in this paper, the relative displacement
between the current seagull individual and the optimal individual has been dynamically
adjusted so that the diversity of the seagull algorithm has been improved. Enhanced, the
overall optimization capability and convergence speed have been improved. It performs
well in the optimized deployment of heterogeneous wireless sensor nodes and has the
best coverage effect. Therefore, the PSO-SOA algorithm proposed in this paper has strong
adaptability and faster optimization speed, and an algorithm that can significantly improve
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network coverage and reduce coverage blind spots is applied to the HWSNS coverage
optimization problem.
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7. Conclusions

The random deployment of nodes in heterogeneous wireless sensor networks causes a
large amount of coverage redundancy, resulting in energy wastage. In this paper, a particle
swarm collaborative optimization seagull algorithm-based algorithm (PSO-SOA) for the
optimal coverage method of heterogeneous sensor networks is proposed, with network
coverage and reduction in network energy consumption as the main optimization objectives.
The proposed algorithm has changed the previous problem of simply relying on intelligent
algorithm optimization to solve the problem of coverage optimization. In the face of large-
scale heterogeneous network coverage, from the perspective of geometric figures, a simple
and efficient heterogeneous coverage optimization algorithm is proposed. The algorithm
idea is simple, and the complexity is low. Additionally, coverage is fast and efficient. The
algorithm can achieve ideal network coverage with a small number of iterations. Compared
with other intelligent optimization and comparison algorithms, the network node coverage
is significantly improved. As another optimization goal, the average energy consumption
of network nodes is also significantly reduced. In summary, the algorithm is significantly
better than the comparative intelligent optimization algorithm in terms of convergence
speed, network coverage, and algorithm energy consumption and is especially suitable for
network coverage of large heterogeneous wireless sensor networks.

Although the PSO-SOA algorithm proposed in this paper improves the coverage
performance and work efficiency of the HWSNs network, some regional nodes are too
clustered during the application process. The future research direction should be to make
the coverage of HWSNS more uniform, and the area where nodes gather should be less. At
the same time, the mobile sensor network coverage is considered, and the next work will
mainly study the optimal coverage of the mobile sensor network.
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