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Abstract: Artificial skin, also known as bioinspired electronic skin (e-skin), refers to intelligent wear-
able electronics that imitate the tactile sensory function of human skin and identify the detected
changes in external information through different electrical signals. Flexible e-skin can achieve a
wide range of functions such as accurate detection and identification of pressure, strain, and temper-
ature, which has greatly extended their application potential in the field of healthcare monitoring
and human-machine interaction (HMI). During recent years, the exploration and development of
the design, construction, and performance of artificial skin has received extensive attention from
researchers. With the advantages of high permeability, great ratio surface of area, and easy functional
modification, electrospun nanofibers are suitable for the construction of electronic skin and further
demonstrate broad application prospects in the fields of medical monitoring and HMI. Therefore, the
critical review is provided to comprehensively summarize the recent advances in substrate materials,
optimized fabrication techniques, response mechanisms, and related applications of the flexible
electrospun nanofiber-based bio-inspired artificial skin. Finally, some current challenges and future
prospects are outlined and discussed, and we hope that this review will help researchers to better
understand the whole field and take it to the next level.

Keywords: artificial skin; electrospun nanofiber; healthcare monitoring; human-machine interaction

1. Introduction

The advancement of wearable electronics has been attracting more and more attention
recently due to their ability to simulate the haptic perception of human skin to identify
changes in detected external information through different electrical signals [1–5]. Unlike
traditional rigid electronic devices that cannot maintain polymorphic contact with the
human body, wearable electronic products can serve for health management or providing
other smart functions, which greatly enrich people’s daily needs. Among them, bioinspired
artificial skin is considered to be an important component of wearable electronic devices
that can be affixed to the surface of human muscles or joints to collect physiological signals,
with promising applications in the areas of real-time healthcare monitoring and human-
machine interaction (HMI) [6–13]. Therefore, the design of artificial skin needs to be
considered on skin-like flexible materials, mainly focusing on the stable monitoring of
artificial skin in use, wearing comfort, and physical and chemical properties suitable for
human skin. Electrospinning-based flexible devices provide a practical path for human
skin construction based on such flexible material substrates [14–18].

Typically, electrospinning is a particular method of fiber manufacturing that uses
a solution or melt of polymer for jet spinning under a high voltage electric field, which
produces nanometer diameter polymer fibers with flexibility and continuity. The idea of
electrospinning was conceived in 1600 by William Gilbert, who observed in his research that
water droplets would form cones in an electric field [19]. In 1887, Charles V. Boys used a
viscous liquid to pull out fibers while on the edge of an insulated dish connected to a power
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source, and the method of extracting fibers from a viscoelastic liquid under strong electric
field conditions was first reported. In 1902, the electrospinning technology was patented
by John Cooley and William Morton, respectively, and the prototype of the electrospinning
device was determined [20]. From 1964–1969, a number of papers were published by
Jeffrey Taylor, mathematically describing and simulating the process of changing a viscous
polymer solution from a sphere to a cone at an electrospinning nozzle under the effects of a
high-voltage electric field, achieving a breakthrough of electrospinning technology [21–24].
However, electrospinning technology development has stalled because of the absence of
microscopic-scale characterization tools. It was not until the beginning of this century with
the popularization of electron microscopy that the technology began to receive more and
more attention from researchers, and the performance and applications were developed as
never before. Through the process of developing new strategies to control structures and
performances of electrospun nanofibers, electrospinning technology had already been used
extensively in the area of bio-inspired artificial skin.

Artificial skin, as bionic human skin, needs to meet the characteristics of the high
elasticity and breathability of human skin [25]. In the electrospinning process, polymer
solution jets are stretched in a strong electric field to form nanofibers ranging from a few
nanometers to 500 nanometers in diameter, which are then deposited on a collection plate
to form a nanofiber film [26–28]. Compared with the thin film type flexible substrate
material, the mesh structure of the nanofiber membrane makes it flexible and breathable,
with a great ratio of surface area and thermal stability, which can better meet the material
requirements of artificial skin [29–33]. The performance of electrospun nanofibers can be
further enhanced by adding different nano-fillers to develop artificial skin with different
structures and different functions [34–39].

In this review, we aim to present a complete overview of electrospun nanofiber-
based bioinspired artificial skin for healthcare monitoring and HMI. We begin with an
introduction to the apparatus and principles of electrospinning to give the reader a basic
understanding of electrospinning technology. Then, as shown in Figure 1, we summarize
the materials that can be used for electrospinning, reviewing pure organic polymer solutions
and composites incorporated with nanofillers for electrospinning, respectively. Afterward,
we discuss four common sensing mechanisms for artificial skin devices, including sensing
principles, application areas, and advantages and disadvantages. Moreover, we also
focus on reviewing and highlighting the recent research advances in human healthcare
monitoring and HMI based on electrospun nanofibers for bionic artificial skin. Finally,
after a simple summary, we discuss new directions for the development of bionic artificial
skin and the challenges that need to be faced in the future. This review is expected to help
researchers acquire more comprehensive understanding of the area to then advance it to
the next level.
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Figure 1. Summary of electrospun-based bionic artificial skin, which includes the material selection,
working mechanism, and related applications.

2. Electrospinning Method

There are many methods producing fibers from synthetic polymers such as dry spin-
ning, gel spinning, melt spinning, wet spinning, etc. [40]. However, limited by equipment
and technology, the diameter of the extracted fibers could not reach the submicron level,
which seriously restricts their further application. It was not until Charles V. Boys proposed
the method of extracting fibers from viscoelastic liquids under high voltage in 1887 that
electrospinning technology received widespread attention from researchers and was further
developed. So far, the current electrospinning technology can produce very fine diameter
fibers, from a few nanometers to a few microns, and even less than 1 nanometer [41]. Fibers
less than 500 nm in diameter prepared by electrospinning are often referred to as nanofibers,
and this fabrication technology can be used from different scientific and engineering aspects.
The lightweight and porous characteristics of flexible electrospinning materials make it
very suitable for the research of multi-functional materials, such as flexible devices for
bionic artificial skin, etc.

As illustrated in Figure 2, the major components of the electrospinning device include
a conductive collector, a syringe pump, a syringe, a spinneret, a high voltage power source,
etc. [23,42]. In the preparation process, a polymer precursor solution with the appropriate
concentration, viscosity, and conductivity is transferred into the syringe, and the syringe
tip is connected to the high voltage power supply, so that droplets flowing from the needle
form a Taylor cone by electrostatic action. When the electric field strength is further
enhanced by increasing the voltage, the Taylor cone will generate charged jets and be
stretched to a certain extent due to bending instability. In this process, the jet will become
longer and thinner with the specific surface area greatly increasing, which also accelerates
the volatilization of the solvent [43]. Therefore, it will solidify rapidly and finally deposit
nanofibers on the collecting plate. Following deposition, the bulk of the charge on the fibers
is rapidly dissipated through a grounded conductive collector. However, owing to the low
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conductivity of the general polymer material, there will still be part of the charge remaining
on the fiber surface, which will lead to mutual repulsion with other jets of the identical
charge. Therefore, electrospinning nanofiber films can only reach a very thin thickness,
typically less than 1 mm.
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Electrospinning involves electrohydrodynamic processes in which droplets are charged
to produce a jet [23]. When the electric field force on the solution reaches a critical value
that overcomes the apparent tension, the Taylor cone ejects charged jets in the direction
along the cone head, and then stretches under an electric field to form nanofibers. In this
process, the critical voltage V is calculated according to the following formula:

V =
4H2

L2 [ln(
2L
R
)− 1.5](1.3πRγ)(0.09) (1)

where L is the length of the jet, H is the distance among the electrodes, R is the radius of
the syringe nozzle, and γ is the apparent tension of the polymer solution. The Taylor cone
ejects a charged jet initially moving in a direct line, and the length of the direct line can be
calculated by:

L =
4kQ2

πρ2 I2 {[(
2σQ
πkρE

)

1
3
]

2

− r0
2} (2)

where k is the solution electrical conductivity, Q is the propulsion speed of the propulsion
pump, I is the electric current flowing across the jet, ρ is the solution density, r0 is the
original radius of the jet, σ is the surface charge of the jet, and E is the strength of the electric
field. Different experimental parameters or spinning solutions require different critical
voltages to generate the jet, and the linear motion length of the jet is an important guide to
set the distance between the nozzle and the collector.

During the electrospinning process, the processing parameters directly impact the
structure, shape, and properties of the fabricated nanofibers. Processing parameters mainly
include factors such as the electrospinning solution, electrospinning process, temperature,
and humidity during electrospinning. On one hand, the properties of the electrospinning
solution are governed by the molecular weight and molecular weight density distribution



Biomimetics 2023, 8, 223 5 of 26

of polymer. On the other hand, this is also closely related to the viscosity, conductivity, and
surface tension of the polymer solution along with the volatility and conductivity of the
solvent. In addition, the effect of adding surfactants and inorganic salts on the polymer
blend solution should be considered. The key to the formation of a polymer solution
suitable for electrospinning lies in the solubility parameters of a suitable solvent [44].
However, besides the high solubility parameter, the volatility of the solvent also affects the
curing speed of the spray and has an impact on the formation of the fiber surface structure.
When the solvent volatility is fast, the fibers form a smooth surface as the high volatility
may lead to immediate solidification after the jet. On the contrary, when the volatility is
low, it is hard to form micropores on the surface of the fibers, which leads to a rougher fiber
surface. Too low of a volatility can lead to spinning failure because the fibers remain in a
liquid state when deposited on the collection plate.

Additionally, if the discharge constant of the solvent is too large, it will lead to a greater
electrostatic rejection between the charges on the surface of the jet, and larger voltage, will
be required to stabilize the jet, which is also not conducive to electrospinning. Commonly
used solvents for electrospinning include acetone, dimethylformamide, alcohol, methylene
chloride, tetrahydrofuran, etc. Electrospinning process parameters mainly include electric
field intensity, spinning fluid flow, etc. The electric field strength depends on the voltage,
and only when the voltage reaches a threshold value, the Taylor cone can emit a jet which
eventually forms a fiber. The magnitude of the imposed voltage can directly determine the
magnitude of the charge that the jet carries and the electrostatic rejective force between
surface charges. Usually, a higher voltage is more conducive to the formation of finer fibers.
The velocity of the spinning solution flow has some subtle effects on the diameter of the
fiber. Usually, increasing the speed causes the formation of larger diameter nanofibers, but
in different solution systems, the pattern is not exactly the same. The environment during
electrospinning, which includes the environmental temperature and relative humidity, is
also significant to the formation of fibers. The increase in temperature reduces the adhesive
force and apparent tension of the polymer solution, which facilitates finer fiber formation.
However, too high of a temperature hastens the evaporation of the solvent, which limits
the length of the spray extension. Therefore, the temperature should be controlled in an
appropriate range during electrospinning. Similarly, when the relative humidity is low, it
facilitates the formation of fine fibers with dry surfaces, but too low a relative humidity
will result in excessive evaporation in the jet which affects the jet’s extension length [45].
Both the temperature and relative humidity have two-sided effects on electrospinning and
need to be adjusted according to the situation.

Electrospun nanofibers are broadly used to construct flexible bioinspired artificial
skin due to its high ratio surface area, unique porous network structure, and stability [46].
With the benefit of a high relative surface area, especially the insensitivity and excellent
elasticity of nanofiber membranes to mechanical deformation, the resulting sensing device
can have improved detection capabilities, making it a good e-skin candidate for the field of
healthcare monitoring and HMI.

3. Materials

Electrospinning technology has now been utilized in various fields. Different kinds of
materials can be used to prepare nanofibers, such as most natural or synthesized organic
polymers, which could be used directly for electrospinning once they are soluble in a suitable
solvent. Generally, it is usually necessary that the small molecules self-assemble and produce
sufficient chain entanglement or chemical binding to the solution-gel. In addition, by doping
polymer solutions with additives such as nanoparticles, nanotubes, nanosheets, and other
nanofibers, the resulting hybrid solutions can also be electrospun [47–54].

3.1. Pure Polymer Nanofibers

In general, electrospun polymer solutions require dissolved polymers with a suffi-
ciently high molecular weight and a suitable solvent, because if the molecular weight is
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not high enough, chain entanglement is limited and electrospinning would generate beads
instead of fibers. Among the more than one hundred polymers that for solution electrospin-
ning can be used directly, common polymers include polycaprolactone (PCL) [55], poly-
lactic acid (PLA) [56–59], polyaniline (PANI) [60–63], polypyrrole (PPy) [64,65], DNA [66],
poly (lactic-co-glycolic acid) (PLGA) [67], Polyvinyl alcohol (PVA) [68–77], and gelatin are
widely used in the manufacturing of biomedical scaffolds [78]. What is more, synthetic
polymers are also often used in electrospinning, such as polystyrene (PS), and polyvinyl
chloride (PVC) are used in areas related to environmental protection and monitoring.
Interestingly, polyvinylidene fluoride (PVDF) and its copolymers can be also used for
electrospun nanofibers and have good performance in the field of artificial skin and flexible
sensing [79–85]. For example, Huang et al. proposed a strategy of nanofiber mats with
conductivity for wearable devices by first coating MWCNTs on electrospun polyvinylidene
fluoride-hexafluoropropylene (PVDF-HFP) fibers and then embedding them on the PVDF-
HFP nanofiber surface using a further thermal welding process to obtain both breathable
and conductive MWCNTs/PVDF-HFP nanofiber mats [86], which have excellent appli-
cation prospects in the area of wearable electronic devices. Figure 3a shows the SEM
images of PVDF-HFP nanofibers after ten minutes of thermal annealing treatment with
MWCNTs at 120, 130, and 140 ◦C environments, respectively. It can be clearly observed that
PVDF-HFP fibers did not reach the melting point and no fusion with MWCNTs occurred at
120 ◦C. The nanofibers started to fuse at 130 ◦C, and the fusion effect between fibers was
more obvious at 140 ◦C. However, excessive fusion also results in a significant decrease
in the permeability of the fiber mat. In addition to using thermal treatment methods to
improve the performance of electrospun nanofiber mats, undoped nanofiller hybrid types
of polymeric electrospun composite nanofiber mats can be fabricated by arranging coaxial
nozzles or using nozzles facing the collector. Cheol Sang Kim et al. made electrospun PVDF
and filament protein (SF) nanofibers into composite fiber mats by placing two nozzles
facing each other’s mats [87]. Figure 3b shows the SEM images of the composite fiber mats
at 0%, 10%, and 20% SF nanofiber ratios. Through piezoelectric tests and tensile exper-
iments, this electrospun nanofiber composite mat exhibits better mechanical properties
and biocompatibility than a single material, showing a potential use of electrospinning
technology in the area of flexible sensing relevant to human healthcare monitoring.
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Figure 3. (a) SEM images of PVDF-HFP nanofibers with MWCNTs added after annealing treatment
under 120, 130, and 140 ◦C for ten minutes, respectively [86]. Copyright 2019 American Chem-
ical Society. (b) SEM images of PVDF/SF fibers added with 0%, 10%, and 20% filament protein
nanofibers [87]. Copyright 2021 John Wiley & sons.
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3.2. Polymer Composite Nanofibers Incorporated with Nanofillers

Usually, to enhance the properties of electrospun nanofibers, different kinds and con-
centrations of conductive and non-conductive fillers are doped into the organic polymer
solution to be electrospun (Figure 4a) [88–94]. For example, Kuo et al. presented a flexible
electrospun optoelectronic device by mixing the inorganic chalcogenide quantum dots and
cellulose nanocrystal composites (IPQDs/CNC) into a PVDF solution for the next electro-
spinning process [95]. Figure 4b–e show FE-SEM images, TEM images, and the confocal
fluorescent spectrum of these composite nanofibers made from a hybrid electrospinning
solution with an IPQDs doping content of 1 v/v%. The addition of IPQDs leads to improved
electrical conductivity and the adhesion of the mixed electrospinning solution, and the
resulting nanofibers were slender and smoother. The improved piezoelectric properties of
the composite nanofiber devices can be ascribed to the phase change of the crystal structure.
Electrospun composite nanofibers are not only used to make piezoelectric sensors, but also
triboelectric sensors. Park et al. firstly proposed to blend MXene (Ti3C2Tx) nanosheets into
a PVDF matrix [96], and the resulting hybrid material (PVDF/MXene composite, PMC)
was electrospun and used for the negative layer of triboelectric nanogenerators (TENG).
Figure 4f shows FE-SEM images of PMC nanofibers; Figure 4g and h show TEM images of
PMC nanofibers at different scales, indicating that MXene nanosheets have been success-
fully embedded into the PVDF matrix. Compared with the pure PVDF nanofiber and nylon
nanofiber anodes, PMC nanofibers exhibited excellent performance in terms of permittivity
and surface charge density, with an increase of 270% and 80%, respectively.
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Figure 4. (a) Schematic illustration of electrospinning of solution doped with additives [97]. Copyright
2018 Elsevier. FE-SEM image (b), TEM image (c), (d,e) confocal fluorescent spectrum of PPNG pad
with 1 v/v% IPQDs added [95]. Copyright 2021 Elsevier. (f) FE-SEM image of PMC nanofibers (inset
shows the roughness on the fibers at the nanoscale). (g,h) TEM images of PMC nanofibers at different
scales, showing the insertion of MXene nanosheets in PVDF substrate [96]. Copyright 2020 Elsevier.

Among the reported hybrid solutions for electrospun nanofibers, graphene nanosheets
are one of the most popular nanofiller choices for enhancing the conductivity of composite
nanofibers. In 2020, Luo et al. proposed a new strategy of electrospinning composite
nanofibers based on PVDF and graphene nanosheets (GNSs) for TENGs by adding GNSs
to the electrospun precursor solution with pre-optimized PVDF for magnetic stirring [98].
Compared to pure PVDF nanofibers, the composite nanofibers made by electrospinning
have a smoother fiber surface with denser pores, and the fiber morphology did not change
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significantly with the increase of GNSs concentration (Figure 5a). Interestingly, a hybrid
PVDF-based electrospinning strategy developed by Jiang et al. has been previously re-
ported to construct piezoelectric nanogenerators by doping with GNSs. [99]. However,
the difference is that they also added barium titanate nanoparticles (BaTiO3). Figure 5b–d
show the SEM images of PVDF fibers, 0.15 wt% Gr-BT/PVDF composite nanofibers, and
TEM images, respectively. The pure PVDF fiber has a smooth surface, while the surface
morphology of the composite nanofibers is rough, as graphene nanosheets and BaTiO3
nanoparticles are incorporated into the fibers. The piezoelectric performance of the com-
posite nanofiber mat was significantly improved due to the synergistic effect of BaTiO3
and GNSs.
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Figure 5. (a) SEM images for different GNS density (0–2.0 wt%) of electrospun PVDF/G composite
nanofibers [98]. Copyright 2020 Elsevier. (b) SEM image of pure PVDF fibers. (c) SEM image
of Graphene-BT/PVDF nanocomposite fibers with graphene concentration of 0.15 wt%. (d) TEM
image of Graphene-BT/PVDF nanocomposite fibers with graphene concentration of 0.15 wt% [99].
Copyright 2018 Elsevier.

4. Working Mechanism

To date, the vast majority of reported artificial skin sensors work by a mechanism that
transforms external mechanical stimuli into electrical signals, which can be understood
as the ability to perceive external forces such as pressure, shear, strain, and distortion
deformation, etc. The main operating principles are piezoresistive [100], capacitive [101],
piezoelectric [102], and triboelectric effects [103]. Figure 6 shows four typical sensing
mechanisms in the area of flexible electronics [104]. Depending on the mechanism of
sensing, flexible sensors can be classified as piezoresistive, capacitive, piezoelectric, and
triboelectric sensors [105–107]. Each of these four types has its own unique characteristics.
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4.1. Piezoresistive Effect

The piezoresistive sensor is designed based on the piezoresistive effect and it was
first used commercially. When pressure or strain is exerted externally, the resistance of
the sensor changes. Traditional piezoresistive sensors have poor flexibility and ductility,
and can only measure strain in a specific direction. In recent years, researchers have been
devoted to developing innovative materials that are stretchable, highly sensitive, and
flexible for making piezoresistive sensors for human motion detection, artificial skin, and
other applications. For example, many piezoresistive composite sensors are formed by
embedding conductive fillers such as carbon black, gold nanoparticles (AuNPs), silver
nanoparticles (AgNPs), etc., into flexible electrospun nanofibers. What is more, conductive
fillers with the same role include metal nanowires, carbon nanotubes (CNTs), graphene,
and Ag nanosheets, which are also selected to be doped into the flexible substrates such as
polydimethylsiloxane (PDMS), polyurethane (PU), hydrogels, etc. [108,109]. Therefore, con-
ductive polymer composites are considered to be the most promising flexible piezoresistive
sensors due to their wider choice of materials and structural design.

4.2. Capacitive Effect

Capacitive sensors are usually made of a flexible medium layer sandwiched between
two electrodes. The change of capacitance is affected not only by the external pressure mag-
nitude, but also by the parallel plate electrodes’ relative position to each other, which has the
advantages of high sensitivity, lower energy consumption, as well as good static detection
capability. The main disadvantage is that negative effects caused by parasitic capacitance
accumulated during use [110]. The preparation method of flexible capacitive sensors mainly
uses metal films as electrodes, and the elastomer was sandwiched between the electrode
plates as dielectric layers. Generally, low-modulus elastic dielectrics include PDMS, Ecoflex,
acrylic elastomers, etc., and are commonly employed. However, the sensitivity and re-
action time of capacitive sensors are usually not particularly good due to the inherent
viscoelasticity of elastic dielectrics. To improve the capacitive sensor sensitivity, elastomeric
dielectrics can choose dielectric materials with micro/nanostructures, and the electrospun
nanofibers are favorable candidates. Usually materials with micro/nanostructures can also
produce a large deformation at low pressure, thus achieving the purpose of improving
sensor sensitivity.

4.3. Piezoelectric Effect

Piezoelectric sensors are based on dipole-polarized piezoelectric materials that produce
a voltage due to a change in potential under an applied strain, allowing a transformation of
mechanical stimuli into electrical signals, which has the advantage of high sensitivity and
stability. However, the disadvantage is that it is not suitable for measuring static pressure
signals and there are some limitations in low frequency detection, so it is widely used for
dynamic monitoring. An essential parameter to measure the properties of a piezoelectric
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sensor is the piezoelectric coefficient. Materials used for piezoelectric sensors are usually
divided into inorganic and organic classes, and the inorganic class includes barium titanate,
zinc oxide, lead zirconate titanate, etc. They all have the disadvantage of poor flexibility
while organic materials such as PVDF and PP are usually highly flexible but not conductive
enough [111]. Therefore, additives are often used to enhance their piezoelectric properties.
Moreover, the high electric voltage field during the electrospinning preparation is very
favorable for the polarization of the piezoelectric material.

4.4. Triboelectric Effect

Triboelectric sensors can transform external mechanical signals into triboelectric sig-
nals through electrostatic and triboelectric effects. The basic working principle is that as
two different non-electric substances come into contact with each other, the charge transfer
will occur, generating a positive and negative electrostatic charge [112]. When the contact
surfaces are separated, a voltage difference is created between the surfaces of these two
materials, and the circuit formed by the wires between the two materials generates an
electric current. Triboelectric sensors have the advantages of being self-powered, high
instantaneous power, etc. However, the output performance is always affected by the
amplitude and frequency of the mechanical stimulation. In order to relatively improve the
output performance, researchers have now developed flexible triboelectric sensors with
special structures and functions. As triboelectric sensors only generate an electrical signal
when subjected to mechanical stimulation, they are only suitable for dynamic sensing, the
same as piezoelectric sensors [113,114]. Moreover, signal interference generated by external
parameters such as humidity and temperature variations is also an obvious problem to be
solved in its practical application.

5. Application of the Electrospinning Nanofibers Based Artificial Skins

In recent years, various artificial skins have been reported successively and have
played an important role in healthcare [115–125], HMI, and other fields [126–133]. Com-
pared with other traditional electronic sensors, artificial electronic skin can meet the demand
of human health monitoring and HMI when it is used in seamless and stable contact with
human skin and obtains low impedance physiological signals [134–138]. Therefore, it has
higher requirements on material permeability, tensile resistance, and biocompatibility [139].
Due to its high porosity, high toughness, and small mass, electrospun nanofiber-based bioin-
spired artificial skins with high flexibility and a three-dimensional porous mesh structure
are often considered as the first choice [140–150].

5.1. Healthcare Monitoring

With the advancement of flexible electronics, electrospun nanofiber-based artificial skin
is increasingly being used for human health monitoring [151–162]. Comfortable, accurate,
and real-time collection of physiological electrical signals is important for determining
human health conditions. After prolonged conformal contact with human skin or joints, the
ability to avoid elevated impedance caused by sweat and to withstand repeated mechanical
deformation are crucial issues that need to be addressed [163–170]. Therefore, a flexible
conductor with high permeability and stretchability (liquid-metal fiber mat, LMFM) was
developed by Zheng et al. in 2021 [171]. The preparation is based on the coating of liquid
metal (eutectic gallium-indium alloy, EGaln) on an electrospun fiber mat (styrene-butadiene-
styrene, SBS). After the pre-stretching process, the liquid metal between the elastomeric SBS
nanofibers formed a lattice-like structure and the LMFM maintained a high permeability
to both gases and liquids (Figure 7a). In tensile tests, EGaIn-SBS can achieve over 1800%
stretching while the conductor impedance remains at a low level without significant change
during the process, showing ultra-high conductivity and electrical stability (Figure 7b).
Therefore, an EGaIn-SBS containing three layers of printable gain electrodes was further
developed that can be worn on the arm to acquire low-impedance ECG signals. As a
result of its ultra-high elasticity, there is no significant change in signal waveform under
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stretch or compression compared to commercial ECG skin patches (Figure 7c). In addition,
it can also realize the monitoring of sweat discharged from human skin, multimodal
monitoring, and treatment of human skin by heating, and has a great application potential
in medical monitoring.
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against tensile strain; the insets in b show EGaIn-SBS at 0% and 1000% strain, respectively. (c) ECG
signal from ECG electrodes made by EGlan-SBS [171]. Copyright 2021 Springer Nature. (d) Schematic
diagram of the manufacture and structure of EMPAs. (e) SEM image of EMPAs; the inset shows
an enlarged SEM image of a single electrospun micropyramid. (f) LCM image of an electrospun
micropyramid. (g) Sensors based on EMPAs manufactured to monitor a driver’s fingertip pulses
for extended periods of time; the insets show magnified fingertip pulse waveforms. Copyright 2022
Springer Nature. (h) Schematic of muscle fibers in human leg [172]. (i) SEM image of electrospun
fibers via dopamine coating. (j) Real-time pulse signals for static and after motion states [173].
Copyright 2021 Wiley-VCH.

In 2022, Pan et al. developed a self-assembly fabrication process for wearable de-
vices based on wet heterostructure electrospinning technology [172]. Electrospinning
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micro-pyramidal arrays (EMPAs) with unique structures were constructed using a far-field
electrospinning device with a charged grounded aluminum foil with bumps as the collector
(Figure 7d). PVDF was used as the proof-of-concept material to fabricate the EMPAs-based
films, and the SEM images showed a uniform planar distribution of the micro-pyramidal
structure on the film, and typical features of the pyramidal structure were shown with the
tilted three prongs intersecting at the apex (Figure 7e,f). Since the micro-pyramid structure
microfibers constructed the permeable network, the film with EMPAs was ultra-thin, ultra-
light, breathable, and suitable to be adopted as the artificial skin. Therefore, a piezoelectric
capacitive sensor based on EMPAs was developed to collect pulse signals in real time for
human health monitoring with high permeability and sensitivity. Figure 7g shows the clear
obtained pulse peaks that reflect physiological indicators without any degradation of the
signal waveform for four hours when a driver wore it for a long time without affecting
normal work, which is of great importance for human health diagnosis. Similarly, inspired
by human muscle fibers, Chen et al. proposed an electrospun fiber-based piezoelectric
sensor which can capture human pulse signals for health monitoring (Figure 7h) [173].
Electrospun barium titanate/polyvinylidene fluoride (BTO/PVDF) nanofibers are mod-
ified mainly by using polydopamine (PDA). Groups of DA formed cross-links with the
BTO nanoparticles due to van der Waals forces as well as attached to the PVDF polymer
fibers, encasing the protruding BTO nanoparticles and making the fiber surface smooth.
In addition, the piezoelectric performance had been greatly improved. Figure 7i shows
the microscopic images of smooth nanofibers after 5 wt% PDA doping. After a simple
encapsulation process, a piezoelectric fabric based on electrospun nanofibers was fabricated
for monitoring pulse signals in real time. The ability of the device to monitor human health
was verified by distinguishing weak changes in the pulse signals of the wearer in different
states (Figure 7j).

In addition to myoelectric and pulse signals, electrospinning nanofiber-based artificial
skin can also be used for several other health monitoring applications. For instance,
Wang et al. developed a TENG-based nanofiber electronic skin (SANES) for respiratory
monitoring and diagnosis during sleep (Figure 8a) [174], which was characterized by
good permeability, high sensitivity, and was easy to wear. SANES is mainly assembled
by the top encapsulation layer, middle functional layer, and bottom substrate layer, and
all three nanofiber functional layers are prepared by electrospinning. The PA66 and PAN
sandwiched in the middle were used as electrodes with a layer of Au of 100 nm thickness
at the surface, respectively. The upper and lower parts are protected from electrode
interference by PA66 and PAN as cover layers, respectively. The device is placed on the
abdomen of the test subject, which monitors the occurrence of OSAHS during sleep based
on the movement of the abdominal skin during breathing and records the number of
apneas and hypoventilation states (Figure 8b). Classifying or alerting according to the
severity has great application prospects in the area of personal sleep health monitoring.
In addition to directly collecting physiological electrical signals for real-time monitoring
of the human body, electrospun nanofiber-based devices can also monitor and provide
early warnings of human health and safety by establishing medical monitoring systems. In
2022, Yu et al. prepared a triboelectric energy harvesting sensor (TEHS) using triboelectric
fiber films made by electrospinning technology and built a medical monitoring system
by multiple TEHS devices [175]. The system contains several sensors, a controller, a data
processing unit, and a display unit (Figure 8c). Figure 8d shows the application of the
system in a practical scenario, where the TEHS is mounted on a wheelchair, a nursing bed,
and a human body to sense and monitor the human motion through the electrical response
generated by the TEHS.
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multiple TEHS in a wheelchair, nursing bed, and body for building health monitoring systems [175].
Copyright 2022 Elsevier.

5.2. Intelligent HMI

As artificial intelligence emerges and develops, artificial skin plays a crucial role not
only for medical monitoring, but also for intelligent HMI [176–191]. Besides the monitoring
of physiological parameters and the movement status of the human body, multifunctional
artificial skin based on electrospun nanofibers can be used for mechanical control [192,193],
on-demand therapy [194,195], and gesture recognition and intelligent control [196–207]. In
2022, a wearable flexible electrode (nano-liquid metal (LM)-based highly robust stretchable
electrode, NHSE) that can be used for game control and thermal therapy was proposed
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by Li et al. [208]. Figure 9a illustrates the simple fabrication process, which crucially
involves the manufacturing of mechanically robust and highly elastic nanofiber scaffolds
by electrospinning polyurethane nanofibers, followed by electrospraying liquid metal (LM)
nanoparticles into the TPU nanofiber scaffold to form a composite structure that simulates
the interaction of water and web. LM provides electrical conductivity and the nanofiber
scaffold provides the mechanical properties, achieving 500% tensile capacity without any
additive binder. After 33,000 times of a 100% tensile cycle test, the impedance change is
only 5%, showing high stability. Based on this, two NHSEs were partially activated and
laser cut, then assembled to obtain a multifunctional artificial skin with a bilayer structure
containing a capacitive sensor array and a wireless control unit. Figure 9b shows that the
device was able to accurately recognize external signals and thus control the activities of
the characters in the game under different conditions in tests, and it also enabled the input
and recognition of numbers. It proves excellent potential in the area of HMI. Previously,
Wan et al. have reported the development of MXene/protein nanocomposite fiber-based
artificial skin for highly sensitive pressure sensing [209]. It can be used not only for
disease diagnosis and motion detection, but also for human–machine interactive pressure
detection. The individual pressure sensors are assembled by MXene impregnated silk
protein nanofiber membranes and silk protein fiber membranes with MXene ink printed
electrodes. When the external pressure increases in the operating range, the intensity of
the generated current increases. Figure 9c shows an optical image of a 5 × 5 sensor array
consisting of multiple sensors. Once the finger touches the sensor array, the magnitude
and position of the applied pressure is quickly detected and sent to the user terminal via a
wireless transmission module (Figure 9d).
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Different sensors have different working mechanisms; common flexible sensors used
for HMI are not only pressure sensors, but also humidity sensors. During the COVID-19
epidemic, a flexible non-contact sensing array based on humidity sensing was reported
by Yang et al. [210]. The single sensor (MG/PA66 humidity sensor, MPHS) is a composite
material made of two-dimensional graphene flakes embedded in an electrospun PA66
nanofiber by ultrasonic treatment (Figure 10a). The characteristics of the electrospun
nanofiber network give the composite a physical structure with a large ratio surface area, in
addition to the PA66 chemical structure rich in water-absorbing functional groups, ensuring
a high response to humidity. MPHS can be arranged to form a humidity sensing array for
HMI in non-contact mode. As shown in Figure 10b, the sensing system for non-contact
manipulation based on MPHS consisted of an MPHS, wireless transmission unit, analysis
unit, and signal processing circuit. The motion control of the trolley can be achieved by
non-contact sliding of the finger over the sensor array, indicating significant application
prospects of this non-contact manipulation device in the public health field.

In addition to remote control, pressure detection, and game control, artificial skin
made of electrospun nanofibers has extensive applications in areas such as healthcare
and fire alarms. For example, Zhang et al. proposed a ventilatable artificial skin with
real-time temperature monitoring and the ability to perform anti-infection heating therapy
in 2019 [211]. The device consists of an electrospun moxifloxacin hydrochloride (MOX)
nanofiber network with high toughness, gas permeability, and stability that can be used as a
flexible heater when coated with a thermosensitive polymer film printed with a conductive
pattern. Figure 10c shows real-time variations in resistance and temperature as the e-skin
grasps and releases the beaker containing hot water, demonstrating the excellent thermal
response of the e-skin. Figure 10d shows images of the temperature distribution of the
e-skin when mounted on the human hand as a flexible heater, illustrating the ability of the
electronic skin to be used as a flexible heater for human thermal therapy. Similar to this
device, Ling et al. developed an electrospun flame retardant silk/graphene nanoionotronic
e-skin (SGNI) with extremely high temperature sensitivity for integrating portable fire
alarm systems [212]. When SGNI is exposed to a high temperature environment, the
intelligent fire alarm system will sound an alarm and send an alarm message once the
temperature reaches the alarm threshold. By using the ability of SGNI to respond to fire
hazards, a concept was developed that could sense the position of the fire source and
then control the robot to make evasive maneuvers in actual hazardous HMI situations
(Figure 10e). Once the location of the robot installed on the SGNI skin is close to the fire
source, the SGNI can sense the fire temperature and location within 6s and send signals
back to the control unit to command the robot to actively avoid hazards and make a move
away from the fire source, which provides highly promising applications in the area of
secure and intelligent HMI.
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smart cart driven by non-contact gestures [210]. Copyright 2021 Wiley-VCH. (c) Photographs of
grasping and releasing a beaker, and the change in resistance and temperature signals obtained by
the flexible heater when grasping and releasing a beaker containing hot water by hand. Copyright
2019 Wiley-VCH. (d) Images of the temperature distribution of the flexible heater when the applied
voltage is 2.5 V and the temperature distribution attached to the human hand back before and after
the DC voltage is applied [211]. (e) Schematic concept illustration for high temperature triggered
protection system [212]. Copyright 2021 Wiley-VCH.

6. Summary and Outlook

Due to the characteristics of high stretchability and superior porosity of electrospun
nanofibers, they meet the demand of soft and air permeable artificial skin materials. As a
result, electrospun nanofiber-based artificial skin has been rapidly developed and widely
used. In this paper, we have reviewed the latest advances in electrospun nanofiber-based
bioinspired artificial skin, mainly focusing on the electrospinning fabrication process and its
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influencing factors, materials selection and incorporation, sensing mechanisms of artificial
skin, healthcare monitoring, and HMI application. A wide variety of abundant nanofibers
have been designed and assembled by researchers through electrospinning by selecting
suitable organic polymer solutions and process parameters. Therefore, flexible smart
devices have made great progress in multifunctional sensing and bioapplicability, and
many artificial skins with better performance have been developed based on them. In
the future, with the enhancement of production technology, the application prospect of
bioinspired artificial skin based on electrospun nanofibers will be more extensive. However,
although significant advancements have been achieved in the preparation and design of
various electrospun bionic skin devices, there are still many obvious issues remaining to be
addressed and more work needs to be done in the following aspects.

6.1. Low Preparation Effectivity of Electrospun Artificial Skins

Bioinspired artificial skin based on electrospun nanofibers has low efficiency in the
manufacturing process, including the fabrication of the spinning solution, electrospinning
process, and nanofiber membrane for artificial skin assembly. For the current production
technology, mass production on a large scale is difficult and costly to achieve. Such
problems can only be solved with the development of production and manufacturing
technologies.

6.2. Biosafety Issues of Bionic Artificial Skin

While the reported artificial skin tends to be fabricated by materials with good biocom-
patibility, there is still a long way to go before they can be truly used in the human body.
As material science continues to advance, the issue of biosafety is a primary consideration
for artificial skin.

6.3. Signal Interference Problem in Multi-Directional Detection

Although excellent progress has been obtained in unidirectional sensing of flexible
bionic skin, the sensors produce similar signal changes when faced with external forces
in different directions simultaneously. In practical applications, there are many situations
where the force direction cannot be determined, so achieving effective identification and
detection of multidirectional forces is still a challenge, and developing new materials or
methods that can decouple multidirectional forces is a direction that future research needs
to focus on.

6.4. The Processing of the Acquired Signals by Artificial Skin

In practical applications, the collected signals by the artificial skin on the human
body will be interfered with by various factors, and the extraction of effective signals in
a large number of signals is currently an important issue which should be tackled. The
application of machine learning to assist in signal processing of artificial skin is an effective
and promising solution for this field in the future.

6.5. System Integration of Artificial Skin Devices

As a crucial component in the field of flexible sensing for healthcare monitoring
and HMI, how to integrate multiple modules (such as the data processing module, data
transmission module, energy supply module, etc.) into the same platform is a big challenge
for the current technology, which is a problem that must be solved for bioinspired artificial
skin based intelligent systems to move toward more application scenarios.

Although there are still some urgent issues regarding the biosafety and application
details of electrospun nanofiber-based bionic artificial skin, that does not take away from
the fact that it is a promising manufacturing method for artificial skin. In the future, with
the enhancement of production technology, the application prospect of bioinspired artificial
skin based on electrospun nanofibers will be more extensive.
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