
Citation: Darwish, S.M.; Farhan,

D.A.; Elzoghabi, A.A. Building an

Effective Classifier for Phishing Web

Pages Detection: A Quantum-Inspired

Biomimetic Paradigm Suitable for Big

Data Analytics of Cyber Attacks.

Biomimetics 2023, 8, 197. https://

doi.org/10.3390/biomimetics8020197

Academic Editor: James Whiting

Received: 11 March 2023

Revised: 1 May 2023

Accepted: 5 May 2023

Published: 9 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Building an Effective Classifier for Phishing Web Pages
Detection: A Quantum-Inspired Biomimetic Paradigm Suitable
for Big Data Analytics of Cyber Attacks
Saad M. Darwish 1,* , Dheyauldeen A. Farhan 2 and Adel A. Elzoghabi 1

1 Department of Information Technology, Institute of Graduate Studies and Research, Alexandria University,
163 Horreya Avenue, El Shatby 21526, Alexandria P.O. Box 832, Egypt

2 Department of Computer Science, Al-Maarif University College, Ramadi 31001, Iraq
* Correspondence: saad.darwish@alexu.edu.eg; Tel.: +20-1222632369

Abstract: To combat malicious domains, which serve as a key platform for a wide range of attacks,
domain name service (DNS) data provide rich traces of Internet activities and are a powerful resource.
This paper presents new research that proposes a model for finding malicious domains by passively
analyzing DNS data. The proposed model builds a real-time, accurate, middleweight, and fast
classifier by combining a genetic algorithm for selecting DNS data features with a two-step quantum
ant colony optimization (QABC) algorithm for classification. The modified two-step QABC classifier
uses K-means instead of random initialization to place food sources. In order to overcome ABCs poor
exploitation abilities and its convergence speed, this paper utilizes the metaheuristic QABC algorithm
for global optimization problems inspired by quantum physics concepts. The use of the Hadoop
framework and a hybrid machine learning approach (K-mean and QABC) to deal with the large size
of uniform resource locator (URL) data is one of the main contributions of this paper. The major point
is that blacklists, heavyweight classifiers (those that use more features), and lightweight classifiers
(those that use fewer features and consume the features from the browser) may all be improved with
the use of the suggested machine learning method. The results showed that the suggested model
could work with more than 96.6% accuracy for more than 10 million query–answer pairs.

Keywords: malicious URLs detection; cyber security; big data analytics; biomimetic algorithm;
quantum-inspired computing

1. Introduction

The World Wide Web is an Internet-accessible network of websites. The web has
become a platform for a broad variety of criminal activities, such as spam-advertised
commerce, financial fraud (phishing), and malware dissemination (Trojan downloads).
If people were warned before visiting a harmful URL, this issue may be reduced. The
security community has responded by building blacklisting toolbars, appliances, and search
engines [1,2]. Many harmful sites are not banned because they are too new, have never
been examined, or are evaluated wrongly (e.g., cloaking). To solve this difficulty, several
client-side technologies assess a website’s content or behavior as it is accessed. In addition
to runtime costs, these techniques expose users to browser-based vulnerabilities [3].

Malicious URLs are used by distribution channels to spread malware online. Attackers
get partial or complete system control via these linkages. This leads to readily infected
target computers that may be used for cybercrimes, such as stealing passwords, spamming,
phishing, and denial-of-service attacks. The system should be fast, precise, and able to
identify new malicious content [3,4]. Identifying the URL, domain name, or IP address
of malicious activity is crucial. One of the most promising approaches is analyzing DNS
data [5].

Biomimetics 2023, 8, 197. https://doi.org/10.3390/biomimetics8020197 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8020197
https://doi.org/10.3390/biomimetics8020197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0003-2723-1549
https://doi.org/10.3390/biomimetics8020197
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8020197?type=check_update&version=2

Biomimetics 2023, 8, 197 2 of 22

DNS transfers human-readable domain names to IP addresses that computers may
use to transport packets over the Internet. DNS analysis provides various advantages over
blacklists for detecting malicious domains [5–7]. DNS traffic provides several features
to detect malicious domain names. A huge variety of attributes and traffic data make
DNS traffic an ideal choice for machine learning (ML) security efforts. Due to traces left
in DNS data, researchers may detect attacks before they begin. Malicious URL detection
has been addressed in several ways. According to basic ideas, these techniques may be
classified into three groups [1,8]: blacklisting, heuristics, and machine learning. See [8–10]
for more details.

Machine learning algorithms analyze URLs and their corresponding websites or
webpages by extracting excellent feature representations of URLs and building a prediction
model on harmful and benign URLs. Static and dynamic features are utilized. Static
analysis analyses a website without executing the URL. These techniques are safer than
dynamic approaches since no execution is needed. Dynamic analysis involves monitoring
prospective victims’ behavior for anomalies. Dynamic analysis approaches are challenging
to develop and generalize. The use of machine learning to detect malicious URLs has
come a long way in the last decade, but there are still many open problems and challenges
that need to be addressed. These include issues with high volume and velocity, difficulty
in acquiring labels, difficulty in collecting features, feature representation, and concept
drifting, in which the distribution of malicious URLs may change over time due to the
evolving nature of cybercrime [4,8].

Feature extraction is a difficult operation that affects the quality of malicious URL
detection. Features may be passive or active [11]. Passive (internal) data may be retrieved
from DNS requests from resolvers. Active (contextual) features need further external data.
Choosing a minimal feature set to lower a system’s cost and attaining a high recognition
rate are the primary problems in feature selection. Two categories define these feature
selection strategies. First, problem-specific solutions are devised using domain knowledge
to decrease the number of features. When domain knowledge is unavailable or costly to
utilize, employ the second option. In this case, meta-heuristics (e.g., genetic algorithm) are
applied to select a subset “d” of the available “m” features [12,13].

Genetic algorithms (GAs) are adaptive search approaches that use inductive learning.
GAs are suitable for applications where domain knowledge is hard to acquire. Choosing a
suitable representation and evaluation function is key to using GAs [13,14]. Recently, the
artificial bee colony (ABC) optimization technique, based on honeybee foraging behavior,
has been used to benchmark classification and clustering issues [15,16]. ABC adjusts each
individual’s location based on the variation process, which explores unknown portions of
the search space, and the selection process, which exploits the found region [17]. Recent
research has shown that the ABC algorithm is more effective and may provide better
outcomes than competing metaheuristic algorithms [18]. However, the ABC algorithm’s
fundamental flaw is that it performs well during exploration but poorly during exploitation.
In other situations, convergence is also a problem [19]. Different variants of ABC have
been offered in the literature to help establish the best balance between exploration and
exploitation. Recent work by Quantum ABC (QABC) uses quantum physics ideas to build
a better update equation that strikes a balance between them [20–22].

Cyber security experts must invent and deploy unique approaches to reduce threats in
a big data environment. Traditional computer storage technologies like relational databases
can’t handle malicious URL detection’s huge data difficulties. Hadoop, an open-source
distributed storage technology that runs on commodity hardware, is used to store big
data’s large volume, high velocity, and heterogeneous data formats [23]. Hadoop lets users
develop and test distributed systems quickly. It efficiently distributes data and tasks among
computers and uses CPU core parallelism [24].

Biomimetics 2023, 8, 197 3 of 22

1.1. Problem Statement and Research Motivation

There are many different types of spam, phishing, and drive-by exploits that may
be hosted on a malicious URL or malicious website. This means users need to think
critically about the potential consequences of visiting an unfamiliar URL. A user’s decision
on whether or not to visit a certain URL may be assisted in a number of different ways.
Some systems examine the content of the visited webpage and evaluate user behavior
after viewing the page to get around the issue of updating and maintaining a blacklist.
The user experience suffers as a result, and the runtime overhead grows as a consequence.
Recently, machine learning has been used for the detection of malicious URLs by means
of a number of classification-based approaches that utilize aspects of web page content
and URL text. In order to more effectively identify malicious URLs, classification-based
approaches have been developed. Although as defenses evolve, so do the methods used
by attackers, who learn from each encounter and develop novel methods of attack. The
motivation for this work is the fact that attackers often misuse specific domain features
throughout this procedure. We can successfully identify and block malicious websites by
building a detection algorithm on such features.

1.2. Contribution and Methodology

Using machine learning over URL-based features, this effort attempts to solve the
challenge of identifying malicious websites. With this, we want to strike a balance between
the problems experienced by blacklists (due to their reliance on human updates that cannot
keep up with newly introduced harmful sites) and client-side solutions (which are difficult
to deploy on a large scale because of their high overhead). Building a reliable, scalable, and
flexible system is a formidable obstacle. The work presented in this paper is an extension
of the work introduced in Ref. [25], where quantum mechanics was used in the ABC
optimization algorithm to make it easier for particles to get out of the local optimum so
that the malicious URL could be detected more accurate. The following are some of the
work’s contributions towards this goal:

- This work contributes by demonstrating that the improvements obtained by utilizing
a specialized learner are outweighed by the advantages made by extracting more
meaningful features from the URL data, allowing for improved classification. As a
result, GA is adapted into a bio-inspired feature reduction approach to focus on the
most pertinent features (optimal URL data features) for constructing a powerful and
effective learning model.

- A two-step quantum artificial bee colony (2-step QABC) technique is adapted for
effective malicious URL clustering. The K-means method is used to determine the
starting locations of food sources in the modified 2-step QABC algorithm, rather than
utilizing randomization. In addition, a refined solution search equation inspired by
particle social behavior was utilized to focus on the most successful places to look.

- Real-world DNS traffic may be much higher than that in published datasets. So,
malicious website detection methods must be scalable. Further, certain methods need
big data for detection algorithm training and fine-tuning. The proposed strategy
takes advantage of the Apache Hadoop distributed computing technology to solve
this issue.

This article continues as follows: Section 2 reviews big data malicious URL detection
strategies. Section 3 provides an outline of the recommended strategy. Section 4 tests the
suggested approach and reviews the results. Section 5 summarizes the presented work and
recommends next directions.

2. State of the Art

Figure 1 depicts URL classification. It reflects URL-related features, datasets, learning
methodologies, models, and attack kinds [26]. URLs have many features. Malicious URLs
are further categorized by attack kinds, including spam, phishing, and malware. This
section discusses relevant work in URL classification utilizing machine learning techniques,

Biomimetics 2023, 8, 197 4 of 22

statistical methods in related applications, and other approaches to URL classification.
Because the recommended approach is dependent on passive domain name-based URL
elements, greater focus is given to surveying-related work that integrates such aspects.

Biomimetics 2023, 8, x FOR PEER REVIEW 4 of 23

are further categorized by attack kinds, including spam, phishing, and malware. This sec-

tion discusses relevant work in URL classification utilizing machine learning techniques,

statistical methods in related applications, and other approaches to URL classification. Be-

cause the recommended approach is dependent on passive domain name-based URL ele-

ments, greater focus is given to surveying-related work that integrates such aspects.

Figure 1. URL Classification [26].

In [27], the authors developed a method to automatically categories URLs as mali-

cious or benign using lexical and host-based features. Their technique is complementary

to a blacklist that cannot forecast the status of previously uncovered URLs and algorithms

that evaluate site content and behavior by visiting potentially harmful sites. They also

demonstrated that with suitable classifiers, it is possible to automatically filter through

complete feature sets (without domain knowledge) and pick the best predictive features

for categorization. They obtained 95–99% accuracy in classifying harmful websites from

URLs, with relatively few false positives. However, it is unclear how to expand this strat-

egy to accommodate millions of evolving URL data features [28].

In [29], the authors presented a machine-learning-based phishing classifier. By auto-

matically updating their blacklist using a classifier, they lowered phishing page availabil-

ity. Even with a great classifier and a strong system, their blacklist method puts them be-

hind phishers. A phishing page can only be identified after it has been online for some

time. Despite noise in the training data, their classifier builds a strong model for recogniz-

ing phishing sites and accurately identifies 90% of them weeks after training. Their algo-

rithm solely classifies user-submitted web pages and Gmail spam URLs [30]. In [31], the

authors offered a content-based method for identifying phishing websites. This strategy

depended on a simple categorization model that was less accurate than sophisticated clas-

sification models [32].

The work presented in [33] presented a bag of words for URL classification. Their

approach used maximum-entropy machine learning. To train their models rapidly, they

simply employ lexical features, analyzing the URL string and disregarding page content

and host information. They employ a bag-of-words representation of URL tokens with

location annotations (e.g., hostname, path, etc.). They employ successive N-grams of to-

kens, sorted but non-consecutive bigrams, and URL lengths. Lexical characteristics can

match page content features with 95% accuracy. Concurrently, Guan et al. [34] looked into

Figure 1. URL Classification [26].

In [27], the authors developed a method to automatically categories URLs as malicious
or benign using lexical and host-based features. Their technique is complementary to a
blacklist that cannot forecast the status of previously uncovered URLs and algorithms
that evaluate site content and behavior by visiting potentially harmful sites. They also
demonstrated that with suitable classifiers, it is possible to automatically filter through
complete feature sets (without domain knowledge) and pick the best predictive features for
categorization. They obtained 95–99% accuracy in classifying harmful websites from URLs,
with relatively few false positives. However, it is unclear how to expand this strategy to
accommodate millions of evolving URL data features [28].

In [29], the authors presented a machine-learning-based phishing classifier. By auto-
matically updating their blacklist using a classifier, they lowered phishing page availability.
Even with a great classifier and a strong system, their blacklist method puts them behind
phishers. A phishing page can only be identified after it has been online for some time.
Despite noise in the training data, their classifier builds a strong model for recognizing
phishing sites and accurately identifies 90% of them weeks after training. Their algorithm
solely classifies user-submitted web pages and Gmail spam URLs [30]. In [31], the authors
offered a content-based method for identifying phishing websites. This strategy depended
on a simple categorization model that was less accurate than sophisticated classification
models [32].

The work presented in [33] presented a bag of words for URL classification. Their
approach used maximum-entropy machine learning. To train their models rapidly, they
simply employ lexical features, analyzing the URL string and disregarding page content
and host information. They employ a bag-of-words representation of URL tokens with
location annotations (e.g., hostname, path, etc.). They employ successive N-grams of
tokens, sorted but non-consecutive bigrams, and URL lengths. Lexical characteristics can
match page content features with 95% accuracy. Concurrently, Guan et al. [34] looked
into instant messaging (IM) for categorizing URLs. Although they employ URL-based
capabilities, they also use IM-specific aspects, including message timing and content. URL-
based characteristics include domain age (WHOIS domain name), Google rank, and lexical
features. They utilize an ad-hoc linear classifier where the weight of each attribute is

Biomimetics 2023, 8, 197 5 of 22

proportional to the number of benign and malicious samples that have it. This algorithm
requires additional URL message samples to be more accurate and convincing.

In [35], the authors studied ways to identify fraudulent websites using lexical and host-
based URL features. They created a real-time system to capture URL features and paired it
with a real-time feed of labelled URLs from a big webmail provider. With these features and
labels, they can train an online classifier to identify malicious websites with 99% accuracy
on a balanced dataset. Watkins et al. [36] developed a malicious website detection strategy
based on big data. One solution to eliminate the big data issue in cybersecurity is to
ignore most of an enterprise’s non-malicious network data and concentrate on suspicious
or malicious network activity. Their solution employed basic clustering and a dataset
augmented with known malicious domains to filter out non-suspicious network traffic.

Bilge et al. [37] are building an exposure system to identify such malicious domains
in real-time using 15 unique features in four categories. They ran a controlled experiment
with billions of DNS queries. In this case, the data collector collects the network’s DNS
traffic. Then, it assigns features and domains in the database with DNS traffic features.
The collection of malicious and benign domains acts independently and simultaneously
with the data collector module. From multiple sources, it gathers benign and malicious
domains. Daily use, query count, and target IP addresses of each domain are provided
on the service’s website; the results are positive. However, the authors don’t train for
malicious domains that are conceptually unknown and have never been seen in the field by
malware analysts, tools, or specialists. Newer research on identifying fraudulent websites
with the use of DNS properties may be found in [30,38–47].

According to the review, earlier research focused on: (1) blacklisting, which cannot
anticipate the status of previously unknown URLs or systems based on site content and
behavior, which requires accessing potentially risky sites; and (2) not addressing the
selection of an optimal feature set from retrieved features. With proper classifiers, it is
possible to automatically shift through large feature sets (without domain knowledge) and
discover the best predictive features for classification. To our knowledge, quantum-based
evolutionary feature selection techniques for malicious URL detection systems that rely on
a large number of training samples (big data environment) have received little attention.
Most bio-inspired solutions for malicious URL identification use two or more algorithms to
improve exploration and exploitation. Recent work by quantum evolution uses quantum
physics ideas to build a better update equation that strikes a balance between them. The
following section details a concept that combines the Hadoop framework for big data with
a two-step artificial bee colony algorithm for URL categorization.

3. Proposed Malicious URL Detection Model

In this part, we have a look at the quantum-based, bio-inspired methodology presented
for passive DNS detection of malicious URLs in a large data environment.

3.1. Problem Formulation

In order to identify one of two possible classes, malicious or benign, the detection of
malicious URLs might be posed as a binary classification issue. To be more precise, let’s say
we have a training set of T URLs, represented by the pairs {(u1, y1), . . . , (uT , yT)}, where
each ut for t = 1, . . . , T represents a URL in the training data, and each yt = 1 indicates a
malicious URL and each yt = −1 represents a benign URL. There are two main issues with
automating the identification of malicious URLs [11,12,30,38,46]:

- Feature representation: Determine the best feature representation to extract, ut → xt

in which the URL is represented by the d-dimensional feature vector xt∈ Rd.
- Machine learning: Learning a prediction function f, Rd → R, that correctly pre-

dicts the class assignment for every instance of a URL based on the presentation of
its features.

For malicious URL identification, machine learning aims to maximize prediction
accuracy in binary classification tasks. Both folds above are required for this. While the first

Biomimetics 2023, 8, 197 6 of 22

portion of feature representation is based on domain knowledge and heuristics, the second
half focuses on training the classification model through data-driven optimization [2,5,10].
Malicious URL detection uses several features. Many feature categories use bag of words
(occurrence) features, resulting in millions of features. In real life, as the number of URLs
to be analyzed grows, so does the number of features. Using so many features to learn
prediction models has two problems [11,12,38,47–49]: (1) It is computationally expensive,
as training and test cycles are long due to the various mathematical operations and features
collected and preprocessed. (2) Malicious URL detection frequently has more features than
training cases. Overfitting may come from optimizing such models.

3.2. Methodology

Firewalls, key components for secured network infrastructures, are faced with two
different kinds of challenges: First, they must be fast enough to classify network packets at
line speed. Second, their packet processing capabilities should be versatile in order to sup-
port complex filtering policies. Unfortunately, most existing classification systems do not
qualify equally well for both requirements; systems built on special-purpose hardware are
fast but limited in their filtering functionality. In contrast, software filters provide powerful
matching semantics but struggle to meet line speed. The key challenge in such a design
arises from the dependencies between classification rules due to their relative priorities
within the rule set: complex rules requiring software-based processing may be interleaved
at arbitrary positions between those where hardware processing is feasible [4,6,8,46]. The
superiority of the proposed approach on the physical platform (Firewall) lies in the fact that
it is effective against modern attacks, cannot be circumvented with spoofing, cannot make
decisions based on application or authentication, and allows for a huge, easily managed
rule list.

In this work, a genetic algorithm was utilized in order to select the most representative
features while maintaining malicious URL classification accuracy on par with state-of-the-
art models that employ hundreds or thousands of features. This would make it possible for
embedded programmers to search for features matching malicious URL behavior quickly.
To train and optimize the learning prediction algorithm, this model needs big datasets. As
a distributed computing platform, Apache Hadoop solves this challenge. Figure 2 depicts
the key components of the recommended prediction model and how they’re related. The
next subsections outline its phases.

3.2.1. Training Phase
Step 1: Passive DNS Dataset

Passively collecting DNS data involves using DNS server logs to acquire genuine DNS
requests and responses. Passive DNS data is more complete than active data. Passively
captured DNS data are more representative and revealing in terms of features and statistics
that may be used to detect malicious activities [37,42]. Because passive DNS data are linked
to user activity, they can be used to identify malicious domains based on user behavior, e.g.,
temporal statistics of user queries. The experiments are conducted using a benchmark DNS
passive dataset (https://www.circl.lu/services/passive-dns/, accessed on 1 May 2022)
that is comprised of captured passive DNS data, which are answers (e.g., IP address,
time to live (TTL), record counts) from authoritative DNS servers given domain name
queries from the browsers of users. A 184 million-row dataset is extracted. Each row of the
dataset has query-answer metadata, i.e., a query from the browser and an answer from the
authoritative DNS server. Here, DNS domain name, TTL, and DNS response-based features
are used to collect domain activities. According to [36], DNS domain name-based features
should assist in distinguishing readable from unreadable names. Computer-generated
domain names are likely indicators of malicious domains. TTL-based features may assist
in distinguishing between high-availability (high TTL values indicate malicious domains)
and low-availability websites. The authoritative DNS server provides DNS-answer-based
functionality. The authors in [37] employed largely IP-based computations, but because

https://www.circl.lu/services/passive-dns/

Biomimetics 2023, 8, 197 7 of 22

our dataset was anonymized, this was not feasible, so IP addresses were removed from
the dataset. Instead, we used features that focused on capturing the returned data’s
attributes’ behavior.

Biomimetics 2023, 8, x FOR PEER REVIEW 7 of 23

Figure 2. The Proposed Quantum –Inspired Malicious URL Detection Model.

3.2.1. Training Phase

Step 1: Passive DNS Dataset

Passively collecting DNS data involves using DNS server logs to acquire genuine

DNS requests and responses. Passive DNS data is more complete than active data. Pas-

sively captured DNS data are more representative and revealing in terms of features and

statistics that may be used to detect malicious activities [37,42]. Because passive DNS data

are linked to user activity, they can be used to identify malicious domains based on user

behavior, e.g., temporal statistics of user queries. The experiments are conducted using a

benchmark DNS passive dataset (https://www.circl.lu/services/passive-dns/, accessed on

Figure 2. The Proposed Quantum –Inspired Malicious URL Detection Model.

Step 2: Data Preprocessing and Management

The big data issues offered by malicious URL identification are insurmountable for
conventional computing storage systems like relational databases. In addition, certain
methods need big datasets for training and fine-tuning detection algorithms [50]. Some aca-
demics have suggested utilizing distributed computing frameworks like Apache Hadoop to
remedy this issue. Hadoop is a software infrastructure for shared data storage and process-
ing. In order to store a large file over several nodes, it first splits it up into smaller chunks.
By breaking down a large task into smaller ones, it is able to execute distributed processing.

Biomimetics 2023, 8, 197 8 of 22

These processes are distributed throughout the cluster of computers in parallel [50]. For
further information addressing the fundamentals of Hadoop MapReduce, see [51,52].

Data cleaning, integration, transformation, and reduction are all examples of prepro-
cessing operations that assist in turning raw data into a processed and understandable
format; details may be found in [53,54]. Data cleaning is the basic phase of data preparation,
identifying defective data and incorrect information. The cleaning stage modifies or deletes
incomplete, erroneous, inconsistent, and irrelevant data. Data cleaning can be performed
on Hadoop projects using Apache Hive. Hive supports custom user-defined functions
(UDF) for tasks, such as data cleansing and filtering. Hive UDFs can be defined according
to programmers’ requirements [51]. Hive operates on the cluster’s server-side [52]. Each
Hadoop cluster does this process separately and in parallel.

Step 3: Feature Extraction

Feature extraction is a dimensionality reduction procedure that reduces a collection
of raw variables to more manageable groupings (features) for processing [6,8,12,13]. The
success of a machine learning model depends on the quality of the training data and
feature representation. Two phases comprise feature representation: (1) Feature collection
is an engineering-focused phase involving the collection of important URL information.
(2) In feature preprocessing, unstructured URL information is processed and turned into
a numerical vector for machine learning techniques. Researchers offer many factors for
detecting malicious URLs. They classified these aspects as black-list, URL-based lexical,
host-based, and content-based (context, popularity, etc.) [48,49]. All have their pros and
cons; although some are quite informative, they may be expensive. Similarly, different
features have distinct preprocessing issues and security considerations. The blacklist,
context, and popularity features need extra dependencies and have a greater collection
overhead than the others. This also means that for a live system (i.e., real-time malicious
URL detection), features with a high collecting time may not be possible.

The blacklist collection time might be significant if the external dependency is re-
quested during runtime. If the complete blacklist can be kept locally, the collection over-
head is modest. The collection of lexical features is efficient since they are URL extensions.
Host-based functions are time-consuming. Content features require downloading the web
page, which slows collection. Lexical characteristics have great dimensionality (and so do
unstructured host features and content features). Here are the extracted features from the
passive DNS dataset [36,37]:

- Type 1: DNS answer-based features: A domain’s DNS answer consists of DNS records.
- Type 2: TTL value-based features: Every DNS record has a TTL that indicates how

long a domain’s answer should be cached. Both DNS clients and name servers may
profit from DNS caching if the TTL is between 1 and 5 days. High-availability systems
reduce hostname TTL and employ round-robin DNS.

- Type 3: DNS domain name-based features: DNS provides human-readable names
to people who cannot remember server IP addresses. Good internet services pick
easy-to-remember domain names. Malicious individuals do not care about easy-to-
remember domain names. This feature represents QNAME query name in which
the target domain-name is presented as a sequence of labels, each label consisting of
a length octet followed by that number of octets. The domain name ends with the
zero-length octet for the null label of the root. This DNS server looks for resource
records (RRs) that match the specified Qtype and Qclass. If it does not have a match,
this server can point to a DNS server that may have a match instead. QTYPE is a
two-octet code which specifies the type of the query, e.g., host addresses. QCLASS is
a two-octet code that specifies the class of the query, e.g., internet addresses. Table 1
shows a record for the used dataset (17 feature vector per URL) [36–45].

Biomimetics 2023, 8, 197 9 of 22

Table 1. A Record from the used features vector.

Feature Feature Type Description Value

pkt.sniff_timestamp Time The time used to sniff sending packet by
sniffer software 1466542358.83808 (Microseconds)

qry_class Type 1 Query class, 1 is most common for Internet 1

qry_name Type 3 Query Name www.google.com, accessed on
1 May 2022

qry_name_len Type 3 Represents the length in bytes of the query
name. 123

qry_type Type 1 Type of DNS packet requested 28

resp_class Type 1 This defines the protocol family for the
Resource Records record 1

resp_len Type 1 Resource record length 16

resp_name Type 1 Resource record query name www.google.com, accessed on
1 May 2022

resp_ttl Type 2 Resource record time to live in seconds- how
long the resource records may be cached 141

resp_type Type 1 Resource record type 28
Id 54,323
flags_opcode Type 1 Type of query (e.g., 0 = standard query) 0

flags_response Type 1 Response code (e.g., 0 = DNS Query
completed successfully 1

Aa Type 1 Authoritative answer (0 = This server isn’t an
authority for the domain name or from cache) Null

count_queries Type 1 Question count 1
count_auth_rr Type 1 Authority resource record count 0
count_answers Type 1 Answer resource record count 1

Step 4: Feature Selection Using Genetic Algorithm

The challenge of feature subset selection is selecting a subset of a dataset’s original
features such that an induction method operating on just the chosen features generates
the most accurate prediction model. It is important to choose a selection of relevant,
nonredundant features. Heuristic search narrows a wide search space of solutions to find
a good one. We may think of d as the required number of features to be included in the
subset X, X ⊆ Y, and Y as the original set of features with cardinality n. Let J(X) stand in
as the set X’s feature selection criteria function. Let’s assume a larger value of J indicates
a more robust collection of features to work with. If we want to maximize J(.), then one
suitable criteria function is (1− pe), where pe the error probability is. Features are chosen
based on the classifier used, the size of the training and testing datasets, and the chance of
error [55]. Finding a subset X ⊆ Y such that |X| = d is the formal definition of the feature
selection issue.

J(X) = max
Z⊆Y,|Z|=d

J(Z) (1)

An exhaustive search is not feasible for even low values of n since it would entail in-
specting every conceivable d-subset of the feature set Y, for which there are (n

d) possibilities.
Any potential ordering of the error probabilities of each of the 2n feature subsets is feasible.
Hence, there is no exhaustive sequential feature selection technique that is guaranteed to
provide the best subset. Forward selection and backward selection are two types of feature
subset search techniques; see [56] for more details. The basic feature selection procedure is
shown in Algorithm 1 [57].

www.google.com
www.google.com

Biomimetics 2023, 8, 197 10 of 22

Algorithm 1: Feature Selection Algorithm

Input:
S—Data sample with features X, |X| = d
J—Evaluation measure to be maximized
GS—Successor generation operator
Output: Solution
Begin:
Solution: = (weighted) feature subset

L := start_point(X);
Solution: = {best o f L according to J};
Repeat:

L := search_strategy(L, GS(J), X);
X′ := {best o f L according to J};

i f J(X′) ≥ J(Solution) or (J(X′) = J(Solution) and |X′| < |Solution|)then
Solution = X′;

Until Stop (J, L).

In this case, we chose the genetic algorithm as a feature selector because of its ease of
use and robustness in the face of noisy data. Algorithm 2 shows the pseudo code of the
genetic algorithm. A GA-feature selection optimization problem instance may be formally
characterized as a four-tuple (R, Q, T, f) defined as [57–60]:

- R is the solution space; each chromosome contains 17 feature vector per URL (see
Table 1). R is n× matrix, where n is the number of URL samples. Each bit is a gene
representing the vector’s feature.

- Q is the feasibility predicate (different operators: selection, crossover, and mutation).
Crossover refers to the process by which genes from one parent are swapped with
those from another parent in order to create a hybrid child. Simple single-point
crossovers are used here. A uniform mutation is used to avoid slipping into a locally
optimal solution. The selection operator keeps the best-fitting chromosome from
one generation and chooses specified numbers of parent chromosomes. Tournament
selection is popular in genetic algorithms because of its efficiency and simplicity [61].

- ζ represents the collection of viable options (new-generation populations). Follow-
ing these iterations, the most optimal chromosome will be used to symbolize the
URL feature vector by including a selection of key components. According to the
identification success rate, this vector will explicitly indicate the best possible feature
combination [62].

- f is the fitness function. The fittest individual will become the operator’s companion.
The fitness function is based on the difference between the actual URL’s categorization
and its calculated one. Acc is given by [11]:

Acc = (TP + TN)/(P + N) (2)

Algorithm 2: Genetic Algorithm Pseudo Code

1. t = 0
2. Generate Initial Population [R(t)];
3. Evaluate Population [R(t)];
4. While not termination do
5. R’(t)= Variation [R(t)];
6. Evaluate population [R’(t)];
7. R(t + 1) = Apply GA Operators [R’(t) ∪ Q];
8. t = t + 1
9. End while

Accuracy (Acc) is the ratio of the correctly identified domains to the whole size of the
test set. The higher the value is, the better (Accε[0, 1]). True positive (TP) is the correctly

Biomimetics 2023, 8, 197 11 of 22

identified malicious domains. True negative (TN) is the correctly identified benign domains,
P is the total number of malicious domains, and N is the total number of benign domains.
Based on the results, a 10-element feature vector is optimal for use, allowing the proposed
classifier to achieve the lowest error rate. Remember that the GA’s non-deterministic nature
implies that the optimal feature vector’s elements may vary with each program run. In
general, the use of the genetic algorithm results in the reduction of the feature vector size
1 × 17 to a feature vector of size 1 × 10. So, the number of features (optimized features)
used for each URL was reduced to 58% of the total number of features (all features).

Step 5: Quantum Artificial Bee Colony (QABC) Classifier

In the last stage, a quantum artificial bee colony classifies URLs as malicious or benign
based on the training dataset’s best feature vector. This study uses a two-step QABC
method to enhance the ABC algorithm for clustering [63] issues by employing the K-means
algorithm (see Algorithm 3). The combination of QABC and K-means solves the issue of
malicious URL categorization. The classifier pseudo-code (see Algorithm 4) comprises four
phases: initialization, employed bee, onlooker bee, abandoned food source, and scout bee
phases. In the initialization step, food supply locations for employed bees are estimated
using the K-means method. The employed-bees phase exploits nearby food sources. The
new food source position relies on the previous food source location, the employed bee
position, and a [0, 1] random variable. Then, a probability is generated for each food source
based on its quality. The observer bee phase uses a quantum behavior-based searching
mechanism to pinpoint the position of the bee swarm to determine food quality. If this
is good enough, the current food supply is chosen; otherwise, onlooker bees search for
a new food source. If the solution isn’t updated in the Scout Bee or abandoned food
source phase, the current food source is abandoned. Current bees work as scouts to find
a new food supply. This method continues until it reaches a predetermined threshold
or limit iterations [20–22,63]. The recommended model’s fitness function is sensitivity.
Sensitivity is the ratio of true positives to true positives plus false negatives. False negatives
are malicious domains that were wrongly detected as non-harmful. True positives are
accurately discovered malicious domains.

Sensitivity =
True Positive

True positive + False negative
(3)

While in Newtonian physics, a particle’s path may be predicted with reasonable
accuracy, this is not the case in quantum mechanics. Since Heisenberg’s uncertainty
principle prevents us from knowing both the x (position) and v (velocity) of a particle at
the same time, the word “trajectory” is useless in quantum physics. Therefore, the ABC
method will operate differently if the particles making up the system exhibit quantum
characteristics [20–22]. Each bee in a quantum model of ABC is a particle with a state
represented by a wave function rather than a location and velocity. The dynamic behavior
of the bee is distinct from the bee in the normal ABC method in that it is not possible to
concurrently compute exact values for x and v. The bees’ position probability distribution
is |Ψ(x, t)|2. The update function V(x) may be obtained as follows:

V(x) = −λδ(x) (4)

where λ is a positive value and δ(x) is Dirac delta function that simplifies calculations
required for the studies of electron motion and propagation. A particle’s wave function
Ψ(x) in delta potential is as:

Ψ(x) =

√
mλ

}2 (e−
mλ|x|
}2) (5)

Biomimetics 2023, 8, 197 12 of 22

where } is the reduced Plank constant, the quantization of angular momentum, m is the
mass of the particle and e is the energy of the particle. Based on Eberhard’s convergence
study for PSOs, we may set the potential’s base at the position specified by:

pj =
r1 pij + r2 pgj

r1 + r2
, j = 1, 2, . . . SN/2 (6)

where pij is the ith bee local best position in the jth dimension of the hyperspace and pgj
is the value of the jth dimension of the bees’ global best position; r1 and r2 are random
variables in the range (0, 1].

V(z) = −λδ(x− p) = −λδ(z) (7)

Ψ(z) =

√
mλ

}2 (e−
mλ|z|
}2) (8)

where z = x− p. As a result, we can calculate the probability of finding a particle Q(z) at
any given location:

Since Q(z) = |Ψ(z)|2,

∴ Q(z) =
mλ

}2 exp(−2
mλ|z|
}2) (9)

The F(z) cumulative distribution function is defined as:

F(z) =
∫ z

−∞

mλ

}2 exp(−2
mλ|z|
}2)= e

−2}2 |z|
mλ (10)

V = P± }2

2mλ
ln(

1
u
) (11)

Herein, u = rand (0, 1), and let c = }2

2mλ then

vi = Pi ± ciln(
1
u
) (12)

We may define MB as the mean of the best SN/2 positions. SN is the size of food sources.

MB =
2
n

SN/2

∑
i=1

pi (13)

Let
→
µ =

[
µ1, µ2, . . . , µ(SN

2)

]
, and

→
µ is a tuning factor vector that is listed in decreasing

order. To alter the distribution’s variance so that the algorithm may successfully complete
the optimization objective, let:

ci = µi ∗ (|MB− xi|) (14)

vi =

{
pi + µi ∗ (|MB− xi|ln(1

u) f or k ≥ 0.5
pi − µi ∗ (|MB− xi|ln(1

u) f or k < 0.5
(15)

where k is a random number between zero and one, uniformly distributed.

Biomimetics 2023, 8, 197 13 of 22

Algorithm 3: K-means clustering

Input: K (the number of clusters); K = 2 (malicious or benign)
D dataset contains best feature values fbest,i for each URLi
Output: Cluster Sj
Begin
Arbitrary choose K objects from D as the initial cluster centers;
Repeat

- (re) assign each object to the cluster to which the object is the most similar, based on the
mean value of the objects in the cluster;

- Update the cluster means, i.e., calculate the mean value of the objects for each cluster

Until no change;

Algorithm 4: Two-step QABC clustering

Input: D dataset contains best feature values fbest,i for each URLi
Fitness Function “Sensitivity”
Output: Best solution of final cluster center (Cbest,j) j = 1, 2
Begin
Initialization phase.

- Important QABC settings are determined by the user, including particle population size,

optimization variable bounds, modification rate (MR), tuning vector (
→
µ), and stopping

criterion (t_max).
- Use a uniform probability distribution function to seed an initial population (array) of food

sources with placements across the n-dimensional space.

For i = 1:SN/* SN is the total number of food sources (number of clusters) */
Initialize the food source within the boundary of given dataset in random order;
Apply the K-means algorithm
Send the employed bees to the food sources; /* Computed centers */
End For
Iteration = 0;
Do While (the termination condition is not met)
For (each employed bee)/* Employed bee’s phase */
For i = 1:SN

- Update the positions of the employed bees using vij = xij +∅ij

(
xij − xkj

)
,∅ij ∈ [−1, 1],

then evaluate their fitness using Equation (3)
- A greedy selection is made between the old and new food source and keep the best one;

End For
For i = 1:SN
Compute the probability value associated with each food source.
End For

For i = 1:SN /* Start the onlooker bees phase*/
If (rand () < Pri) /* Pri the probability associated with ith food source */

- Generate a new position for each onlooker using Equation (15) then evaluate the fitness
- A greedy selection is made between the old and new food source and keep the best one;

Else
i = i + 1;
End If
End For
If (any employed bee becomes scout bee)/* Scout bee’s phase */
Send the scout bee to a randomly produced to food source;
End if
Memorize the best solution achieved
Iteration = iteration + 1
End While
Obtain final cluster Center
End

Biomimetics 2023, 8, 197 14 of 22

3.2.2. Testing Phase

Machine learning aims to predict test data. Training data is used to fit and test the
model. Models are created to predict test-set outcomes. Given an unknown URL, the model
extracts its feature vector by following the indices of the best feature vector obtained during
training. This extracted feature vector is then categorized based on its resemblance to the
final cluster centers created during the training phase. In summary, the recommended
model uses a two-step ABC approach that uses K-means to determine initial cluster centers.
Excellent exploration and exploitation in the classifier’s solution search leads to good
convergence. The convergence speed of the ABC method slows as problem dimensions
rise. To solve this difficulty, the recommended model reduces the number of features. The
complete pseudo-code of the suggested model is shown in Algorithm 5.

Algorithm 5: the Suggested Clustering Model

Input: Xi: Passive DNS Dataset
GA parameters configuration
ABC classifier parameters configuration
Output: URL classifier (malicious, benign)
Begin

1. Initially load dataset in Hadoop
2. Apply preprocessing in multiple parallel operations
3. For each MapReduce partitions
4. Apply feature extraction procedure
5. End for
6. Aggregate selected features
7. Call Algorithm 1 for feature selection
8. Call Algorithm 4 for two-step QABC clustering
9. Classify unknown URL according to the trained classifier

End

The primary benefits of the provided approach are: (1) reducing computing complexity
by using GA to pick the ideal feature without affecting detection accuracy. (2) Improving
malicious URL detection using a two-step ABC classifier. The classifier mixes K-means and
a bio-inspired ABC classifier that handles the tradeoff between exploration and exploitation
well. Exploration is the capacity to analyze prospective solutions that are not neighbors of
the current answer (or solutions). This procedure helps escape a local optimum. Exploita-
tion occurs when a search is performed in the vicinity of the present solution (or solutions).
It may be implemented as a local search.

4. Results and Discussions

This section analyses the model’s efficiency. Experiments were performed to test the
model’s resilience. The experiments employ a benchmark dataset of collected passive DNS
data (https://www.circl.lu/services/passive-dns/, accessed on 1 May 2022), which are
replies (e.g., IP address, TTL, record counts) from authoritative DNS servers given domain
name requests from user browsers. CIRCL Passive DNS is a database storing historical DNS
records from various resources including malware analysis or partners. The DNS historical
data are indexed, which makes it searchable for incident handlers, security analysts, or
researchers. In this case, we’re working with a big 184 million-row dataset. Each row in the
datasets included information about a query and its corresponding response (i.e., a query
from the browser and an answer from the authoritative DNS server). In this case, we make
use of the DNS domain name, TTL, and DNS response-based characteristics to guarantee
that a complete range of domain behaviors is recorded. The machine learning algorithm
was trained on varied ratios of malicious and secure websites; 70% of the labelled pages
were for training, 30% for testing. Testing and training supervised machine learning models
use the same ratio of malicious to safe websites.

https://www.circl.lu/services/passive-dns/

Biomimetics 2023, 8, 197 15 of 22

Java was used to build all of the components of the proposed model. With the follow-
ing configurations, the system was implemented on an HP ProLiant DL180 Gen9 server.
Hardware configuration: 64-bit OS, 32 GB RAM, 12× Intel Xeon E5-2620v3 processors at
2.4 GHz, and an SSD. The server has three 1 TB hard drives in a RAID 5 array and runs the
64-bit enterprise edition of Microsoft Server 2008 R2. The effectiveness and functionality
of the recommended supervised algorithms are evaluated using a confusion matrix. The
suggested machine learning approaches are structured in a way that prioritizes identifying
malicious websites, often known as true positives [11].

False positive rates =
FP
N

(16)

Precision =
TP

TP + FP
(17)

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

TNrate=
TN

TN + FP
(19)

Recall = TPrate =
TP

TP + FN
(20)

In computer science, the analysis of algorithms is the process of finding the computa-
tional complexity of algorithms, i.e., the amount of time, storage, or other resources needed
to execute them. Usually, this involves determining a function that relates the size of an
algorithm’s input to the number of steps it takes (its time complexity) or the number of
storage locations it uses (its space complexity). Time complexity is commonly estimated
by counting the number of elementary operations performed by the algorithm, where an
elementary operation takes a fixed amount of time to perform. As the prototype of the
proposed model was built using off-the-shelf software that contains many functions that
call each other, it becomes theoretically difficult to calculate time and space complexities.
Time complexity is a complete theoretical concept related to algorithms, while running
time is the time a code would take to run. Run-time analysis was utilized as an indicator of
the different approaches’ computational complexity. An algorithm is said to be efficient
when this function’s values are small or grow slowly compared to the size of the input [64].
On average, the proposed technique requires around one third as much time to run in the
testing phase as it does in the training phase to accomplish classification.

4.1. Experiment 1: (The Significance of Features Selection)

This experiment implements the recommended quantum- inspired malicious URL
detection model using both a complete feature vector and an optimized feature vector to
compare detection accuracy and time. Table 2 shows that compared to the whole feature
vector, the application of optimum features improves detection accuracy by approximately
2% in terms of true positive (TP), true negative (TN), false positive (FP), and false negative
(FN). Although this boost is modest, the time it takes to test 1000 URLs is reduced from
around a 2300 to 760 milliseconds (testing phase-online). This feature vector, as expected,
produces rising detection accuracy as the suggested model attempts to choose the most
significant features that comprise the URL properties that may identify websites as ma-
licious or benign. The fact that the feature selection module can get rid of unnecessary
features (highly correlated features) and features that cause mislabeling (based on the
fitness function) may explain these results.

Biomimetics 2023, 8, 197 16 of 22

Table 2. Confusion Matrix for Optimal and all Features (Average Percentage).

TP% FP% FN% TN%
Testing Phase’s Running Time for

1000 URLs
(Milliseconds)

Utilizing all Features 96 6 4 94 2300
Utilizing optimized

Features 98 3 2 97 760

4.2. Experiment 2: (Classifiers Evaluation)

Since there are many supervised classification techniques, this set of experiments
evaluates a sample of the obtained dataset using Weka [65,66] as well as ABC, two-step
ABC classifiers, and the proposed QABC. Three classifiers were examined, encompassing
tree-based (random forest, C4.5) and function-based (SVM). Categorization was performed
without parameter adjustment by ten-fold cross-validation to choose the most promising
strategy. Table 3 displays the results for each classifier in terms of accuracy, true positives,
and true negatives. SVM has the lowest accuracy (87%) but the highest efficiency (93%
success rate) for detecting genuine URLs compared to the other evaluated classifiers. Similar
performance (approximately 95%) is shown with tree-based classifiers, e.g., random forest,
but with a greater disparity between true positives and false negatives.

Table 3. Classification Results for Different Classifiers (Average Percentage).

Classifier Accuracy TP Rate TN Rate
Testing Phase’s Running Time for

1000 URLs
(Milliseconds)

Random Forest 95 96 92 500
C4.5 93 92 94 300
SVM 87 88 93 560
ABC 94 96 91 650

Two-step ABC [25] 96 98 95 690
QABC (Proposed Model) 98 98 97 760

The ABC classifier performs similarly to the random forest. The quantum ABC
classifier classifies 98% of URLs correctly. The ABC classifier takes a lengthy time due
to its stochastic nature. Bees and food sources are initially selected randomly, which
makes optimization more difficult. The low convergence is a consequence of the solution
search equation of ABC being excellent at exploration but not exploitation. In addition,
it is observed that the ABC method slows down in its convergence as the problem’s
dimensions get larger. The two-step ABC method uses the K-means algorithm to determine
the beginning placements of food sources rather than a random starting point. Therefore, it
provides more precise categorization results. The QABC classifier is based on the same idea
as the two-step ABC technique. However, it employs the metaheuristic searching algorithm
for global optimization problems motivated by principles from quantum physics in order
to overcome ABC’s poor exploitation abilities and its convergence speed. The suggested
model takes more time to classify URLs than competing approaches, as indicated in Table 2,
but it also provides higher accuracy.

4.3. Experiment 3: (Tuning False Positives and Negatives)

False positives are more tolerable than false negatives for identifying phishing URLs.
False positive URLs require visitors to be extra careful while loading the URL and manually
authenticate the webpage’s legitimacy before providing sensitive personal information.
False negatives may give users a false sense of security, and they may provide personal
information to a phishing website. Instead of decreasing the total error rate, users may
choose to tune the decision threshold to reduce false negatives and increase false positives,
or vice versa. A receiver operating characteristic (ROC) plot shows how well a binary
classifier can identify a problem when the threshold for making a distinction between
classes changes. The ROC graph for the proposed two-step QABC classifier over a sample

Biomimetics 2023, 8, 197 17 of 22

of the whole data set with the best feature vector is shown in Figure 3. This graph indicates
the trade-off between the false negative and false positive rates. The highlighted portion
of the chart reveals that a false negative rate of 3.16% may be attained by tuning the false
positives to 0.15%. However, we may reduce the false negative rate to 1.05% if we accept
a somewhat higher false positive rate of 0.4%. The proposed model’s accuracy in terms
of false positives and negatives may be attributed to its investigation of a hybrid machine
learning approach (K-mean and ABC) that utilized selected discriminative features and
quantum searching mechanisms to increase diversity among populations.

Biomimetics 2023, 8, x FOR PEER REVIEW 18 of 23

Figure 3. ROC Graph Showing Trade-off between False Negatives and False Positives.

4.4. Experiment 4: (Concept Drift)

Phishing strategies and URL architectures change as attackers find new ways to by-

pass filters. As phishing URLs change, the classifier’s trained model must improve. Re-

training algorithms with new features is vital for adjusting to malicious URLs and their

properties. The passive DNS data collection is separated randomly into 10 batches, each

comprising 1,500,000 benign and malicious URLs. In our case, the OperateBatchDomain

function was used to submit a task for adding domain names or DNS records in batches.

In order to verify the classification error rates of the proposed model, it was trained using

each batch as a distinct training set. Table 4 displays the percentage of incorrect classifica-

tions made by the proposed classifier after being trained on a variety of batches.

Table 4. Error Rates of the Suggested Classifier after Training them on Different Batches.

Batch Number Error Rate

batch 1 2.30

batch 2 2.25

batch 3 2.28

batch 4 2.20

batch 5 2.10

batch 6 2.00

batch 7 2.29

batch 8 2.05

batch 9 2.24

batch 10 2.26

The results show that the overall error rate for all patches is between 2% and 2.30%.

Because of this, the proposed model shows that its error rate is consistent across different

datasets. These outcomes may be explained by the fact that the recommended model is

constructed using an optimal feature vector that is able to discriminate between safe and

harmful URLs. With this feature vector, we may reduce the degree of similarity across

classes while increasing it within them. Distances between data points and the cluster cen-

ters are displayed by inter-class clusters, while intra-class distances are displayed by the

clusters themselves.

Figure 3. ROC Graph Showing Trade-off between False Negatives and False Positives.

4.4. Experiment 4: (Concept Drift)

Phishing strategies and URL architectures change as attackers find new ways to bypass
filters. As phishing URLs change, the classifier’s trained model must improve. Retraining
algorithms with new features is vital for adjusting to malicious URLs and their properties.
The passive DNS data collection is separated randomly into 10 batches, each comprising
1,500,000 benign and malicious URLs. In our case, the OperateBatchDomain function was
used to submit a task for adding domain names or DNS records in batches. In order to
verify the classification error rates of the proposed model, it was trained using each batch
as a distinct training set. Table 4 displays the percentage of incorrect classifications made
by the proposed classifier after being trained on a variety of batches.

Table 4. Error Rates of the Suggested Classifier after Training them on Different Batches.

Batch Number Error Rate

batch 1 2.30
batch 2 2.25
batch 3 2.28
batch 4 2.20
batch 5 2.10
batch 6 2.00
batch 7 2.29
batch 8 2.05
batch 9 2.24

batch 10 2.26

The results show that the overall error rate for all patches is between 2% and 2.30%.
Because of this, the proposed model shows that its error rate is consistent across different

Biomimetics 2023, 8, 197 18 of 22

datasets. These outcomes may be explained by the fact that the recommended model is
constructed using an optimal feature vector that is able to discriminate between safe and
harmful URLs. With this feature vector, we may reduce the degree of similarity across
classes while increasing it within them. Distances between data points and the cluster
centers are displayed by inter-class clusters, while intra-class distances are displayed by
the clusters themselves.

4.5. Experiment 5: (Performance of Different Metaheuristics-Based Feature Selection Algorithms)

Feature selection is the process of selecting the best feature among a huge number
of features in a dataset. However, the problem in feature selection is to select a subset
that performs better under some classifier. Feature selection is frequently used in machine
learning for processing high-dimensional data. It reduces the number of features in the
dataset and makes the classification process easier. This procedure can not only reduce
irrelevant features, but, in some cases, also increase classification performance due to the
finite sample size. Meta-heuristic algorithms are widely adopted for feature selection
due to their enhanced searching ability. Though current state-of-the-art systems have
demonstrated impressive performance, there is still no consensus on the optimum feature
selection algorithm for the task of phishing web page detection.

In this experiment, we investigate the performance of three metaheuristic feature
selection algorithms: ant colony optimization (ACO), binary bat (BB), and binary grey wolf
(BGW). In this case, we swap between different feature selection modules in step 4 and
compare the results to those obtained by the genetic algorithm (GA) that is utilized by
the proposed model for feature selections for the same task. For implementation, each
module was embedded into the main model as a black box with its default parameters.
See [67–73] for more details about the mentioned metaheuristic optimization techniques
and their default parameters. As revealed in Table 5, both GA and ACO have gained
better classification accuracy than other algorithms. However, utilizing GA achieves 50%
feature reduction as compared with ACO, which achieves only 40%. There is no significant
difference between them in the accuracy of the classification, but the use of GA for feature
selection reduces the computational complexity by 20% on average. In general, one of the
factors that influences the increment of time and iteration is the population being initialized.
The way ACO initializes the population by using state transition rules is more efficient
compared to GA, which is based on random approaches.

Table 5. Comparative Results for Different Metaheuristics-Based Feature Selection Algorithms.

Feature Selection
Module

Accuracy
(%)

Feature
Reduction

Testing Phase’s Running Time for
1000 URLs

(Milliseconds)

BGW 78.52 17% 1230
BB 77.35 39% 940

ACO 98.00 40% 925
GA (Proposed model) 97.50 50% 780

4.6. Limitation

- Malicious websites are influenced by the selected URL features. They may be altered
by several factors. Classification accuracy is the only metric in this work.

- As such, the proposed supervised machine learning model cannot evaluate the harm-
ful potential of any given domain. If a domain isn’t being resolved by any hosts,
for instance, it won’t be recorded in the passive DNS database, and hence won’t be
considered in the proposed model. A domain will not be included in the domain
graph, and the suggested model will not work for it, if it never exchanges IP addresses
with any other domains.

Biomimetics 2023, 8, 197 19 of 22

5. Conclusions

In this research, we provide a novel approach for identifying malicious domains
by means of passively examining DNS data. This technique makes use of the fact that
malicious domains tend to change over time in order to find robust correlations between
them. These associations are then used to infer new malicious domains from a pool of
previously discovered malicious domains. The main discovery is that machine learning
may ameliorate the shortcomings of blacklists, heavyweight and lightweight classifiers for
identifying malicious URLs. Using a genetic approach for feature selection (optimal number
of features) and the two-step QABC method, a real-time, accurate, middleweight, and quick
classification model was created. Using an ideal number of attributes (middleweight) taken
from the initial feature vector has apparent benefits over bigger feature sets. The study
built a model for real-time feature collection, and the verified supervised classification and
bio-inspired feature selection may work together to develop a stronger classifier.

This paper explored a hybrid machine learning approach (K-mean and QABC) that
employed chosen discriminative features and Hadoop to handle large URL data sets.
Experimental results demonstrate that the recommended model can achieve high true
positive rates and low false positive rates with excellent expansion, i.e., detecting a large
group of possibly malicious domains with a small number of seeds. This experiment shows
the model’s real-world viability. In this case study, the Hadoop framework examined
10 million domains in about an hour. The results showed that the recommended model
could scale to 10 million query-answer pairs with 96.6% accuracy. The following are
future plans: (1) application of this method to cyber data types outside DNS for different
passive eavesdropper and stealthy attacks [74–77]; (2) improvement of feature extraction
and representation learning (e.g., via deep learning approaches); (3) improvement of GPU
web page classification speed.

Author Contributions: Conceptualization, S.M.D.; methodology, S.M.D. and D.A.F.; software, D.A.F.;
validation, S.M.D. and A.A.E.; formal analysis, S.M.D., D.A.F. and A.A.E.; investigation, S.M.D.
and A.A.E.; resources, D.A.F.; data curation, S.M.D. and D.A.F.; writing—original draft preparation,
S.M.D. and D.A.F.; writing—review and editing, S.M.D. and A.A.E.; visualization, D.A.F.; supervision,
S.M.D.; project administration, D.A.F. and A.A.E.; funding acquisition, D.A.F. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Datasets for this research are available at https://hackernoon.com/
(accessed on 1 May 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yan, X.; Xu, Y.; Cui, B.; Zhang, S.; Guo, T.; Li, C. Learning URL embedding for malicious website detection. IEEE Trans. Ind.

Inform. 2020, 16, 6673–6681. [CrossRef]
2. Begum, A.; Badugu, S. A study of malicious URL detection using machine learning and heuristic approaches. In Advances in

Decision Sciences, Image Processing, Security and Computer Vision; Springer: Cham, Switzerland, 2020; pp. 587–597.
3. Hong, J.; Kim, T.; Liu, J.; Park, N.; Kim, S. Phishing URL detection with lexical features and blacklisted domains. In Adaptive

Autonomous Secure Cyber Systems; Springer: Cham, Switzerland, 2020; pp. 253–267.
4. Afzaliseresht, N.; Miao, Y.; Michalska, S.; Liu, Q.; Wang, H. From logs to stories: Human-centered data mining for cyber threat

intelligence. IEEE Access 2020, 8, 19089–19099. [CrossRef]
5. Palaniappan, G.; Sangeetha, S.; Rajendran, B.; Goyal, S.; Bindhumadhava, B. Malicious domain detection using machine learning

on domain name features, host-based features and web-based features. Procedia Comput. Sci. 2020, 171, 654–661. [CrossRef]
6. Kim, T.; Reeves, D. A survey of domain name system vulnerabilities and attacks. J. Surveill. Secur. Saf. 2020, 1, 34–60. [CrossRef]
7. Nabeel, M.; Khalil, I.; Guan, B.; Yu, T. Following passive DNS traces to detect stealthy malicious domains via graph inference.

ACM Trans. Priv. Secur. 2020, 23, 1–36. [CrossRef]
8. Singh, C. Phishing website detection based on machine learning: A survey. In Proceedings of the IEEE International Conference

on Advanced Computing and Communication Systems, Coimbatore, India, 6–7 March 2020; pp. 398–404.

https://hackernoon.com/
https://doi.org/10.1109/TII.2020.2977886
https://doi.org/10.1109/ACCESS.2020.2966760
https://doi.org/10.1016/j.procs.2020.04.071
https://doi.org/10.20517/jsss.2020.14
https://doi.org/10.1145/3401897

Biomimetics 2023, 8, 197 20 of 22

9. Xuan, C.; Nguyen, H.; Tisenko, V. Malicious URL detection based on machine learning. Int. J. Adv. Comput. Sci. Appl. 2020, 11,
148–153. [CrossRef]

10. Raja, A.; Vinodini, R.; Kavitha, A. Lexical features based malicious URL detection using machine learning techniques. Mater.
Today Proc. 2021, 47, 163–166. [CrossRef]

11. Zhauniarovich, Y.; Khalil, I.; Yu, T.; Dacier, M. A survey on malicious domains detection through DNS data analysis. ACM
Comput. Surv. 2018, 51, 1–36. [CrossRef]

12. Korkmaz, M.; Sahingoz, O.; Diri, B. Feature selections for the classification of webpages to detect phishing attacks: A survey.
In Proceedings of the IEEE International Congress on Human-Computer Interaction, Optimization and Robotic Applications,
Ankara, Turkey, 26–28 June 2020; pp. 1–9.

13. Li, S.; Zhang, K.; Chen, Q.; Wang, S.; Zhang, S. Feature selection for high dimensional data using weighted k-nearest neighbors
and genetic algorithm. IEEE Access 2020, 8, 139512–139528. [CrossRef]

14. Ding, Y.; Zhou, K.; Bi, W. Feature selection based on hybridization of genetic algorithm and competitive swarm optimizer. Soft
Comput. 2020, 24, 11663–11672. [CrossRef]

15. Cao, Y.; Ji, S.; Lu, Y. An improved support vector machine classifier based on artificial bee colony algorithm. J. Phys. Conf. Ser.
2020, 1550, 042073. [CrossRef]

16. Dedeturk, B.; Akay, B. Spam filtering using a logistic regression model trained by an artificial bee colony algorithm. Appl. Soft
Comput. 2020, 91, 106229. [CrossRef]

17. Shiue, Y.; You, G.; Su, C.; Chen, H. Balancing accuracy and diversity in ensemble learning using a two-phase artificial bee colony
approach. Appl. Soft Comput. 2021, 105, 107212. [CrossRef]

18. Jacob, I.; Darney, P. Artificial Bee Colony Optimization Algorithm for Enhancing Routing in Wireless Networks. J. Artif. Intell.
2021, 3, 62–71.

19. Akay, B.; Karaboga, D.; Gorkemli, B.; Kaya, E. A Survey on the Artificial Bee Colony Algorithm Variants for Binary, Integer and
Mixed Integer Programming Problems. Appl. Soft Comput. 2021, 106, 107351. [CrossRef]

20. Huo, F.; Sun, X.; Ren, W. Multilevel Image Threshold Segmentation Using an Improved Bloch Quantum Artificial Bee Colony
Algorithm. Multimed. Tools Appl. 2020, 79, 2447–2471. [CrossRef]

21. Li, Y.; Zhao, Y.; Zhang, Y. A Spanning Tree Construction Algorithm for Industrial Wireless Sensor Networks Based on Quantum
Artificial Bee Colony. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 176. [CrossRef]

22. Cai, W.; Vosoogh, M.; Reinders, B.; Toshin, D.; Ebadi, A. Application of Quantum Artificial Bee Colony for Energy Management
by Considering the Heat and Cooling Storages. Appl. Therm. Eng. 2019, 157, 113742. [CrossRef]

23. Honar, P.; Rashid, M.; Alam, F.; Demidenko, S. IoT big Data provenance scheme using blockchain on Hadoop ecosystem. J. Big
Data 2021, 8, 114. [CrossRef]

24. Priyanka, E.; Thangavel, S.; Meenakshipriya, B.; Prabu, D.; Sivakumar, N. Big data technologies with computational model
computing using Hadoop with scheduling challenges. In Deep Learning and Big Data for Intelligent Transportation; Springer: Cham,
Switzerland, 2021; pp. 3–19.

25. Darwish, S.; Anber, A.; Mesbah, S. Bio-inspired machine learning mechanism for detecting malicious URL through passive DNS
in big data platform. In Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges; Springer: Cham,
Switzerland, 2021; pp. 147–161.

26. Ma, J.; Saul, L.; Savage, S.; Voelker, G. Learning to detect malicious URLs. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–24. [CrossRef]
27. Dong, H.; Shang, J.; Yu, D.; Lu, L. Beyond the blacklists: Detecting malicious URL through machine learning. In Proceedings of

the BlackHat Asia, Marina Bay Sands, Singapore, 28–31 March 2017; pp. 1–8.
28. Shi, Y.; Chen, G.; Li, J. Malicious domain name detection based on extreme machine learning. Neural Process. Lett. 2018, 48,

1347–1357. [CrossRef]
29. Whittaker, C.; Ryner, B.; Nazif, M. Large-scale automatic classification of phishing pages. In Proceedings of the Annual

International Conference on Machine Learning, Montreal, QC, Canada, 21–24 June 2010; pp. 1–14.
30. Benavides, E.; Fuertes, W.; Sanchez, S.; Sanchez, M. Classification of phishing attack solutions by employing deep learning

techniques: A systematic literature review. In Developments and Advances in Defense and Security, Smart Innovation, Systems and
Technologies; Springer: Singapore, 2020; Volume 152, pp. 51–64.

31. Jain, A.; Parashar, S.; Katare, P.; Sharma, I. Phishskape: A content based approach to escape phishing attacks. Procedia Comput. Sci.
2020, 171, 1102–1109. [CrossRef]

32. Alkawaz, M.; Steven, S.; Hajamydeen, A. Detecting phishing website using machine learning. In Proceedings of the IEEE
International Colloquium on Signal Processing & Its Applications, Langkawi, Malaysia, 28–29 February 2020; pp. 111–114.

33. Tupsamudre, H.; Singh, A.; Lodha, S. Everything is in the name—A URL based approach for phishing detection. In Proceedings
of the International Symposium on Cyber Security Cryptography and Machine Learning, Be’er Sheva, Israel, 27–28 June 2019;
Springer: Cham, Switerland; pp. 231–248.

34. Guan, D.; Chen, C.; Lin, J. Anomaly based malicious URL detection in instant messaging. In Proceedings of the Joint Workshop
on Information Security, Kaohsiung, Taiwan, 6–7 August 2009; Volume 43, pp. 1–14.

35. Sorio, E.; Bartoli, A.; Medvet, E. Detection of hidden fraudulent URLs within trusted sites using lexical features. In Proceedings of
the International Conference on Availability, Reliability and Security, Regensburg, Germany, 2–6 September 2013; pp. 242–247.

https://doi.org/10.14569/IJACSA.2020.0110119
https://doi.org/10.1016/j.matpr.2021.04.041
https://doi.org/10.1145/3191329
https://doi.org/10.1109/ACCESS.2020.3012768
https://doi.org/10.1007/s00500-019-04628-6
https://doi.org/10.1088/1742-6596/1550/4/042073
https://doi.org/10.1016/j.asoc.2020.106229
https://doi.org/10.1016/j.asoc.2021.107212
https://doi.org/10.1016/j.asoc.2021.107351
https://doi.org/10.1007/s11042-019-08231-7
https://doi.org/10.1186/s13638-019-1496-z
https://doi.org/10.1016/j.applthermaleng.2019.113742
https://doi.org/10.1186/s40537-021-00505-y
https://doi.org/10.1145/1961189.1961202
https://doi.org/10.1007/s11063-017-9666-7
https://doi.org/10.1016/j.procs.2020.04.118

Biomimetics 2023, 8, 197 21 of 22

36. Watkins, L.; Beck, S.; Zook, J.; Buczak, A.; Chavis, J.; Robinson, W.; Morales, J.; Mishra, S. Using semi-supervised machine learning
to address the big data problem in DNS networks. In Proceedings of the IEEE 7th Annual Computing and Communication
Workshop and Conference, Las Vegas, NV, USA, 9–11 January 2017; pp. 1–6.

37. Bilge, L.; Sen, S.; Balzarotti, D.; Kirda, E.; Kruegel, C. Exposure: A passive DNS analysis service to detect and report malicious
domains. ACM Trans. Inf. Syst. Secur. 2014, 16, 1–28. [CrossRef]

38. Torabi, S.; Boukhtouta, A.; Assi, C.; Debbabi, M. Detecting Internet abuse by analyzing passive DNS traffic: A survey of
implemented systems. IEEE Commun. Surv. Tutor. 2018, 20, 3389–3415. [CrossRef]

39. Da Silva, L.; Silveira, M.; Cansian, A.; Kobayashi, H. Multiclass classification of malicious domains using passive DNS with
xgboost. In Proceedings of the IEEE 19th International Symposium on Network Computing and Applications, Cambridge, MA,
USA, 24–27 November 2020; pp. 1–3.

40. Perdisci, R.; Papastergiou, T.; Alrawi, O.; Antonakakis, M. Iotfinder: Efficient large-scale identification of IoT devices via passive
DNS traffic analysis. In Proceedings of the IEEE European Symposium on Security and Privacy, Genoa, Italy, 7–11 September 2020;
pp. 474–489.

41. Liang, Z.; Zang, T.; Zeng, Y. Malportrait: Sketch malicious domain portraits based on passive DNS data. In Proceedings of the
IEEE Wireless Communications and Networking Conference, Seoul, Republic of Korea, 25–28 May 2020; pp. 1–8.

42. Sun, Y.; Jee, K.; Sivakorn, S.; Li, Z.; Lumezanu, C.; Korts-Parn, L.; Wu, Z.; Rhee, J.; Kim, C.; Chiang, M.; et al. Detecting malware
injection with program-DNS behavior. In Proceedings of the IEEE European Symposium on Security and Privacy, Virtual
conference, 7–11 September 2020; IEEE: Genoa, Italy; pp. 552–568.

43. Guo, X.; Pan, Z.; Chen, Y. Application of passive DNS in cyber security. In Proceedings of the IEEE International Conference on
Power, Intelligent Computing and Systems, Shenyang, China, 28–30 July 2020; pp. 257–259.

44. Silveira, M.; da Silva, L.; Cansian, A.; Kobayashi, H. Detection of newly registered malicious domains through passive DNS. In
Proceedings of the IEEE International Conference on Big Data, Orlando, FL, USA, 15–18 December 2021; pp. 3360–3369.

45. Fernandez, S.; Korczyński, M.; Duda, A. Early detection of spam domains with passive DNS and SPF. In Proceedings of the
International Conference on Passive and Active Network Measurement, Virtual Event, 28–30 March 2022; Springer: Cham,
Switzerland; pp. 30–49.

46. Li, K.; Yu, X.; Wang, J. A Review: How to detect malicious domains. In Proceedings of the International Conference on Artificial
Intelligence and Security, Dublin, Ireland, 19–23 July 2021; Springer: Cham, Switzerland; pp. 152–162.

47. Hajaj, C.; Hason, N.; Dvir, A. Less is more: Robust and novel features for malicious domain detection. Electronics 2022, 11, 969.
[CrossRef]

48. Chiew, K.; Tan, C.; Wong, K.; Yong, K.; Tiong, W. A new hybrid ensemble feature selection framework for machine learning-based
phishing detection system. Inf. Sci. 2019, 484, 153–166. [CrossRef]

49. Zuhair, H.; Selamat, A.; Salleh, M. Feature selection for phishing detection: A review of research. Int. J. Intell. Syst. Technol. Appl.
2016, 15, 147–162. [CrossRef]

50. Zeebaree, S.; Shukur, H.; Haji, L.; Zebari, R.; Jacksi, K.; Abas, S. Characteristics and analysis of Hadoop distributed systems.
Technol. Rep. Kansai Univ. 2020, 62, 1555–1564.

51. Merceedi, K.; Sabry, N. A Comprehensive survey for Hadoop distributed file system. Asian J. Res. Comput. Sci. 2021, 11, 46–57.
[CrossRef]

52. Elkawkagy, M.; Elbeh, H. High performance Hadoop distributed file system. Int. J. Netw. Distrib. Comput. 2020, 8, 119–123.
[CrossRef]

53. Rahul, K.; Banyal, R.; Goswami, P. Analysis and processing aspects of data in big data applications. J. Discret. Math. Sci. Cryptogr.
2020, 23, 385–393. [CrossRef]

54. Essakimuthu, A.; Karthik, G.; Santhana, K.; Harold, R. Enhanced Hadoop distribution file system for providing solution to big
data challenges. In Further Advances in Internet of Things in Biomedical and Cyber Physical Systems; Springer: Cham, Switzerland,
2021; pp. 71–83.

55. Lappas, P.; Yannacopoulos, A. A machine learning approach combining expert knowledge with genetic algorithms in feature
selection for credit risk assessment. Appl. Soft Comput. 2021, 107, 107391. [CrossRef]

56. Javed, R.; Rahim, M.; Saba, T.; Rehman, A. A comparative study of features selection for skin lesion detection from dermoscopic
images. Netw. Model. Anal. Health Inform. Bioinform. 2020, 9, 4. [CrossRef]

57. Shreem, S.; Turabieh, H.; Al Azwari, S.; Baothman, F. Enhanced binary genetic algorithm as a feature selection to predict student
performance. Soft Comput. 2022, 26, 1811–1823. [CrossRef]

58. Zhou, J.; Hua, Z. A correlation guided genetic algorithm and its application to feature selection. Appl. Soft Comput. 2022, 123,
108964. [CrossRef]

59. Rostami, M.; Berahmand, K.; Forouzandeh, S. A novel community detection based genetic algorithm for feature selection. J. Big
Data 2021, 8, 2. [CrossRef]

60. Too, J.; Abdullah, A. A new and fast rival genetic algorithm for feature selection. J. Supercomput. 2021, 77, 2844–2874. [CrossRef]
61. Ibrahim, M.; Nurhakiki, F.; Utama, D.; Rizaki, A. Optimized genetic algorithm crossover and mutation stage for vehicle

routing problem pick-up and delivery with time windows. In Proceedings of the IOP Conference Series: Materials Science and
Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1071, p. 012025.

https://doi.org/10.1145/2584679
https://doi.org/10.1109/COMST.2018.2849614
https://doi.org/10.3390/electronics11060969
https://doi.org/10.1016/j.ins.2019.01.064
https://doi.org/10.1504/IJISTA.2016.076495
https://doi.org/10.9734/ajrcos/2021/v11i230260
https://doi.org/10.2991/ijndc.k.200515.007
https://doi.org/10.1080/09720529.2020.1721869
https://doi.org/10.1016/j.asoc.2021.107391
https://doi.org/10.1007/s13721-019-0209-1
https://doi.org/10.1007/s00500-021-06424-7
https://doi.org/10.1016/j.asoc.2022.108964
https://doi.org/10.1186/s40537-020-00398-3
https://doi.org/10.1007/s11227-020-03378-9

Biomimetics 2023, 8, 197 22 of 22

62. Damia, A.; Esnaashari, M.; Parvizimosaed, M. Adaptive genetic algorithm based on mutation and crossover and selection
probabilities. In Proceedings of the 7th IEEE International Conference on Web Research, Tehran, Iran, 19–20 May 2021; pp. 86–90.

63. Sahoo, G. A two-step artificial bee colony algorithm for clustering. Neural Comput. Appl. 2017, 28, 537–551.
64. Wäldchen, S.; Macdonald, J.; Hauch, S.; Kutyniok, G. The computational complexity of understanding binary classifier decisions.

J. Artif. Intell. Res. 2021, 70, 351–387.
65. Lang, S.; Bravo-Marquez, F.; Beckham, C.; Hall, M.; Frank, E. Wekadeeplearning4j: A deep learning package for weka based on

deeplearning4j. Knowl. Based Syst. 2019, 178, 48–50. [CrossRef]
66. Gautam, S.; Sharma, C.; Kukreja, V. Handwritten mathematical symbols classification using WEKA. In Applications of Artificial

Intelligence and Machine Learning; Springer: Singapore, 2021; pp. 33–41.
67. Thakkar, A.; Lohiya, R. Attack classification using feature selection techniques: A comparative study. J. Ambient Intell. Humaniz.

Comput. 2021, 12, 1249–1266. [CrossRef]
68. Hassani, H.; Hallaji, E.; Razavi-Far, R.; Saif, M. Unsupervised concrete feature selection based on mutual information for

diagnosing faults and cyber-attacks in power systems. Eng. Appl. Artif. Intell. 2021, 100, 104150. [CrossRef]
69. Bouzoubaa, K.; Taher, Y.; Nsiri, B. Predicting DOS-DDOS attacks: Review and evaluation study of feature selection methods

based on wrapper process. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 131–145. [CrossRef]
70. Garg, S.; Verma, S. A Comparative Study of Evolutionary Methods for Feature Selection in Sentiment Analysis. In Proceedings of

the International Joint Conference on Computational Intelligence, Dhaka, Bangladesh, 25–26 October 2019; pp. 131–138.
71. Di Mauro, M.; Galatro, G.; Fortino, G.; Liotta, A. Supervised feature selection techniques in network intrusion detection: A critical

review. Eng. Appl. Artif. Intell. 2021, 101, 104216. [CrossRef]
72. Yi, Y.; Wang, Y.; Gu, F.; Chen, X. Optimizing uncertain express delivery path planning problems with time window by ant colony

optimization. In Proceedings of the International Conference on Computational Intelligence and Security, Chengdu, China, 19–22
November 2021; pp. 420–424.

73. Deng, C.; Lin, J.; Chen, L. A multi-objective ant colony algorithm for the optimization of path planning problem with time
window. In Proceedings of the International Conference on Computational Intelligence and Security, Chengdu, China, 16–18
December 2022; pp. 351–355.

74. Sui, T.; Mo, Y.; Marelli, D.; Sun, X.; Fu, M. The vulnerability of cyber-physical system under stealthy attacks. IEEE Trans. Autom.
Control 2020, 66, 637–650. [CrossRef]

75. Sui, T.; Sun, X. The vulnerability of distributed state estimator under stealthy attacks. Automatica 2021, 133, 109869. [CrossRef]
76. Sui, T.; Marelli, D.; Sun, X.; Fu, M. Stealthiness of Attacks and Vulnerability of Stochastic Linear Systems. In Proceedings of the

IEEE Asian Control Conference, Kitakyushu, Japan, 9–12 June 2019; pp. 734–739.
77. Sui, T.; Marelli, D.; Sun, X.; You, K. A networked state estimation approach immune to passive eavesdropper. In Proceedings of

the Chinese Control Conference, Guangzhou, China, 27–30 July 2019; pp. 8867–8869.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.knosys.2019.04.013
https://doi.org/10.1007/s12652-020-02167-9
https://doi.org/10.1016/j.engappai.2020.104150
https://doi.org/10.14569/IJACSA.2021.0120517
https://doi.org/10.1016/j.engappai.2021.104216
https://doi.org/10.1109/TAC.2020.2987307
https://doi.org/10.1016/j.automatica.2021.109869

	Introduction
	Problem Statement and Research Motivation
	Contribution and Methodology

	State of the Art
	Proposed Malicious URL Detection Model
	Problem Formulation
	Methodology
	Training Phase
	Testing Phase

	Results and Discussions
	Experiment 1: (The Significance of Features Selection)
	Experiment 2: (Classifiers Evaluation)
	Experiment 3: (Tuning False Positives and Negatives)
	Experiment 4: (Concept Drift)
	Experiment 5: (Performance of Different Metaheuristics-Based Feature Selection Algorithms)
	Limitation

	Conclusions
	References

