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Abstract: Gelatin sponges are widely employed as hemostatic agents, and are gaining increasing
interest as 3D scaffolds for tissue engineering. To broaden their possible application in the field of
tissue engineering, a straightforward synthetic protocol able to anchor the disaccharides, maltose
and lactose, for specific cell interactions was developed. A high conjugation yield was confirmed
by 1H-NMR and FT-IR spectroscopy, and the morphology of the resulting decorated sponges was
characterized by SEM. After the crosslinking reaction, the sponges preserve their porous structure
as ascertained by SEM. Finally, HepG2 cells cultured on the decorated gelatin sponges show high
viability and significant differences in the cellular morphology as a function of the conjugated
disaccharide. More spherical morphologies are observed when cultured on maltose-conjugated
gelatin sponges, while a more flattened aspect is discerned when cultured onto lactose-conjugated
gelatin sponges. Considering the increasing interest in small-sized carbohydrates as signaling cues
on biomaterial surfaces, systematic studies on how small carbohydrates might influence cell adhesion
and differentiation processes could take advantage of the described protocol.

Keywords: gelatin; sponges; disaccharide; adhesion motifs; bioconjugation; biomaterials; cell culture

1. Introduction

Natural polymers are considered an emerging technological platform for the devel-
opment of innovative materials for biomedical applications. Their inherent biological
properties, chemical versatility, biocompatibility, biodegradability, sustainability, and eco-
friendliness render them promising alternative materials in this field in comparison to
synthetic polymers [1–4]. Among them, gelatin sponges have gained particular interest
and are widely used in medical practice as hemostatic agents as well as scaffolds for differ-
ent tissue engineering applications [5–7]. Another field that could take advantage of the
development of gelatin scaffolds for in vivo and ex vivo studies is cancer biology [8]. 3D
cell culture systems developed especially for preclinical drug screening could represent an
improved model that better replicates the microenvironmental complexity of the tumor
than flat monolayer cultures [9,10].

Gelatin is a natural biopolymer obtained from the partial hydrolysis of collagens, the
main protein constituting the connective tissues in vertebrate animals, which has been
widely used as a biocompatible material due to its generally recognized safe status by the
US Food and Drug Administration (FDA) [11]. Gelatin has been shown to form 3D-ordered
macroporous structures for applications in oral drug delivery and regenerative tissue engi-
neering [12]. Many reports showed improved results for gelatin-based scaffolds in bone
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and cartilage tissue engineering [13–16]. The application of gelatin into electrospun scaf-
folds for wound healing has also been reported [17–19]. The characteristic triple-stranded
helix structure of collagen is partially retained in gelatin. However, denaturation at room
temperature—as well as partial degradation—weakens the mechanical properties of gelatin
and limits its applications. For the reinforcement of gelatin materials, crosslinking and/or
compositing with other materials have often been adopted. Crosslinking to obtain water-
insoluble gelatin formulations (hydrogel, sponges, electrospun scaffolds) can be easily
prepared by physical, chemical, or enzymatic crosslinking methods [20–23]. To improve the
performance of gelatin-based medical devices, several molecules were chemically grafted
to gelatin mainly to improve bioactivity by the addition of small molecules—peptides and
carbohydrates. Among them, antioxidant molecules, such as caffeic acid [24], drugs such
as simvastatin [25], and peptides such as RGD [26] have been conjugated. In addition to
the known adhesive peptides, another class of molecules that has gained a lot of attention
in recent years, especially in the domain of cell adhesion, is the carbohydrates (mannose,
lactose, galactose, etc.), which are common components of lectins present on the cell surface
and involved in cell interactions [27]. Mono-, di- and tri-saccharides have been employed as
simple carbohydrate cues and conjugated to several biopolymers [28,29]. Glucosamine was
successfully embedded in gelatin/HA cryogel as a biological and physical cue to reduce the
dedifferentiation of chondrocytes [30]. Many examples of glycosylated chitosan derivatives
were synthesized to improve solubility and promote hepatocyte adhesion proliferation
with the aim of maintaining liver-specific functions [31]. Lactose-modified chitosans are
often cited for their applications in different fields, such as liver, bone, cartilage, and
nerve tissue engineering [32–34]. Glycosylation of collagen was performed through many
different reaction strategies to produce bioactive scaffolds for tissue engineering [35–37].
A few reports describe the glycosylation of gelatin [38]. Lactose and glucose were also
conjugated to gelatin by a thermal treatment that favors the Maillard reaction to promote
crosslinking [39,40].

Because of the large number of glycoproteins present at the cell surface, carbohydrates
may be an alternative way to increase cell interaction with a substrate. In addition, the cost
and difficulty of grafting sugar molecules are less than those of grafting a synthetic peptide.

In the present work, two disaccharides, lactose and maltose, have been grafted to
gelatin to improve cell interaction and adhesion to gelatin sponges designed for tissue engi-
neering. The porous gelatin sponges were fabricated by a freeze-drying process followed by
ethylene diamine (ED)-based chemical crosslinking to obtain two water-resistant sponges,
GS-Mx and GS-Lx, decorated with maltose and lactose, respectively. For ease of handling,
phenotypic stability, and high proliferative capacity, human hepatoblastoma HepG2 cells
were used as an in vitro model to test the biomaterials [41,42]. Seeding of HepG2 cells on
GS-Mx and GS-Lx sponges showed high cell viability and improved proliferation com-
pared to pristine gelatin sponges. Because of the large number of glycoproteins present at
the cell surface, carbohydrates may be an alternative way to drive cell interaction with a
substrate. Considering the increasing interest in small-sized carbohydrates as signaling
cues on biomaterial surfaces, the presented reaction scheme is of general application and
could be exploited for anchoring any reducing carbohydrate. In this way, the described
methodology could promote systematic studies on cell-carbohydrate interactions for defin-
ing cell adhesion and differentiation processes useful for designing, for example, bone,
liver, and cartilage tissue engineering.

2. Materials and Methods
2.1. Materials

Type B gelatin (225 Bloom) from bovine skin, N-(3-Dimethylaminopropyl)-N′-
ethylcarbodiimide (EDC), sodium cyanoborohydride (NaCNBH3), ethylenediamine (ED),
sodium sulfate (Na2SO4), sodium carbonate (NaHCO3), and all the organic solvents
were purchased from Sigma Aldrich and used without further purification. 4-O-β-D-
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Galactopyranosyl-D-glucose (Lac) and 4-O-α-D-Glucopyranosyl-D-glucose (Mal) were
purchased from Alfa Aesar (Heysham, UK).

2.2. Conjugation of Disaccharides to Gelatin

The disaccharides, Lac or Mal, were conjugated to gelatin by reductive amination
following the procedure described in Roy et al. [43]. Briefly, 0.1 M of Lac or Mal was
reacted with 1% (w/v) gelatin (Gel) in a borate buffer solution (BBS, 100 mM, pH 8.5) in the
presence of Na2SO4 (0.5 M) for 3 h at room temperature (RT). Then, two equiv. of NaCNBH3
were added at 0 ◦C. After the dissolution of the reduction agent, the reaction mixture was
incubated at 50 ◦C for 5 days. After cooling to room temperature, the reaction mixture was
dialyzed against NaCl 150 mM solution for 2 days, and against H2O for further 2 days and
then lyophilized obtaining the Lactose-decorated gelatin (GL) and the Maltose-decorated
gelatin (GM).

2.3. Determination of the Conjugation Degree

The extent of disaccharide conjugation to gelatin was determined by the reduction of
free amino group content after using 2,4,6-trinitrobenzene-sulphonic acid solution (TNBS)
as an amino-specific assay.

The sample (Gel, GM, or GL) was dissolved in an aqueous solution of NaHCO3 (0.1 M
pH 8.5) for 30 min, followed by the addition of the TNBS (0.01% w/v) solution, and was
incubated at 37 ◦C for 2 h. Later, 6 M of HCl was added to hydrolyze the samples at 60 ◦C
for 90 min. The reaction mixture was diluted with deionized (DI) water and absorbance
maxima was measured using a Varian Cary 60 UV/Vis spectrophotometer at a wavelength
of 346 nm. A gelatin sample was assumed to contain 100% of the available free amine
groups and this value was used to calculate the percentage of remaining free amine groups
after the conjugation reaction using the following equation (Equation (1)):

n(NH2)

g(sample)
=

(A346 ×V)

m× ε× l
(1)

where CNH2 is the concentration of lysine ε-amino groups per g of gelatin, A346 is
the absorbance at λ = 346 nm, V is the volume (L), m is the mass of the sample (g),
ε = 14,600 L mol−1 cm−1 is the molar extinction constant of TNBS–Lys, and l is the cell
path length (cm). The degree of conjugation was evaluated as the difference between the
chemically determined number of free amine groups before and after crosslinking, relative
to the initial free amine content.

2.4. NMR Spectroscopy
1H NMR spectra were recorded on a Varian Unity INOVA 400 MHz spectrometer

equipped with a multinuclear probe and z-axial gradients. The samples of Gel, GM, and GL
were prepared by dissolving 5 mg in 700 µL of D2O containing 0.1 mM of 3-(trimethyl-sily1)-
1-propane sulfonic acid (DSS) as internal reference standard at 0 ppm. One-dimensional
spectra were acquired in Fourier mode with quadrature detection.

2.5. Fourier Transform Infrared (FT-IR) Spectroscopy

The samples for FT-IR spectroscopy were analyzed in the solid state as potassium bro-
mide (KBr) pellets. The lyophilized samples were mixed with KBr to a final concentration
of approximately 1 wt%. FT-IR spectra were recorded on a Jasco FTIR-460 spectrometer.
Each spectrum is the result of signal-averaging of 256 scans at a resolution of 2 cm−1. All
spectra are presented as absorbance spectra after background subtraction.

2.6. Preparation of the Gelatin Sponges

An aliquot (2 mL) of 1% (w/v) solutions of Gel, GM, or GL was poured into a 12-
well culture plate, frozen overnight at −80 ◦C and then lyophilized for 5 days to obtain
GS, GS-M, and GS-L porous sponges, respectively. Since the resulting sponges are water
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soluble, they were crosslinked by soaking into 10 mL of acetone/H2O (9:1, v/v) containing
25 mg of EDC for 1 h at room temperature. After activation of the carboxyl group by EDC
670 µL of ED (d = 0.89 g/mL) was added to the reaction mixtures were shaken at 60 rpm
using an orbital shaker (PSU-10i, Biosan, Riga, Latvia) for 24 h. The sponges were gently
dried by using filter paper and washed with ultrapure water (20 mL × 3 times) to remove
any residual trace of crosslinker. The molar ratio of COOH: EDC:ED was calculated to be
1:6.5:0.5. The resulting crosslinked sponges, GS-x, GS-Mx, and GS-Lx, were thoroughly
washed with MilliQ water and re-lyophilized.

2.7. Swelling Test

GS-x, GS-Mx, and GS-Lx sponges were weighed in air-dry conditions. Then they were
soaked in deionized water for 1 h. Wet samples were wiped with filter paper to remove
excess liquid and re-weighed. The swelling ratio (SW) was calculated as (Equation (2)):

SW =
Ww −Wd

Wd
(2)

where Ww and Wd are the weights of the wet and the dry samples, respectively. The
experiments were repeated five times.

2.8. Scanning Electron Microscopy (SEM)

The internal structure of the sponge samples before and after crosslinking was ob-
served using a scanning electron microscope (Philips-Fei ESEM XL30-LaB6). Prior to
imaging, the freeze-dried sponges were freeze-fractured after immersion in liquid nitrogen
and then mounted using carbon tape on aluminum SEM stubs and sputtered with a thin
gold layer.

2.9. Cell Culture

Human hepatoblastoma cells (HepG2) were grown in high glucose (4.5 g/L) Dul-
becco’s modified Eagle’s medium (DMEM), supplemented with 10% fetal bovine serum
(FBS), 2 mM L-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin. Cell cultures
were maintained at 37 ◦C in a water-saturated atmosphere with 5% CO2.

2.10. Cell Counting

HepG2 cells (0.2 × 106) were seeded onto a 12-well plate on the surface of previously
UV-light sterilized sponges and cultured at 37 ◦C in the incubator. Cell viability was
monitored at 24 h, 48 h, and 72 h by the trypan blue exclusion assay [44]. As a control,
HepG2 cells were seeded at the same density directly on polystyrene plates.

2.11. Cell Adhesion

In a 12-well plate, at a density of 0.1 × 106 cells/300 µL, cells were seeded on sponges
previously pre-wetted in DMEM and UV-sterilized overnight in a laminar flow hood. After
48 h, the sponges were transferred to a new 12-well plate with 1 mL of fresh medium, which
was replaced with fresh medium every 3 days. After 13 days, the sponges were rinsed with
PBS and fixed with 1 mL of 10% formaldehyde solution before 0.1% crystal violet staining
for 15 min. After staining, we observed the images through a phase-contrast microscope
(Nikon Eclipse, TS100, Tokyo, Japan).

2.12. SEM

The morphology of the HepG2 cells was examined by SEM. After fixation in 2.5%
(v/v) glutaraldehyde in pH 7.5 phosphate buffer, cell-seeded sponges were dehydrated
in a graded ethanol solution series (from 20% to 100%). Samples were then critical-point
dried using liquid CO2 and sputtered with a thin gold layer before examination under a
Philips-Fei ESEM XL30-LaB6 scanning electron microscope.
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2.13. Statistical Analysis

Data are presented as mean± SD. Statistical analyses were performed using OriginPro
2015 (9.2) software. Statistical significance was evaluated using one-way ANOVA. Post hoc
multiple comparisons were determined by the Tukey test with the level of significance set
at * p < 0.05.

3. Results and Discussion
3.1. Conjugation of Disaccharides Maltose and Lactose to Gelatin

In the present study, a straightforward protocol was developed that permits (i) the
anchoring of disaccharides to gelatin by reductive amination, employing the lysine ε-amino
groups (Scheme 1), and (ii) the crosslinking of the decorated gelatin by amide formation,
exploiting the carboxylic acids functionality of the side chain of Glu and Asp amino acids
present in the gelatin sequence (Scheme 2).
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Two kinds of modified gelatin derivatives, namely, GM and GL, were prepared by
grafting maltose and lactose, respectively. The conjugation of carbohydrates to gelatin was
performed by a chemical protocol developed by Roy et al. with slight modifications [43].
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Gelatin 1% (w/v) was added to a solution of 100 mM of disaccharide dissolved in borate
buffer (pH 8.5) at 37 ◦C to avoid gelation. According to studies by Gildersleeve et al.,
borate buffer was the most effective in improving conjugation together with the addition
of 0.5 M Na2SO4 [45]. Finally, after 3 h, a reduction agent, NaCNBH3, was added and
the reaction was heated to 50 ◦C for 5 days. Lactose and maltose are both reducing
disaccharides and were able to form iminium ions through their free reducing aldehyde
group reacting with lysine ε-amino groups. Gelatin has a significant number of lysine
residues (3.0 × 10−4 mol/g of gelatin) allowing it to conjugate a considerable number of
molecules. The extent of functionalization was determined by measuring the amount of
free or unreacted amino groups in the glycosylated gelatin samples by TNBS test. A high
conjugation degree was observed in the proposed reaction conditions for both GL (95 ± 5%)
and GM (90 ± 6%).

3.2. Characterization of GM and GL

The gelatin derivatives were analyzed by 1H-NMR spectroscopy acquiring proton
spectra of the dialyzed GM and GL in D2O. The 1H-NMR spectrum of GM (Figure 1, blue
curve) confirmed the conjugation with gelatin by the presence of broad signals related to the
protein backbone (Figure 1, red curve) and to signals at δDSS = 5.12 ppm and δDSS = 3.43 ppm,
respectively associated to the CH-1 and CH-2 of the open form of aminated D-glucose, both
upfield shifted respect to the starting material (Figure 1, black curve) [46].
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In the case of GL, the 1H-NMR spectrum (Figure S2, blue curve) confirmed the con-
jugation with gelatin by the presence of wide signals related to the protein backbone, as
well as to the presence of wide peaks at δDSS = 3.76 ppm and δDSS = 3.55 ppm that fall in
the same region of lactose carbinolic protons (Figure S2, black curve) and are absent in the
pure gelatin (Figure S2, red curve).

Further characterization was carried out by FT-IR spectroscopy, which allowed the
assignment of specific functional groups in the spectra of gelatin, maltose, lactose, and the
conjugated-gelatin derivatives GM and GL (Figure 2a,b). The FT-IR spectrum of Gel (red
curve) showed typical bands of proteins: the amide A band, at about 3521 cm−1, assigned
to N–H stretching; at approximately 3316 cm−1, a broad band that originated from O–H
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stretching of 4-hydroxyproline residues. At shorter wavenumbers, the amide I band at
1652 cm−1 ascribed to gelatin C=O stretching and the amide II band situated at 1551 cm−1

due to N–H bending were visible. Lactose and maltose spectra, in Figures 2a and 2b,
respectively, (black curve) are dominated by a broad band in the range of 3700 to 3100 cm−1

assigned to the stretching vibrations of carbohydrates’ O–H groups. Furthermore, bands
due to aliphatic C–H stretching at about 2900 cm−1 and to C–O stretching, typical of
carbohydrates, were observed in the region ranging from 1200 to 1100 cm−1. The FT-IR
spectra of the GM and GL derivatives (blue curve) show the typical bands observed for
gelatin together with bands ascribed to the disaccharides lactose and maltose. In order to
aid comparison, the spectra of Gel and GM, and Gel and GL, were height-normalized based
on the amide I band at 1652 cm−1. In particular, in the region 1200–1100 cm−1 where bands
corresponding to C–O stretching are located, more intense signals are observed for the
conjugated gelatins. Increased intensity is observed also for the O–H and N–H bands in the
3500–3300 cm−1 region. These spectral features are ascribed to the successful conjugation
of the disaccharides to gelatin in GM and GL.
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3.3. Preparation and Characterization of Porous Sponges from GM and GL

Gelatin and its derivatives, GM and GL, are highly soluble in water and were processed
to form porous sponges by freeze-drying obtaining white porous sponges GS, GS-M, and
GS-L, respectively (Figure S2). Gelatin scaffolds exhibit weak mechanical strength and poor
hydrolysis resistance. To overcome this issue, gelatin scaffolds are usually stabilized by
crosslinking to increase their strength and hydrolysis resistance and maintain their stability
during implantation [47]. To avoid the collapse of the porous structure when the sponges
are soaked in aqueous solutions, a crosslinking reaction was carried out by EDC activation
of the carboxylic groups of gelatin in acetone/H2O (9/1) (Scheme 2). The acetone/H2O
(9/1) solution was chosen because it preserved the porous structure of the sponges while
solubilizing reactants. Ethylenediamine (ED) was employed as the crosslinking agent,
reacting with the carboxylic groups present in the side chains of Glu and Asp of gelatin.

The morphology of the resulting sponges was investigated by SEM microscopy. In
Figure 3, SEM images of GS, GS-L, and GS-M sponges acquired before crosslinking showed
a highly porous structure on the surface and inside the sponge as revealed after freeze-
fracturing. GS-M and GS-L showed some differences in the surface’ structural features
with a more dense and continuous organization with limited fenestrations. The inner
structures of all the samples were constituted by highly homogeneous and interconnected
pores without any appreciable differences between the sponges.
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200 µm.

After crosslinking (Figure 4), the GS-x, GS-Mx, and GS-Lx sponges showed again a
great variation on the surface of the sponges, with partial closing of the porous structure
probably by coalescing, while in the internal structure of the sponge, limited change
in the morphology was observed. EDC crosslinking conditions preserved the porous
structure avoiding the collapse of void structures and was preferred to glutaraldehyde
vapor treatment that caused fusing of the pores [47].
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Swelling of the GS-x, GS-Mx, and GS-Lx sponges was tested by soaking the sponges
in water for 1 h and weighing the uptaken water. The average swelling of the scaffolds,
expressed in terms of swelling ratio, was 37.2 ± 2.0, 24.7 ± 1.5, and 24.4 ± 7.4 for the GS-x,
GS-Mx, and GS-Lx sponges, respectively (Figure 5). The capacity to absorb fluids from the
surrounding cell environment is an important factor because it can define the retention of
physiological fluids in vivo, which results in improved cell infiltration and attachment into
the scaffolds [48]. Surprisingly the swelling ratios of disaccharide-conjugated sponges are
significantly lower than those of the pristine gelatin sponges, even if carbohydrates usually
increase hydrophilicity and consequently wettability and water uptake in the scaffolds [49].
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Differences in porosity observed on the surface of the sponges could be responsible for the
variation in the swelling properties of the sponges [48]. Comparing data of the sponges
with cryogels obtained by EDC or GA crosslinking during freezing at −16 ◦C and, finally, a
thawing step, we observed a higher swelling ratio of the scaffolds obtained by the proposed
protocol [50,51].
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Figure 5. Swelling test of crosslinked gelatin (GS-x), maltose-conjugated gelatin (GS-Mx), and
lactose-conjugated gelatin (GS-Lx) sponges. Error bars represent the SD (* p < 0.05).

3.4. HepG2 Cells Cultured on GS, GS-L, and GS-M Sponges

To investigate the viability of HepG2 cells on different scaffolds, live/dead cells were
monitored at 24 h, 48 h, and 72 h by the trypan blue exclusion assay. None of the scaffolds
impaired cell viability Furthermore, no morphological variation was observed. To verify
cell adhesion, HepG2 cells were left to grow on sponges for up to 17 days. The cells had
anchored to the supports and grown. Crystal violet staining showed a higher number of
cells on GS-Lx and GS-Mx sponges compared to those on GS-x (Figure S3).

3.5. Cell Morphology on the Scaffolds

The detailed cellular structure of HepG2 cells grown on different scaffolds was ob-
served by scanning electron microscopy after 13 days of seeding. As already observed on
sponges stained with crystal violet, SEM analysis showed few cells on the gelatin GS-x
sponges (Figure 6a,b) allowing us to hypothesize that the cells, having poor adhesion to
the scaffold, are unable to form a cluster essential for their growth. On the GS-Mx and
GS-Lx scaffolds, cells were distributed over the entire surface, developing tight cell-cell
interactions. HepG2 cells were smaller in size on the GS-Mx sponges, retaining a spherical
morphology and tending to form clusters (Figure 6c,d) while cells exhibited a more flattened
shape on GS-Lx sponges (Figure 6e,f). Cells grown on both decorated sponges showed
microvilli-like structures in GS-Lx and GS-Mx sponges (Figure 6g,h respectively). The pres-
ence of galactose in GS-Lx sponges could be responsible for the observed morphology and
higher density of cytoskeletal filaments, facilitating the asialoglycoprotein-mediated cell
adhesion of HepG2 cells [52–54]. Spreading of cells on GS-Lx demonstrated an improved
cell–matrix interaction, while on GS-Mx sponges the spherical morphology of the HepG2
cells suggested a different anchoring to the scaffold, probably due to the presence of the
type-1 glucose transporter (GLUT-1) receptor [55]. GLUT-1 is highly expressed also in
chondrocytes [56] and could be involved in cell-scaffold interactions in glucose-carrying
scaffolds. The presence of D-glucose on the GS-Mx sponge could provide a suitable cell
microenvironment able to maintain the chondrocytic phenotype [57]. Further investigations
on this aspect are in progress.
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4. Conclusions

One of the major advantages of sponge scaffolds is their high porosity, contributing
to cell growth and promoting the exchange of nutrients and metabolites. Furthermore,
fundamental requirements for scaffolds designed for tissue engineering are the absence of
cytotoxicity and the promotion of adhesion of cells in order to produce a new matrix for
the developing tissue. In this framework, we proposed a simple and effective carbohydrate
decoration protocol to promote bioactive gelatin-based sponges with high viability and im-
proved adhesion of HepG2 cells. The synthetic strategy of lactose and maltose conjugation
took advantage of the aldehyde moiety of disaccharides that has been conjugated in an
efficient way to gelatin, by a reductive amination reaction. Lactose decoration of scaffolds
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appending bioactive galactose units is widely exploited for liver tissue engineering, as
well as for cartilage regeneration. Less well-characterized are other types of carbohydrate
decoration, such as maltose and mannobiose, appending glucose and mannose units, re-
spectively, on the gelatin scaffolds on the adhesion, proliferation and differentiation of
different cell types. Studies on this aspect could take advantage of the straightforward
protocol described in the present work.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biomimetics8020193/s1, Figure S1: Characterization of
gelatin derivatives by 1H NMR spectra recorded in D2O at 289 K. 1H NMR spectra of lactose (black
curve), gelatin (red curve) and GL (blue curve); Figure S2: Images of the GS (a), GS-M (b) and GS-L (c)
sponges after freeze-drying; Figure S3: Microscope images of HepG2 cells grown on GS-x, GS-Lx,
and GS-Mx sponges for 13 days, stained with crystal violet. Arrows indicate cells.
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