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Abstract: The coconut shell consists of three distinct layers: the skin-like outermost exocarp, the
thick fibrous mesocarp, and the hard and tough inner endocarp. In this work, we focused on the
endocarp because it features a unique combination of superior properties, including low weight,
high strength, high hardness, and high toughness. These properties are usually mutually exclusive
in synthesized composites. The microstructures of the secondary cell wall of the endocarp at the
nanoscale, in which cellulose microfibrils are surrounded by hemicellulose and lignin, were generated.
All-atom molecular dynamics simulations with PCFF force field were conducted to investigate the
deformation and failure mechanisms under uniaxial shear and tension. Steered molecular dynamics
simulations were carried out to study the interaction between different types of polymer chains.
The results demonstrated that cellulose–hemicellulose and cellulose–lignin exhibit the strongest and
weakest interactions, respectively. This conclusion was further validated against the DFT calculations.
Additionally, through shear simulations of sandwiched polymer models, it was found that cellulose–
hemicellulose-cellulose exhibits the highest strength and toughness, while cellulose–lignin-cellulose
shows the lowest strength and toughness among all tested cases. This conclusion was further
confirmed by uniaxial tension simulations of sandwiched polymer models. It was revealed that
hydrogen bonds formed between the polymer chains are responsible for the observed strengthening
and toughening behaviors. Additionally, it was interesting to note that failure mode under tension
varies with the density of amorphous polymers located between cellulose bundles. The failure mode
of multilayer polymer models under tension was also investigated. The findings of this work could
potentially provide guidelines for the design of coconut-inspired lightweight cellular materials.
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1. Introduction

The biological structural materials [1–4] have aroused the great interest of materials
scientists and engineers because of their great potential in stimulating the development
of novel biomimetic materials. Coconut shell is one of the bio-polymer-based cellular
materials. It has three distinct layers: the outer lethargy brown exocarp, the middle
thick fibrous mesocarp, and the innermost hard and tough woody endocarp. Herein, we
mainly focused on the endocarp part because it features a combination of high hardness,
high stiffness, high strength, high impact resistance, and lightweight, which are normally
mutually exclusive in synthesized man-made materials [5].

Experimental and computational studies have been conducted to understand the func-
tional morphology of the endocarp. Similar to most biomaterials, the endocarp exhibits a
complex multi-scale hierarchical structure (Figure 1). Four different structural organizations
of tissues, cells, subcellular (cell wall layer), and nanofibrils were identified in the endocarp
at different length scales [6,7]. At the macroscale, a porous network was observed with
vascular bundles resembling hollow channels interspersed in the dense scleroid matrix that
runs through the center of the shell (Figure 1b). Channels network runs in all directions
whereas mainly the larger channels run parallel to the shell surface. At the microscale, the
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matrix is composed of thick-walled sclereid cells and tracheid (Figure 1c). The sclereid cells
are graded as a cellular structure having walls of 7 ± 2 µm in thickness, which occupies
89.2% of the cross-sectional area. These cell walls consist of several layers, i.e., secondary
cell walls, which are traversed by pit canals and porosity of approximately 1 µm (Figure 1d).
At the nanoscale, each layer of the secondary cell wall is further composed of crystalline
cellulose microfibrils that are embedded in the soft amorphous matrix of hemicellulose,
lignin and a minor amount of pectin and proteins. In an experimental study of bamboo,
the hemicellulose and lignin matrix were found not only to facilitate the load transfer
but also to adhere cellulose microfibrils together to achieve extraordinary strengthening
behavior [8].
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On the other hand, the mechanical properties of endocarp do not appear to be
compromised by its high porosity. Coconut endocarp has a compressive strength of
230–270 MPa [9,10], comparable to mild steel (~250 MPa) [5,11]. Its work of fracture
(24.8 ± 8.4 kJ/m2) [9] is orders of magnitude higher than that of most man-made porous/
cellular materials, such as porous ceramics (12.0–16.0 J/m2) [12,13]. Coconut endocarp
is also renowned for its high hardness (Vickers hardness: 500–540 MPa) [9] and stiffness
(8.0–10.0 GPa) [10]. Coconut endocarp also exhibits outstanding properties in comparison
to other natural cellular materials, such as wood. In addition, the mechanical properties
of endocarp are improved with the age and particular orientations, hence becoming more
anisotropic [7]. In the latitude direction, old coconut endocarp exhibits great damage
tolerant properties, such as 82% higher strength and >50% higher crack growth toughness
than those of the younger endocarp [14].

Motivated by the superior mechanical performance of coconut endocarp, great ef-
forts have been dedicated to revealing the underlying plastic deformation mechanisms.
Most of the early investigations of coconut endocarp were conducted by the microscale
experimental approaches. To date, the proposed toughening mechanisms have primarily
focused on the role of the microstructure of cell wall layers, such as the surface pits deflect
the crack propagation path. Additionally, old coconut shell possesses denser structure by
developing open channels, which further confine the crack and consequently increases the
fracture toughness [7]. The enhanced hardness of old endocarp was assumed to be due to
the thickening and lignification of cell wall as aging evolves. High strength and stiffness
were attributed to the dense structure of old coconut because it provides uniform load
distribution. Several numerical models, such as the finite element method [15], were devel-
oped to simulate the microstructure at mesoscale with an attempt to predict the mechanical
characteristic of wood. However, those studies can only explain the mechanical response
from the geometry of the structure rather than from the viewpoint of materials. As for
coconut shell, the numerical study was limited on the fiber arrangement of mesocarp [16].

Despite of the achievement obtained, a quantitative understanding of the mechanisms
by which the coconut endocarp accomplishes its extraordinary mechanical function, par-
ticularly the fundamental information at nanoscale, remains missing. Considering the
challenges and limitations of experiments at fine scale, atomistic modeling is an alternative
method to establish an underlying interpretation of how the complex architecture/structure
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of the coconut endocarp governs its extraordinary properties. Molecular dynamics (MD)
method has been successfully employed to study the failure mechanisms of wood at
nanoscale [3,4]. However, no atomistic studies of coconut endocarp have been reported
so far. To develop new biomimetic multifunctional materials, the underlying governing
mechanisms and design principles of the endocarp are needed. It is worth noting that
although wood and hard endocarp share similar components, they exhibit different com-
positions and structures. Wood is a cellulose dominated material with ~40–50% cellulose,
10–40% hemicellulose, and 17–25% lignin [17]. In contrast, the cell wall of endocarp is more
lignified with ~29% cellulose, ~20–30% hemicellulose, and ~44% lignin [17–19].

Given the importance of the interaction between different types of polymers in the
overall mechanical performance of endocarp, improving our understanding of the atomic
processes of deformation will be a prerequisite and crucial task in material science. To
this end, in this study, we employed the classic MD simulation method to identify the
interactions of three main components of coconut endocarp, i.e., cellulose, hemicellulose,
and lignin, at nanoscale, and investigate the mechanical properties and corresponding
failure mechanisms. The paper is organized as follows: Section 2 briefly discussed the
computational method and models. In Section 3, we presented the simulation results and
discussion. The conclusions were summarized in Section 4.

2. Materials and Methods
2.1. Basic Polymer Units

Cellulose, lignin, and hemicellulose (Figure 2a–c) are the key polymers of the coconut
endocarp. Cellulose and hemicellulose both are carbohydrates, while lignin is crosslinking
heterogeneous polymer made by phenolic precursors.
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white atoms represent carbon, oxygen, and hydrogen, respectively.

Cellulose (C6H10O5) is the most plentiful and beneficial natural bio-polymer [20]. It
is the predominant component of the secondary cell wall of wood. X-ray and neutron
diffraction experiments [21,22] revealed that micro fibrils of cellulose Iβ are crystalline
structured, and they are homo polysaccharide linear chain consists of covalently connected
β-1,4-glycosidic linkages of hundreds to thousands. It was reported that each cellulose
bundle consists of 5 to 48 microfibril chains [23]. The unit cell of cellulose is monoclinic
(P21) with lattice parameters of a = 7.78 Å, b = 8.20 Å, c = 10.38 Å, α = β = 90◦, γ = 96.5◦ [3,24].
Cellulose bundles perform a significant role in reinforcing the plant cell wall attributing to
intermolecular hydrogen bonding network between adjacent chains [21]. In the current
study, the cellulose bundle consists of five layers of polymers, and each layer contains six
chains, and each chain consists of 24 D-glucose residues.

Hemicellulose is a diverse group of polysaccharides [25]. Unlike cellulose, hemicel-
lulose exhibits a random and amorphous structure. It is composed of short molecules,
leading to a lower degree of polymerization. Cellulose microfibrils are surrounded by
hemicellulose and lignin. In coconut endocarp, xylans [26], which consists of a linear
β-1, 4-linked D- xylopyranose (Xylp) backbone with α-D-glucuronic acid (GlcA), is taken
into consideration.

Lignin is the second most abundant class of biopolymers on Earth [27]. Among
the three key polymers, lignin performs a vital role in the formation and mechanical
performance of the coconut endocarp. It features a large group of aromatic biopolymers,
which has highly branched chemical structure with different functional groups, such as
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methoxyl (CH3O), carboxyl (COOH), and carbonyl (C=O) [28,29]. Lignin also exhibits an
amorphous morphology, and it crosslinks hemicellulose and cellulose microfibrils. The
most common linkages identified in these polymers are β-O-4, α-O-4, β-5, β–β, 5-5’, 4-O-5,
and β-1’. In this study, simplified lignin structure is made mainly consists of syringyl unit
with β-O-4 linkages.

2.2. Simulation Methods and Procedure

To reveal the interfacial splitting mechanisms among three different polymers, steered
molecular dynamics (SMD) technique was employed to mimic the Atomic Force Microscopy
(AFM) experiment. SMD method has been used to trace the conformational changes and to
determine the interaction between protein chains [1]. In the endocarp, it is still unclear of
the arrangement of polymers. To this end, three pairs of polymer couples, i.e., cellulose–
hemicellulose, cellulose–lignin, and hemicellulose–lignin, were generated, as represented
in Figure 3a. In each pair, one end of a polymer was fixed to prevent movement with the
loading, a constant velocity was applied on the free end of the other polymer to simulate
shear between them. Before pulling, the system was fully relaxed to ensure to reach the
energy equilibrium.
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To validate the SMD results, we further performed the DFT calculations. Periodic
boundary conditions were applied on the three polymer couples. The exchange correlation
energy of interacting electrons was treated by both the Perdew–Burke–Ernzerhof (PBE)
version of the generalized gradient approximation (GGA) [30]. All calculations were
carried out using the Material Studio. Through calculating the adsorption energies between
adjacent polymer chains after full geometry optimization, the chemical bond strength can
be quantified. The adsorption energy is defined as:

Eads = −
[
Esystem − (Eadsorbent + Eadsorbate)

]
(1)

Classic MD tension simulations were carried out to study the mechanical properties of
the sandwiched polymer systems (Figure 3b,c). The model is composed of two cellulose
microfibrils bundles at the top and bottom, with each bundle consists of five layers of
polymer chains. Pure hemicellulose/lignin or the combination of them are embedded
in-between the cellulose bundles. The PACKMOL [31] was utilized to construct the models
(Figure 3b), which have a dimension of 38.5 nm × 32.8 nm × 49.2 nm with a total number of
atoms around 30,000. Since hemicellulose and lignin possess amorphous morphologies, it is
challenging to create a model that ensuring a close contact between polymers, particularly
between crystalline cellulose bundles and amorphous hemicellulose/lignin. Our strategy
was to apply compressive loading that perpendicular to the cellulose bundle to eliminate
the spacing (Figure 3c). Afterward, the entire system was allowed to carry out full relaxation
for a period of 1 ns using Nose-Hoover Thermostat (NVT) ensemble at room temperature



Biomimetics 2023, 8, 188 5 of 14

(298 K). Periodic boundaries were applied along the direction of cellulose microfibril
bundles. Shake algorithm was applied to all bonds containing hydrogens. The Ewald
summation [32] method with an accuracy of 1 × 10−4 kcal/mol was used for the long-range
columbic interactions.

Shear and tension simulations of the sandwiched polymer models were carried out.
Shear and tensile loadings with strain of 8.0 × 107/s, which has been proved to be slow
enough to avoid numerical effect [33], were applied on the top and bottom cellulose bundles
to test the mechanical response. Free surface boundary condition was applied to ensure
shearing and stretching without any truncation. The modulus of toughness, or strain
energy density, was calculated by integrating each stress–strain curve over all the applied
strain, to equivalently estimate the toughness of different composite models.

For biopolymers, the potentials of AMBER [34,35], CHARMM [36–38], GROMACS [39],
and Polymer Consistent Force-Field (PCFF) [40] are well known to simulate structural
deformations. In the current work, SMD simulations were performed using the AMBER
Package with the GLYCAM_06j force field [41]. First principle studies based on density
functional theory (DFT) were conducted using the Biovia Material Studio to validate the
results of SMD simulations. For classic MD simulations, LAMMPS simulation package [42]
with PCFF potential was employed.

3. Results and Discussion
3.1. SMD Shear Simulations of Polymer Couples

In SMD shear simulations, polymer chains in each couple were placed parallel to
each other with an optimum distance so that they can easily interact during stretching.
Force-displacement (f-d) curves of the three tested couples, i.e., cellulose–hemicellulose,
cellulose–lignin, and hemicellulose–lignin, were then plotted and compared in Figure 4. It
is noted that all three curves show a quite serrate feature. By tracking the atomic trajectories,
it is found that H-bonds are formed between the hydrogen atoms and hydroxyl group of
the adjacent polymer chains. As one polymer chain is under pulling, H-bonds are first be
stretched, which leads to local increases of the force. Then, the stretched H-bonds lose their
ability to resist further loading and followed by instantaneous collapse, which is reflected
as sudden force drops on the f-d curves. Thereafter, new H-bonds form, are stretched, and
finally, break. Such circle of H-bonds reforming and breaking repeats during the overall
shear process and it can be used to explain the local fluctuations in f-d curves in Figure 4.

On the other hand, the three polymer bundles exhibit distinct maximum shear force.
Cellulose–hemicellulose shows the maximum value of 7.0 nN, while cellulose–lignin shows
the minimum value of 4.5 nN. This phenomenon indicates strong interaction between
cellulose–hemicellulose and a weak interaction between cellulose–lignin. Considering the
formation of H-bonds requires oxygen as the acceptor, the amount of oxygen should play a
decisive role in the H-bonds formation. The density of oxygen for cellulose, hemicellulose
and lignin are 27.6%, 24.2%, and 10.5%, respectively. Accordingly, more H-bonds form
between cellulose–hemicellulose during shear, which consequently leads to strong interface.
Since the real morphology of endocarp is not available so far, we hypothesize based on our
SMD simulation results that cellulose bundles are surrounded by hemicellulose, then they
overall are embedded in a lignin matrix.

By DFT calculations, the obtained adsorption energies of cellulose–hemicellulose,
hemicellulose–lignin, and cellulose–lignin couples are −135.1 kcal/mol, −106.765 kcal/mol,
and −87.653 kcal/mol, respectively, which is consistent with the rank of the calculated maxi-
mum shear force from SMD simulations. To quantify the H-bonds formed between polymer
chains, we present the configurations with the most stable adsorption sites in Figure 5a–c.
It can be seen that cellulose–hemicellulose and cellulose–lignin show the maximum and
minimum number of H-bonds, respectively. To gain a direct observation of the chemical
bonding, we further analyze electron charge density distribution (CDD) [43], as shown in
Figure 6d–f. Red area around the elements indicates the high electron density, while blue
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area represents low electron density. It can be noted that the cellulose–hemicellulose bundle
exhibits the highest electron density, which implies the strongest interaction between them.
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3.2. Shear Simulations of Sandwiched Polymers

In this section, four sandwiched polymer models, i.e., cellulose–hemicellulose–cellulose
(C–H–C), cellulose–hemicellulose–lignincellulose–lignin–hemicellulose–cellulose (C–H–L–
H–C), cellulose–hemicellulose–lignin–cellulose (C–H–L–C), and cellulose–lignin–cellulose
(C–L–C), were constructed. Shear loading was applied on the top and bottom cellulose
bundles to test the mechanical response of endocarp under shear.

Figure 6 shows the stress–strain relations of the sandwiched polymer composites under
shear. It is noted that the C–H–C, C–H–L–H–C, and C–H–L–C models show similar stress–
strain patterns that after an abrupt increase, the stress reaches a plateau, then followed
by gradual decrease until approaches a steady state. In contrast, C–L–C exhibits a shorter
elastic deformation stage and a significant narrower stress plateau region in the plastic flow
region. Such differences lead to different areas beneath the stress–strain curves, i.e., the
modulus of toughness. Additionally, among the four sandwiched structures, C–H–C and
C–L–C show the highest and lowest shear strengths of 137 MPa and 90 MPa, respectively.
Therefore, we conclude that C–H–C is the strongest and toughest model, while C–L–C is
the weakest and most brittle model, which is consistent with the SMD results.

To gain insights into the failure mechanisms behind the stress–strain curves, we tracked
the deformation trajectories and presented the snapshots of the four configurations at the
strain of 0.4 in Figure 7. It can be seen from Figure 7a that, during the shear of C–H–C model,
cellulose and hemicellulose are intimately connected on their interfaces, resulting in an
entangled hemicellulose lump rotating, and moving with the cellulose bundle. When lignin
is sandwiched by cellulose–hemicellulose (Figure 7b), one can note that hemicellulose is
prone to stick to the cellulose surface, and the fracture eventually occurs in the middle lignin
region, which again demonstrates the strong interaction between cellulose–hemicellulose.
As for the cases of C–H–L–C and C–L–C, the lignin units are noticed to be easier to peel off
the cellulose bundle, leaving clean surfaces behind, as marked by red arrows in Figure 7c,d.
Close observation of the deformed configurations manifests that no covalent bonds break
during the shear deformation, owing to the ultra-high strength of covalent bonds comparing
to other non-bonded interactions, such as H-bonds. It is worth mentioning that for the
case of C–H–L–C, as shown in Figure 7c, besides the peel-off of lignin from the cellulose
surface, another dominant failure was observed between hemicellulose-cellulose. As
aforementioned, the interaction between hemicellulose-cellulose is stronger than that of
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cellulose–lignin. Therefore, slight differences are observed in the cases of C–H–L–H–C and
C–H–L–C. On the other hand, the simulated models in this work are relatively small, hence
the effect of different polymer chains on stress–strain curves are not so significant.
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3.3. Tension Simulations of Sandwiched Multilayer Polymers

Uniaxial tensile loading with same strain rate of 8.0 × 107/s was applied on the four
sandwiched polymer models in Section 3.2 to investigate the mechanical response and
underlying failure mechanisms. Figure 8 compares the stress–strain curves of the four
models under tension. One can note that the models with different arrangements show
rather different plastic deformation behaviors although with similar pattern. After a short
linear elastic stage, a remarkable stress plateau was observed to dominate the overall
deformation, followed by a sudden stress drop. C–H–C and C–H–L–H–C show an average
yielding stress of 42 MPa, whereas C–H–L–C and C–L–C exhibit a value as low as 26 MPa.
The modulus of toughness of C–H–C and C–H–L–H–C is also much higher than that of the
C–H–L–C and C–L–C, which indicates a higher ductility in C–H–C and C–H–L–H–C. The
elastic modulus (E), i.e., the slope of stress–strain curves in elastic region, varies with the
arrangement, and is in the order of EC-H-L-H-C > EC-H-C > EC-H-L-C > EC-L-C. The fluctuation
of the stress–strain curve is due to the disentanglement of amorphous hemicellulose and
lignin chains. For the different sandwiched polymer models, it is difficult to quantify the
degree of entanglement. Hence, the local stress peaks of C–L–C may be higher than those
of the C–H–L–C model.

In Figure 9, we presented the snapshots of the configurations under tensile strain of
1.1. It can be seen from Figure 9a that, in the case of C–H–C, hemicellulose chains have
a favorable tendency to adhere onto the surfaces of cellulose bundles, as denoted by red
arrows. With lignin was added to generate the C–H–L–H–C model, same bonding mode
was observed in Figure 9b, i.e., hemicellulose strongly attaches to the cellulose, which
thereby leads to a fracture between hemicellulose and lignin. Similar fracture behavior was
observed in the case of C–H–L–C, as shown in Figure 9c. It is worth mentioning that, in the
original model, hemicellulose and lignin are built layer-by-layer in the order of C–H–L–C.
However, after relaxation, they somehow entangled together and shift their positions.
Particularly for hemicellulose, which is prone to stick to the cellulose surface, due to the
strongest adsorption energy between them. Therefore, one can note from Figure 9c that the
hemicellulose chain is attached to the surface of the bottom cellulose bundle after rupture,
rather than the original arrangement of lignin and cellulose. On the other hand, unlike
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crystalline materials, the surfaces of polymers, particularly the in-between amorphous
region, are not smooth, which could potentially initiate the stress concentration and lead to
crack propagation from the defected sites. Hence, the fracture does not necessarily occur
on the interface of C–L.
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black arrows denote hemicellulose and lignin, respectively. The green ellipse marks the clean rupture
interface.

However, for the case with pure lignin added (Figure 9d), a clean detachment was
detected between cellulose and lignin, as marked by green ellipse. Through the comparison
of the failure behaviors in Figure 9, we concluded that cellulose–hemicellulose has a
strong interaction on the interface, while cellulose–lignin or hemicellulose–lignin is weakly
interacted. In addition to the low oxygen density in lignin, the weak interaction can also
be explained from the viewpoint of the structural morphology. Lignin is a cross linked
polymer; thus, the contact area between cellulose–lignin is less than that between cellulose–
hemicellulose, which reduce the probability of H-bonds formation between cellulose–lignin.
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Tracking the detailed deformation process revealed that disentanglement of amor-
phous polymer chains dominates the early deformation, i.e., elastic deformation. Thereafter,
the backbones of the polymer chains are stretched to straight shape. Meanwhile, relative
motion of polymers causes friction energy owing to the abundant H-bonds. This steady
deformation leads to the stress plateau.

3.4. Effect of Density on Mechanical Properties

To date, it is still ambiguous of how dense the cellulose, hemicellulose, and lignin
are arranged in coconut endocarp. We hypothesize that the compact density of polymers
may affect the deformation mechanism and hence influence the mechanical properties of
entire system. In this subsection, take the C–L–C for instance, we generated three models
with different density of 22 atoms/n3, 29 atoms/n3, and 35 atoms/n3, and relaxed, as
displayed in Figure 10a–c. For simplicity, we named them as loose, moderate, and dense
cases, respectively.
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After uniaxial tension, the stress–strain curves are plotted in Figure 11. It can be seen
that the stiffness, strength, and toughness increase with the increase in density. Additionally,
one may note that a dramatic jump of stiffness and strength occurs from the moderate case
to the dense case, which implies that a critical density may exist between 29 atoms/n3

and 35 atoms/n3. In the loose case, a relatively smooth stress–strain curve was observed.
The steady but less vibrated stress plateau indicates that less disentanglement and friction
of polymer chains are involved, as evidenced in Figure 10d. Lignin is deformed in a
relatively uniform manner. For the moderate and dense cases, fluctuations of stress–strain
curves in plastic region become severe. From Figure 10e,f, we notice that more lignin
chains stick to the cellulose surfaces, which is primarily responsible for the high strengths
obtained in Figure 11. Comparing to the uniformly stretched lignin chains in the moderate
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case (Figure 10e), an agglomerated lump was observed in the dense case (Figure 10f).
These differences in deformation mode could not only elucidate the different stress–strain
response, but also inspire ideas in materials design.
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3.5. Effect of Number of Polymer Layers on Mechanical Properties

Facilitated by FIB microscope, multilayer polymers with lamellar thicknesses of
527 ± 105 nm and pores with 69 ± 19 nm in diameter were observed in the secondary cell
wall of coconut endocarp at submicron scale [7]. However, the arrangement of polymers at
nanoscale is still unclear. Given that endocarp exhibit a hierarchical structure and inspired
by the layered cellulose–hemicellulose/lignin structure reported in wood, we hypothesize
that cellulose, hemicellulose, and lignin may form multilayer in endocarp. Therefore, we
tested the effect of number of polymer layers on the mechanical response. In the context,
we built nine layers of C–H–L–H–C–H–L–H–C to perform the uniaxial tension test. The
obtained stress–strain curve was compared with that of the five layers C–H–L–H–C in
Figure 12. It can be seen that the nine layers model exhibit a slightly higher average
strength than the five layers model. Figure 13 presents the deformed structures of nine
layers C–H–L–H–C–H–L–H–C under tension. Compared to the five layers C–H–L–H–C in
Figure 9b, we found that most of in-between amorphous polymers tend to attach to the
middle cellulose bundle. A discontinuity between hemicellulose and lignin was observed,
and it finally cause the failure of the entire system.
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C–H–L–H–C) and five layers cellulose–hemicellulose–lignincellulose–lignin–hemicellulose–cellulose
(C–H–L–H–C) under uniaxial tension.
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Figure 13. Snapshots of nine layers cellulose–hemicellulose–lignincellulose–lignin–hemicellulose-
cellulose–hemicellulose–lignincellulose–lignin–hemicellulose–cellulose (C–H–L–H–C–H–L–H–C)
(a) after relaxation, and under tensile strains of (b) 0.3, (c) 0.6, and (d) 1.1.

4. Conclusions

In this work, SMD, DFT, and classic MD simulations were performed to study the
interaction among the cellulose, hemicellulose, and lignin in coconut endocarp. Polymer
couples were generated and sheared through SMD simulations. Adsorption energies
were quantified to validate the SMD results. Sandwiched multilayer polymer models
were created to study the mechanical response and failure mechanisms under uniaxial
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tension. The effects of density and number of polymer layers on deformation behaviors
were also investigated.

SMD shear simulation and DFT calculations confirmed that cellulose–hemicellulose
and cellulose–lignin exhibit the strongest and weakest interaction, respectively, due to
the different number of H-bonds form during the shear process. Uniaxial tension test of
sandwiched polymer models revealed that C–H–C/C–H–L–H–C are stiffer, stronger and
tougher than C–L–C/C–H–L–C, owing to the weak interface between cellulose–lignin. It
is speculated that there exists a critical density that could lead to remarkable mechanical
properties. As multiple cellulose bundles involved, the mechanical response varies.

Together, the fundamental knowledge gained in this work on the interaction between
cellulose–hemicellulose–lignin provides an improved understanding of deformation mecha-
nisms in coconut endocarp and other complex cellular materials, providing new hypotheses
and design guidelines for the development of strong, ductile, and tough bioinspired materials.
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