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Abstract: Cells can sense and respond to different kinds of continuous mechanical strain in the
human body. Mechanical stimulation needs to be included within the in vitro culture system to better
mimic the existing complexity of in vivo biological systems. Existing commercial dynamic culture
systems are generally two-dimensional (2D) which fail to mimic the three-dimensional (3D) native
microenvironment. In this study, a pneumatically driven fiber robot has been developed as a platform
for 3D dynamic cell culture. The fiber robot can generate tunable contractions upon stimulation. The
surface of the fiber robot is formed by a braiding structure, which provides promising surface contact
and adequate space for cell culture. An in-house dynamic stimulation using the fiber robot was set up
to maintain NIH3T3 cells in a controlled environment. The biocompatibility of the developed dynamic
culture systems was analyzed using LIVE/DEAD™ and alamarBlue™ assays. The results showed
that the dynamic culture system was able to support cell proliferation with minimal cytotoxicity
similar to static cultures. However, we observed a decrease in cell viability in the case of a high strain
rate in dynamic cultures. Differences in cell arrangement and proliferation were observed between
braided sleeves made of different materials (nylon and ultra-high molecular weight polyethylene). In
summary, a simple and cost-effective 3D dynamic culture system has been proposed, which can be
easily implemented to study complex biological phenomena in vitro.

Keywords: tissue engineering; fiber actuators; 3D dynamic cell culture; cyclic strain

1. Introduction

Tissue engineering is a multidisciplinary approach to recreate, restore, and/or improve
damaged or diseased tissues or even whole organs. Three components are usually involved
in tissue engineering: cells, scaffolds, and growth signals. Scaffolds play a major role in
tissue engineering by providing structural support for cell attachment and subsequent
tissue regeneration [1,2]. Scaffolds designed for tissue engineering aim to mimic the native
extracellular matrix (ECM) as closely as possible to provide cells with the necessary envi-
ronmental cues. Imitation of environmental cues by scaffolds similar to natural conditions
can facilitate regeneration and functionality of cells and/or tissues [3,4]. Mechanical stimu-
lations provided by scaffolds are another important factor to consider that influence the
interaction between the cell and substrate, similar to how the surface morphology of the
ECM and the presence of bioactive molecules influence the cellular response in vivo [2].

Cells are continuously subjected to mechanical stimulations, which promote cell
survival, proliferation and differentiation, regulate gene expression, and control cellular
function [5–9]. Active scaffolds refer to cell-supporting substrates capable of generating
periods of mechanical stimulations throughout in vitro cell culture mimicking in vivo con-
ditions [10–12]. When a cell senses a mechanical stimulus, it undergoes certain biological
responses known as mechanotransduction [13]. The mechanisms by which cells sense
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and respond to mechanical stimuli are widely researched, with one of the most studied
pathways being the ECM-integrin-cytoskeletal pathway [14]. Integrins are proteins acting
as receptors that anchor the cytoskeleton of the cell to the ECM [15,16]. Prior research
has shown that mechanical stimuli play a role in the regulation of yes-associated protein
1/WW domain containing transcription regulator 1 (YAP/TAZ) activity. This activity acts
as the checkpoint control for proliferation in multicellular sheets [11]. Cell morphology and
alignment can be influenced by dynamic stretching [17,18]. Additionally, prior studies have
shown that mechanical stimuli can positively impact the differentiation and maturation of
cardiac cells [10,19,20]. Active scaffolds, generating cyclic stretching and contractions, not
only support cells in vivo but also mimic periodic oscillations of muscles, organs, or blood
vessels in vivo. Dynamic cell culture systems using mechanical stress can mimic fluid shear
forces similar to blood vessels [21]. Pneumatic actuators can be used to develop organ-
otypic models which can mimic compressive forces present in solid tumors and vascular
networks [22]. For example, tendons are mechanoresponsive tissue and require dynamic
mechanical stimulations for development, differentiation, homeostasis, and wound heal-
ing [23]. In an in vitro study, 2D uniaxial cyclic stretching was used at different rates (4%
or 8% elongation) applied to tendon stem cells to investigate tendon mechanobiology [24].
They found that cyclic stretching improved proliferation of tendon stem cells compared
to static conditions. In addition, low mechanical stretching promoted differentiation of
tendon stem cells to tenocytes, enabling maintenance of homeostasis [24]. In another study,
a 3D braided structure was used to apply cyclic strain on mesenchymal stem cells which
promoted a tenogenic lineage [25]. As such, dynamic mechanical stimulations allow for
a closer recapitulation of biology and physiology (i.e., in vivo) conditions presenting in
the human system. Other than developing tissue constructs for in vivo transplantations,
this also allows for in vitro biomimetic tissue and organ models, which can be used for
studying disease models, predicting drug responses, and ultimately reducing the burden
on animal models [3]. Hence, cyclic mechanical loading has been integrated in bioreac-
tors to accelerate the maturation of tissue-engineered grafts, which can be used as skin
substitutes [26].

Several mechanically stimulated cell culture systems have been successfully commer-
cialized. Some of the most widely known systems are Flexcell® (Flexcell International
Corporation, Burlington, NC, USA), Strex Systems (STREX Inc., San Diego, CA, USA),
and ElectroForce (Bose Corporation, Eden Prairie, MN, USA) [27]. They share a similar
working principle but with different mechanical motions and driven systems. For instance,
Flexcell®, acknowledged as one of the most sophisticated cell stretching devices, consists
of an elastomeric flat dish that is periodically stretched by pneumatic force [28,29]. Despite
their precise controllability and flexible programming, these systems cannot fulfill their
intended purpose as scaffolds due to their cumbersome nature. In addition, the stimulation
motions are 2D, e.g., stretching a film or flat dish uniaxially or bi-axially, which fails to
mimic the native 3D motions observed in vivo [30].

Recently, novel technologies have been investigating the development of active scaf-
folds based on smart materials and processing techniques (e.g., electrospinning and 3D
printing) [31]. A wide range of smart materials has been explored, for example, electroac-
tive polymers (EAP) that can deform upon electrical stimulus [32]. However, EAP-based
scaffolds are limited to the required high electrical voltage. Besides EAP, reported works
have also used piezoelectric motors and optical stretchers to stretch cells [33]. They have
their own inherent limitations such as low strain and low efficiency.

As compared with the various mechanical stimulation techniques mentioned above,
pneumatic systems hold a major advantage due to their unique features, including but not
limited to the simple setup, homogeneous strain actuation, precise actuation, the capability
to generate a wide range of strain magnitude, fast response speed, and low cost [27,30]. It is
also worth noting that pneumatic systems are one of the most used driven mechanisms in
commercially available cell stretching systems. Most reported and commercialized devices
are ones that use pneumatic forces to deform a thin stretchable membrane with controlled
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air pressure. This membrane is where cells are cultured directly [30]. As mentioned before,
these devices are limited to simple 2D stretching or compression. Additionally, they cannot
function as a 3D scaffold to support cells to proliferate into 3D spatial geometries.

Hence, there is an urgent need for a dynamic scaffold that can generate large 3D
deformations at a range of frequencies with fast response speed and high efficacy. The thin
fiber robot (FR) developed in this work is a type of pneumatic actuator that is based on the
McKibben actuator technology. McKibben actuators consist of three components: internal
elastomeric bladder, outer braided sheath, and two end fittings (Figure 1) [34,35]. One end
fitting is sealed, and the other is connected to an air inlet. The working principle is that
while inflating, the internal elastomeric bladder expands and it subsequently pushes the
outer braided sheath to expand radially. Then, the braided pantograph structure converts
such radial expansion into axial contraction.

Biomimetics 2023, 8, x FOR PEER REVIEW 3 of 16 
 

 

It is also worth noting that pneumatic systems are one of the most used driven mecha-
nisms in commercially available cell stretching systems. Most reported and commercial-
ized devices are ones that use pneumatic forces to deform a thin stretchable membrane 
with controlled air pressure. This membrane is where cells are cultured directly [30]. As 
mentioned before, these devices are limited to simple 2D stretching or compression. Ad-
ditionally, they cannot function as a 3D scaffold to support cells to proliferate into 3D 
spatial geometries. 

Hence, there is an urgent need for a dynamic scaffold that can generate large 3D de-
formations at a range of frequencies with fast response speed and high efficacy. The thin 
fiber robot (FR) developed in this work is a type of pneumatic actuator that is based on 
the McKibben actuator technology. McKibben actuators consist of three components: in-
ternal elastomeric bladder, outer braided sheath, and two end fittings (Figure 1) [34,35]. 
One end fitting is sealed, and the other is connected to an air inlet. The working principle 
is that while inflating, the internal elastomeric bladder expands and it subsequently 
pushes the outer braided sheath to expand radially. Then, the braided pantograph struc-
ture converts such radial expansion into axial contraction. 

 
Figure 1. Schematic illustration of a pneumatic-driven fiber-shaped robot’s working principle. L = 
resting length of FR, P = air pressure applied, α = braiding angle. 

The prevalence of small-scale mechanical systems in modern technological advance-
ments and applications has created a demand for lightweight, compact, thin FRs that can 
exert significant forces and strains while remaining a miniature structure. Thin FRs have 
already been used in several areas of small-scale robotics [36–38]. The compliant nature 
and fibrous surface structure make FRs promising candidates to serve as scaffolds in cell 
cultures. In addition, the properties of the internal bladder and the yarns used in outer 
braided sheath significantly affect the actuation performance and biocompatibility of the 
FRs scaffold and are tunable for different application requirements. 

This study aims to develop pneumatic-driven fiber-shaped robots to be used as dy-
namic, active scaffolds for cell culturing. The biocompatibility of the FR scaffolds was also 
evaluated by stimulating 3D mechanical stretching of the cell. 

2. Materials and Methods 
2.1. Fiber Robot Fabrication 

As mentioned before, the FR consists of three key components: an inner elastomeric 
bladder, an outer braided sleeve, and two end fittings. The properties of the bladder and 
the yarns used in the FRs are listed in Table 1. Two FRs were fabricated using ultra-high 

Figure 1. Schematic illustration of a pneumatic-driven fiber-shaped robot’s working principle.
L = resting length of FR, P = air pressure applied, α = braiding angle.

The prevalence of small-scale mechanical systems in modern technological advance-
ments and applications has created a demand for lightweight, compact, thin FRs that can
exert significant forces and strains while remaining a miniature structure. Thin FRs have
already been used in several areas of small-scale robotics [36–38]. The compliant nature
and fibrous surface structure make FRs promising candidates to serve as scaffolds in cell
cultures. In addition, the properties of the internal bladder and the yarns used in outer
braided sheath significantly affect the actuation performance and biocompatibility of the
FRs scaffold and are tunable for different application requirements.

This study aims to develop pneumatic-driven fiber-shaped robots to be used as dy-
namic, active scaffolds for cell culturing. The biocompatibility of the FR scaffolds was also
evaluated by stimulating 3D mechanical stretching of the cell.

2. Materials and Methods
2.1. Fiber Robot Fabrication

As mentioned before, the FR consists of three key components: an inner elastomeric
bladder, an outer braided sleeve, and two end fittings. The properties of the bladder
and the yarns used in the FRs are listed in Table 1. Two FRs were fabricated using ultra-
high molecular weight polyethylene (UHMWPE) (Dyneema®) (FR-D) and nylon® (FR-N),
respectively, while keeping all other parameters similar. To fabricate the FR, a K80-16
vertical braiding machine (Steeger K80, Spartanburg, SC, USA) with 16 yarn carriers was
used (Figure 2).
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Table 1. Structural and mechanical properties of FR components.

Fiber Robot
Bladder
Outer

Diameter

Bladder Wall
Thickness

Bladder
Material

Bladder
Shore

Hardness

Yarn
Materials

Yarn Linear
Density

Yarns’
Initial

Modulus

FR-D
0.94 mm 0.2 mm Silicone 53A

UHMWPE
(Dyneema®) 11.1 tex 136.4 N/tex

FR-N Nylon® 5.6 tex 6.7 N/tex
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Figure 2. FR fabrication using a 16-carrier vertical braiding machine.

The braiding angle, as one of the most important parameters in the braided sleeve, is
the angle helical yarns make to the axial direction of the FR (Figure 1). In this study, braiding
angles of 38◦ and 44◦ were maintained for FR-D and FR-N scaffolds, respectively. These
braiding angles selected for the FR scaffolds are higher than the optimum braiding angle
(~20◦) for maximum contraction [39]. Higher braiding angles were selected to increase the
density of the braid structure of the FR for enhanced durability. To change the braiding
angle, we can control the difference between the speed of yarn carriers traveling around the
bladder and the FR take-up speed. Additionally, for bladders with different dimensions, it
is necessary to reprogram these two speeds to maintain the braiding angle.

After braiding, samples were cut into 10 cm long pieces with a 2 cm allowance for end
fitting connection. Polyurethane (PU) tubes were used as the air supply tube and adhesive
(epoxy glue) was used to fix the end fittings.

2.2. Characterization of FR Scaffolds
2.2.1. Scanning Electron Microscopy (SEM) Analysis

The FR scaffolds were mounted on SEM stubs with carbon adhesive followed by
sputter coating (SC7620 Mini Sputter Coater, Quorum Technologies, East Sussex, UK) to
achieve a layer of gold and palladium with a thickness of 10 nm. The morphology of the FR
scaffold was examined using a Hitachi TM4000 SEM (Tokyo, Japan) at 10 kV. The diameter,
braiding angle, and pore size of the braiding yarns were measured using ImageJ software.
For each FR scaffold, three samples were imaged and ten measurements were taken from
each image.
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2.2.2. Actuation Property Testing

The blocking force and free contraction are two of the most critical properties of
FR scaffolds. The blocking force refers to the contractile force exerted by an FR under
a given pressure, while remaining at the initial length. We evaluated the FRs blocking
force and free contraction ratio using a Material Testing System (MTS, Criterion C42E,
MTS Systems Corporation, Eden Prairie, MN, USA) following the ASTM-D2256 testing
protocol. To measurethe blocking force, MTS clamps secured the two ends of the FR sample
while it was inflated (Figure 3). The real-time force was recorded by the load cell (100
N) attached to the top clamp. The air pressure inside the FR scaffolds was maintained
at 250 kPa. The free contraction is the displacement of an FR scaffold under a specific
pressure at “zero load” constraint. The blocking force test and free contraction test were
conducted in sequence using the same sample without taking it off. After reading the
blocking force while the sample was still inflated at a certain pressure, the MTS top clamp
moved down at 20 mm/min until the detected load reached zero, where the clamp traveling
distance was recorded as the free contraction. The air pressure was controlled by an electro-
pneumatic regulator (ITV 3050-21N2BS5, SMC, Yorba Linda, CA, USA) that also indicates
the actual pressure applied to the actuator. This regulator was calibrated using a separate
pressure sensor (Amphenol SSI Technologies (P51-200-G-A-I36-4.5OVP-000000), Janesville,
WI, USA), which ensures precise pressure measurement during the dynamic analysis.
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Figure 3. FR actuation characterization. FR scaffolds were mounted on the MTS tensile testing
machine using pneumatic clamps.

A high-resolution camera (Canon EOS Rabel 70D, Canon, Tokyo, Japan) was used to
capture the actuation behavior of the FR at 250 kPa pressure (since 250 kPa was selected
for cell dynamic stimulation). The videos were analyzed using ImageJ software to deter-
mine the radial displacements of the FR scaffolds. For each FR scaffold, three samples
were analyzed.

2.3. Cell Culture

Murine fibroblast cells (NIH-3T3) were used to observe the impact of dynamic stimula-
tion of the FR on cells. The cells were maintained in culture media consisting of Dulbecco’s
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Modified Eagle Medium (DMEM, Gibco, Waltham, MA, USA) supplemented with 10%
fetal bovine serum (FBS, Atlas Biologicals, Fort Collins, CO, USA) and 1% penicillin-
streptomycin (10,000 U/mL, Gibco) and incubated at 37 ◦C and 5% CO2. The culture
medium was changed every 2–3 days and passaged regularly using 0.25% Trypsin-EDTA
(Gibco) upon reaching approximately 80% confluence.

2.3.1. Cell Seeding on Fiber Robots

The FRs were sterilized by immersing in sterile 70% ethanol for 20 min and washed
thrice with phosphate-buffered solution (PBS, Cytiva, Marlborough, MA, USA). To improve
cell adhesion, the FRs were immersed in culture media for 48 h at 4 ◦C. The FRs have a
tubular structure instead of the conventional flat surface of biomaterials, which makes cell
seeding more difficult. On each sample, 1 × 107 cells were seeded in two steps. At first,
5 × 106 cells in 25 µL culture medium were seeded dropwise on an FR and incubated at
37 ◦C for 1 h. Following that duration, FRs were rotated so that the cell seeded part was at
the bottom, and another 5 × 106 cells in 25 µL culture medium were added onto the FR
scaffold. After incubating for 20 min, 8 mL of culture medium was added dropwise. After
24 h, cell-seeded FR scaffolds were transferred to T-25 flasks, whose caps were modified
to create space for connecting the pneumatic device/tube to the FR scaffolds. FRs were
connected to a compressed air supply and kept in standard cell culture conditions (i.e.,
submersed in culture media in an incubator maintained at 37 ◦C and 5% CO2). Dynamic
mechanical stimulation generated by the FR scaffold was applied to cells during the culture
process (details in Section 2.3.2). We also included a static condition of cell-seeded FR
scaffolds without deformation as a control. Biocompatibility assays (Live/Dead™ and
alamarBlue™ analyses) were conducted prior to dynamic stimulation (Day 1) and after 48 h
of continuous dynamic stimulation (Day 3). NIH-3T3 seeded at a density of 0.5 × 106 cells
per dish on a gelatin-coated p100 dish was used as control.

2.3.2. Dynamic Mechanical Stimulations on Cells

Dynamic mechanical stimulation used three compressed air cylinders in a series
connection (Figure 4). Each compressed air cylinder was equipped with a manual pressure
regulator to maintain 250 kPa throughout the entire duration of the experiment. Pressure
from the air cylinder passes through a solenoid valve to program the inflating frequency
applied to the FR. We used a microcontroller (Arduino Uno Rev3, Arduino, Italy) to control
the operating frequency of the solenoid valve. Here, we selected frequency of 0.5 Hz (1.4 s
down and 0.6 s up). After several trials with different air pressure ranges and frequencies,
we found a pressure of 250 kPa and a frequency of 0.5 Hz were the optimal operating
properties, considering the FRs life cycle and the fact that the mesh structure of the outer
braided sheath could cause bubbles to form at higher frequencies. It has been reported
that different types of cells go through different frequencies of cyclic stretching and this
frequency can range from 0.01 to 10 Hz [40,41].

2.3.3. Biocompatibility

To observe cell adhesion and viability on the FRs, a Live/Dead viability assay was
performed prior to the start of the stimulation (Day 1) and after 48 h of stimulation (Day 3).
Each FR scaffold was placed into new p100 dishes before the viability assay was conducted.
A LIVE/DEAD™ Cell Imaging Kit (ThermoFisher, Waltham, MA, USA) was used according
to manufacturer’s recommendations, with a few modifications. The Live/Dead solution
was diluted with PBS at 1:1 ratio. After the working solution was prepared, it was added to
the FRs, incubated for 20 min and imaged using a fluorescent microscope (EVOS FL Auto
2, ThermoFisher).
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dynamic cell culturing on FR scaffolds.

AlamarBlue™ Cell Viability Reagent (ThermoFisher) was used to quantify the cell
proliferation rate. This assay provided quantitative data on cell proliferation by measuring
the change in fluorescence due to the reduction of resazurin to resorufin caused by cellular
metabolic activity. FRs have a significantly small surface area on which cells can adhere
and an elongated cellular morphology was observed (data not shown). Due to this tubular
structure, the quantity of medium is too high compared to the number of cells on the FRs if
the assay was conducted in a p100 dish (10 mL of medium). This makes the fluorescence
signal harder to detect with a microplate reader as there is low amount of reduction of
resazurin to resorufin in response to chemical reductions due to cell growth. To counteract
this, we transferred the FRs to a 15 mL centrifuge tube prior to conducting the assay. This
arrangement allowed us to accommodate the tubular structure of the FR while keeping
the quantity of medium (3 mL of medium) consistent with the number of cells on the FR.
The FRs were incubated with alamarBlue™ reagent diluted 1:10 v/v in cell culture medium
at 37 ◦C for 2 h and protected from light. The supernatants were collected from each tube
and pipetted in triplicate on a 96-well plate (100 µL each well) and the fluorescence value
was read using a microplate reader (Synergy HT, BioTek, Winooski, VT, USA) at 540 nm
excitation and 590 nm emission wavelengths. We also included FR scaffolds without any
cells to account for background fluorescence. The observation time points were similar to
the Live/Dead assay. The fluorescence values obtained after dynamic stimulation (Day 3)
were normalized to the values before dynamic stimulation (Day 1).

2.4. Statistical Analysis

Each experiment was repeated at least three times. Data are represented as means ±
standard error of the mean unless otherwise indicated. Statistical analyses were carried
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out using OriginPro version 2023 (OriginLab Corporation, Northampton, MA, USA) by a
Mann–Whitney or a Kruskal–Wallis test followed by Dunn’s multiple comparison post hoc
test, and p < 0.05 was considered statistically significant.

3. Results
3.1. Morphology of FRs

SEM images were analyzed to evaluate the morphology of the FR scaffolds (Figure 5).
The porosity of the FR scaffold was measured by the ratio between the area covered by
the braided mesh to the total area of the scaffold surface. From the image analysis, it was
evident that the FR-N scaffolds have higher porosities than the FR-D scaffolds since they
used different yarn dimensions (Table 2). The multifilament structures of the Dyneema
yarns (Figure 5b) in FR-D scaffolds covered the entire surface and showed no visible pores,
while the monofilament structure of the nylon yarns in FR-N scaffolds (Figure 5a) were
more open.
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Figure 5. SEM analysis of FR surface: (a) surface morphology of FR-N (50× and 500×); (b) surface
morphology of FR-D (50× and 500×).

Table 2. FRs surface morphology analysis using ImageJ.

Fiber Robot FR Scaffold
Diameter (mm)

Braided Yarn
Diameter (mm) Porosity (%) Braiding Angle (o)

FR-D
(Dyneema) 1.50 ± 0.04 0.43 ± 0.03 * Too small to be

measured 37.56 ± 1.31

FR-N (Nylon) 1.33 ± 0.03 0.08 ± 0.01 43.30 ± 0.82 43.96 ± 1.08
* Diameter was 0.08 when it was measured in round shape. This multifilament yarn was flattened on the FR
surface; thus, it was measured as 0.43 mm from the SEM image.

3.2. Actuation Characterization of FR Scaffolds

When comparing the actuation properties of the FR-N (Figure 5a) and FR-D (Figure 5b)
scaffolds at 250 kPa, FR-D generated the higher force (Figure 6). This could be attributed to
the high modulus of the multifilament UHMWPE (Dyneema yarn) and the smaller braiding
angle in the FR-D scaffold compared to the monofilament nylon yarns in the FR-N scaffolds.
The effects of yarn stiffness on the blocking force and the contraction ratio were also studied
in a previous study [42]. Additionally, the smaller braiding angle of the FR-D scaffolds
resulted in a higher contraction ratio. Moreover, the nylon yarn is a monofilament that
is less flexible compared to the thin fibers in the Dyneema yarn. This causes the braided
structure made of nylon to have poor conformity and thus there was a gap between the
bladder and the braided sheath. This subsequently reduces the efficacy of transferring the
bladder’s deformation to the braided structure.
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As the axial strain was generated from the radial expansion, the FR-D also generates
a higher radial expansion. As Figure 7 shows, we observed that the FR-D scaffold and
FR-N scaffold demonstrated a radial strain of 14.26% and 10.80%, respectively, at 250 kPa of
pressure. The FR-D scaffold generated a significantly higher (Mann–Whitney test, p < 0.01)
axial strain than the FR-N scaffold. From the combination of axial and radial deformation,
it can be concluded that the FR-D scaffolds exert higher mechanical stretching on the cells
during dynamic stimulation as compared to the FR-N scaffolds.
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3.3. Cell Viability and Metabolic Activity

Though the tubular morphology made it difficult to seed cells on the scaffolds, high
cell viabilities and adhesion were observed on the FRs prior to and after the dynamic
mechanical stimulation based on a LIVE/DEAD™ assay (Figure 8). Cells after 1 day of
seeding continued to migrate and form clusters all over the FR scaffolds (Figure 8B–E).
On Day 3, we observed that cells proliferated and migrated on the FR regardless of the
construction material and dynamic stimulation (Figure 8G–J). The organization of the
cells varied due to the braiding structure and morphology. On FR-N, cells adhered and
proliferated along the axis of the yarn and gaps could be observed. For FR-N (Figure 8I,J),
we did not observe any major morphological or adhesion differences due to the application
of dynamic mechanical stimulation. In the case of FR-D (Figure 8B,C,G,H), cells were
spread over the entire structure and some penetrated deep within it even though the
structure lacked porosity compared to FR-N (Figure 8D,E,I,J). We were able to detect cells
within the interior layers of the structure by focusing on different planes of view. However,
the cell viability in dynamic conditions was lower compared to static conditions for FR-D
(Figure 8G,H). This effect can be attributed to the higher mechanical strain.
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A quantified analysis of cellular proliferation supported our observations from the
Live/Dead assay (Figure 9). We observed an increase in cell metabolic activity for all
conditions from Day 1 to Day 3. The highest increase in metabolic activity was observed
for the static FR-D. This suggests that a densely braided structure with minimal gaps
(or minimal porosity) compared to a porous monofilament structure of the FR might
be preferable depending upon the ultimate end use. The increase in metabolic activity
observed between the static and dynamic FR-N from Day 1 to Day 3 was almost identical,
without any significant difference. However, the dynamic FR-D had a significantly lower
metabolic activity compared to the static FR-D (Kruskal–Wallis test, p > 0.05). Similar to
the cell viability assay (Figure 8), these results suggest that there was no adverse effect on
cellular proliferation or metabolic activity up to a certain strain rate. However, a very high
strain rate might negatively affect cell metabolic activity.
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4. Discussion

In vitro mechanical stress and/or strain on cells has frequently been induced using
pneumatic actuators [43–46]. The simplicity of setup, the uniform strain actuation, and the
lack of direct contact with the cells or the medium in preventing contamination are only a
few of the significant benefits of this actuation paradigm [47–49]. The bulk of pneumatically
driven devices operate by deforming a thin membrane under controlled actuation pressure.
Cells are maintained directly on this membrane. Cell stretching has been achieved through
actions including both positive and negative pressure sources. Positive air pressure is
generally used to stretch elastomeric scaffolds (without textile reinforcement) that are
connected in series [39,50]. These devices make use of the pressure drop in microchannels
to supply a variety of strain magnitudes in a single device. However, due to the lack of
reinforcements in the elastic membranes, these devices fail to produce consistent strain
over a long period of actuation cycles [51]. In addition, most of these mechanical stretching
devices only generated 2D stretching, which does not effectively mimic in vivo conditions.
In vivo cells undergo different types of mechanical stretching, including 1D, 2D, and 3D
stretching, depending on the type of cells. Some of the cells experience 3D stretching
in vivo, including lung alveolar epithelial cells due to the breathing-induced lung alveolus
dilation and construction [52,53].

Mechanically stretching elastomeric silicone dishes using a linear driving motor for
tendon stem/progenitor cells (TSCs) can generate uniaxial strain. This clamp-to-clamp
uniaxial stretching causes stress variation across the cell culture surface [23,24]. Ciardulli
et al. used a 3D scaffold construct composed of a hyaluronate elastic band covered by a
fibrin hydrogel. The 3D scaffold was also subjected to clamp-to-clamp biaxial stretching
using a mechanical linear motor [25]. However, this linear stretching by the driving motors
does not accurately mimic the in vivo conditions because vertebrate/human muscles follow
non-linear force–length and force–velocity properties [54]. The proposed FR scaffolds of this
work can mimic this non-linear mechanical stimulus (Figure 6). Wahlsten et al. proposed
a dynamic bioreactor where a circular hydrogel membrane was subjected to equiaxial
and uniaxial strains by pneumatic pressure. The circular shape of the membrane causes
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strain variations across the membrane surface throughout the whole experimental time
duration [26]. These challenges can be overcome by using our proposed FR scaffolds.

An FR is a type of pneumatically driven active scaffold that has proven to generate a
consistent actuation strain over a long period of actuation cycles due to its unique braided
sheath [55,56]. This fiber-shaped active scaffold can facilitate 3D cell stretching. Textile
reinforcement also helps to achieve a unique surface texture for cell seeding. Additional
desirable characteristics of FR scaffolds are that they are relatively lightweight, have a
longer life cycle, and behave in a compliant manner, which makes them highly desirable
for prostheses and orthoses fabrication. Due to the compressibility of air, the compliancy
of FR may be regulated by modifying the operating pressure. This is an essential quality
for ensuring risk-free contact between humans and machines or when delicate work needs
to be carried out. A high level of compliance guarantees that all contacts will be cordial
and safe. In addition to this, an FR is capable of producing a considerable amount of force
while keeping a respectable power-to-weight ratio. FRs demonstrate an excellent harmony
between flexibility and stiffness in both unpressurized and pressurized situations; thus,
this material is ideally suited for applications in the medical and rehabilitation fields. In
addition, these actuators have a construction that is incredibly straightforward, which
results in a production method that is both straightforward and economical. As a result of
these characteristics, FR actuators are suited for a diverse array of applications, including,
but not limited to, artificial muscles for musculoskeletal systems, grippers, and many
other prostheses. Based on the success observed in using FR and pneumatic platforms
as artificial muscles and in prostheses, we wanted to apply the same platform at the
cellular level to develop a tool for dynamic cell culture, which can be used for mechanistic
studies, mechanobiology, and mechanotransduction, as well as driving the differentiation
of pluripotent stem cells.

One of the major concerns for designing a dynamic cell culture system is facilitating
scenarios that are favorable for cell culture while limiting the exposure of electrical devices
to aqueous and humid conditions [30]. Some studies using electrostatic and electrothermal
actuators reported facing difficulties after exposure to culture media [57,58]. There is an
increased risk of contamination in many custom designed dynamic culture systems as
they lack insulation from the environment [30]. The pneumatic FRs designed in this study
can be conveniently placed in culture flasks and maintained in conventional cell culture
incubators. This design allows placement of compressed air and regulating components
outside of the incubator (Figure 4).

Our findings show that the constructed FR scaffolds can be successfully used in dy-
namic cell cultures as they support cell adhesion, migration onto the surface and throughout
the interior fibrous structure, and proliferation [59]. We can guide the adhesion and pro-
liferation of cells on the FR scaffold by controlling the braiding design (Figure 6). The
biocompatibility of the FRs was observed using two different braiding yarns (Nylon and
Dyneema) under dynamic and static conditions. There was no major difference in cell
viability when maintained under different conditions. However, a significant difference in
cell metabolic activity was observed (Figure 9). The metabolic activity observed in dynamic
FR-D was significantly lower compared to the static conditions. The metabolic activities of
dynamic FR-N and static FR-N were similar. This could be due to the higher mechanical
strain experienced by dynamic FR-D compared to dynamic FR-N (Figure 7). Prior stud-
ies have also reported that differences in strain magnitude and frequency affect the cell
response [12,40,60–62]. A study looking at the effect of the magnitude of cyclic stretching
on lung fibroblast cells showed that a high magnitude of stretching (25%) induced cellular
death while a low magnitude (1–2%) of stretching improved cell orientation with minimal
cytotoxicity [40]. Ultimately, we demonstrated that the physical properties of the FRs
can be manipulated in terms of the materials used to achieve the desired porosity for the
appropriate tissue engineering end use. This manipulation of materials is easy to achieve
and can be applied to a variety of different applications.
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By demonstrating basic biocompatibility with a fibroblast cell line, we successfully
show a “proof-of-concept” for this fibrous construct to be used in other cell-based applica-
tions. In particular, we believe this approach has the potential to be used in tissue engineer-
ing applications targeting the cardiac, dermal, or tendon systems, as well as providing a
dynamic platform to probe the specific cellular influences related to 3D mechanotransduc-
tion. In future studies, we aim to improve the design of FRs by integrating several bladders
together to better mimic geospatial organization and contractions of tubular organs. The
substrate of the scaffold also plays a vital role in mimicking the in vitro conditions. The
inclusion of surface adhesion proteins such as collagen, laminins, and fibronectins on the
surface of fiber robots would provide the desired cell–scaffold interaction. These further de-
velopments will allow us to establish and study complex 3D in vitro systems for biomedical
and pharmaceutical applications while limiting the burden on animal testing.

5. Conclusions

The simplicity, ease of arrangement, and customizability of pneumatic FRs make them
an attractive platform for dynamic cell cultures. We have shown that the magnitude and
frequency of the applied strain can be easily manipulated through a braid design and by
adjusting the air pressure. We demonstrated the feasibility of using FRs as dynamic 3D
structures for cell cultures instead of conventional 2D platforms.
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