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Abstract: According to the American Cancer Society, breast cancer is the second largest cause of
mortality among women after lung cancer. Women’s death rates can be decreased if breast cancer
is diagnosed and treated early. Due to the lengthy duration of manual breast cancer diagnosis, an
automated approach is necessary for early cancer identification. This research proposes a novel
framework integrating metaheuristic optimization with deep learning and feature selection for
robustly classifying breast cancer from ultrasound images. The structure of the proposed methodology
consists of five stages, namely, data augmentation to improve the learning of convolutional neural
network (CNN) models, transfer learning using GoogleNet deep network for feature extraction,
selection of the best set of features using a novel optimization algorithm based on a hybrid of dipper
throated and particle swarm optimization algorithms, and classification of the selected features
using CNN optimized using the proposed optimization algorithm. To prove the effectiveness of
the proposed approach, a set of experiments were conducted on a breast cancer dataset, freely
available on Kaggle, to evaluate the performance of the proposed feature selection method and the
performance of the optimized CNN. In addition, statistical tests were established to study the stability
and difference of the proposed approach compared to state-of-the-art approaches. The achieved
results confirmed the superiority of the proposed approach with a classification accuracy of 98.1%,
which is better than the other approaches considered in the conducted experiments.

Keywords: breast cancer; deep learning; feature selection; dipper throated optimization algorithm;
particle swarm optimization algorithm

1. Introduction

One of the most frequent types of cancer in women, breast cancer, develops in the
breast and then spreads to other regions of the body [1]. Breast cancer is the second most
frequent malignancy worldwide (after lung cancer) [2,3]. In the case of breast cancer,
the cancer that forms can sometimes be detected using X-ray. Approximately 1.8 million
new instances of cancer will be identified in 2020 [4]. Of these, breast cancer will account for
almost 30%. Various properties of cells are used to organize them into distinct categories.
Malignant breast cancer is one kind, while benign breast cancer is another. Therefore, if the
death rate associated with breast cancer is required to be lowered, then early detection is
essential [5].

Several imaging methods exist for diagnosing breast cancer at an early stage. In clinical
practice, breast ultrasonography is one of the most often utilized diagnostic tools [6,7].
Breast cancer originates in the epithelial cells that line the lobular unit of the terminal
duct. Cancer cells that do not invade other tissues are called noninvasive [8]. In in situ
cancer, cells are inside the basement membranes of the draining duct and the terminal
duct lobular unit. The presence or absence of metastases to the axillary lymph nodes is a

Biomimetics 2023, 8, 163. https://doi.org/10.3390/biomimetics8020163 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8020163
https://doi.org/10.3390/biomimetics8020163
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0001-7530-7961
https://orcid.org/0000-0002-9843-6392
https://doi.org/10.3390/biomimetics8020163
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8020163?type=check_update&version=2


Biomimetics 2023, 8, 163 2 of 20

major determinant in determining the best course of therapy for breast cancer [9]. When
diagnosing and classifying breast problems, ultrasound imaging is among the most popular
diagnostic tools [10]. When it comes to cancer, radiological diagnosis is one of the most
popular imaging modalities employed, alongside mammography. Nothing is ever said
about the potential difficulties it could face in the actual world. There must be careful
consideration given to the existence of speckle, and preprocessing techniques such as
wavelet-based denoising [11] should be considered in the first and second generations [12].

Ultrasound is a powerful diagnostic technique in dense breast tissue, often detecting
breast cancers that mammography misses [13]. Ultrasound is widely utilized in diagnosing
breast cancers [9] because it is non-invasive, generally well tolerated by women, and does
not expose patients to radiation. Ultrasound imaging is more portable and less expensive
than other medical imaging modalities such as MRI and mammography [14]. To aid
radiologists in evaluating breast ultrasound testing, computer-aided diagnosis (CAD)
systems were created [15,16]. It is challenging to generalize the visual information used
by older CAD systems [17–22] to ultrasound images captured using various techniques.
AI methods for automated breast cancer detection utilizing ultrasound images have made
great strides forward in recent years [23–25]. Key components of an automated procedure
include ultrasound image preprocessing, cancer segmentation, feature extraction from
segmented cancer, and classification [26].

Deep learning has recently demonstrated significant improvement in several areas,
including cell segmentation [27], skin melanoma identification [28], hemorrhage detec-
tion [29], and a few other areas [30,31]. Clinical applications of deep learning in medical
imaging have been fruitful, particularly in the detection of breast cancer [32], COVID-
19 [33], Alzheimer’s disease identification [34], and brain cancer [35] diagnoses, among oth-
ers [36–38]. The convolutional neural network (CNN) is a multi-layered deep learning
architecture. A CNN can take image data and turn it into usable features. Infection detec-
tion and categorization are two applications that make use of the attributes. CNN uses
feature extraction to retrieve information from the original images. The feature extraction
process also generates some irrelevant features from the raw images, which might have a
negative impact on classification accuracy. Therefore, for a higher classification accuracy
rate, it is crucial to choose the most significant features [39]. Research on how to pick the
most useful features from a set of extracted features is ongoing. Selection techniques such
as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and others have been
introduced in the literature and used in medical imaging. These strategies allow us to
focus on the optimal subset of features rather than the full feature space. Methods for
selecting relevant features have the dual benefit of increasing system accuracy and mini-
mizing processing time [40]. However, a few crucial properties are sometimes overlooked
during optimal feature selection, impacting system accuracy. Thus, scientists working
in computer vision have developed methods of fusing different types of information to-
gether [41]. The fusion procedure boosts the system’s efficacy by multiplying the number
of predictors [42]. Serial and parallel fusion are two common feature fusion methods [43].

Within the scope of this paper, the following issues are examined: (i) As a model based
on a smaller number of images produces inaccurate prediction, the available ultrasound
data are insufficient for building a good deep model. (ii) Misclassification often occurs
because of the great degree of resemblance between benign and malignant breast cancer
cancers. (iii) Incorrect predictions are made because the features retrieved from images
include redundant and unimportant data. To address these issues, a novel approach is
proposed based on deep-learning-based and metaheuristic optimization for breast cancer
classification from ultrasound images.

The remaining sections of this article are presented as follows. Section 2 presents a
discussion of the work that inspired this article. Specifically, deep learning, feature selection,
and fusion are presented in Section 3. In Section 4, the results are analyzed and debated.
In Section 5, the proposed methodology is wrapped up.
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2. Literature Review

Researchers have presented several automated approaches for breast cancer catego-
rization using ultrasound images [44,45]. These methods are based on computer vision.
A subset of these researchers collected features from raw images, whereas others focused
on the segmentation phase first [46]. In a few instances, researchers employed the prepro-
cessing procedure to increase contrast in the input images and to emphasize the infected
region for more accurate feature extraction [47]. One such CAD approach was described for
breast cancer screening in [48]. Hilbert Transform (HT) was used to convert the raw data
into a brightness-mode image to create the final product. The cancer was then divided into
smaller regions using a watershed transformation that was governed by markers. After that,
the ensemble decision tree model and the K-nearest neighbor (KNN) classifier were used
to extract form and textural data and to classify them. The authors in [3] used semantic
segmentation, fuzzy logic, and deep learning to segment and classify breast cancers from
ultrasound images. The cancer was segmented using a semantic segmentation strategy
after being preprocessed using fuzzy logic. Tumors were eventually classified using one of
eight previously trained models.

The radionics classification pipeline was first presented by the authors in [49] and
is based on machine learning (ML). This was accomplished by isolating the ROI and
extracting the interest features. Machine learning classifiers were used to assign categories
to the retrieved features. Results from experiments performed on the breast ultrasound
images (BUSI) dataset indicated a rise in precision. The authors in [14] presented a deep
learning-based system to classify breast mass from ultrasound images. Improved data
transmission was achieved via transfer learning (TL) and deep representation scaling (DRS)
layers inserted between blocks of pre-trained CNN. Only the parameters of the DRS layers
were altered during network training to adapt the previously trained CNN to assess breast
mass categorization from the input images. The DRS approach performed exceptionally
well in comparison to state-of-the-art methods, as evidenced by the findings. The authors
in [5] presented a Dilated Semantic Segmentation Network (Di-CNN) to find and label
breast cancer. When extracting features, they looked to a pre-trained DenseNet201 deep
model and refined it through transfer learning. Further, the nodules were categorized
using a pre-trained model and a 24-layer CNN that fused feature information in parallel.
The findings demonstrated that the fusion procedure enhanced the recognition accuracy.

A contextual level set technique was described for breast cancer segmentation in [50].
A network based on UNet-like encoder-decoder architecture was developed to acquire
broad semantic context. The breast cancer classification network proposed by the authors
in [51] is a deep, doubly supervised transfer learning model. Specifically, they implemented
the Maximum Mean Discrepancy (MMD) criteria within a learning context using the
Privileged Information (LUPI) paradigm. Later, they integrated the methods into a new
doubly supervised TL network (DDSTN), outperforming both methods individually. In [52],
Woo et al. presented an automated technique for analyzing ultrasound images to classify
breast cancer. Using numerous convolutional neural network (CNN) models, they coupled
them with a new image fusion approach. This approach was experimentalized on both
public and private (private) datasets, with impressive results. The authors in [53] introduced
a deep learning model to detect breast masses in ultrasound images. Different sizes, shapes,
and phenotypes of breast masses were considered. The team used selective kernel U-Net
CNN to address these concerns. Using this method, they combined the data and utilized
them to experiment on 882 breast images. Moreover, they took into account three additional
datasets and enhanced their accuracy.

Breast MRI slices can be analyzed using a computerized method developed by the
authors in [54] to find breast tumor sections (BTS). The BTS is enhanced and extracted from
2D MRI slices using a combination thresholding and segmentation strategy. To enhance
the BTS, the authors develop tri-level thresholding using the Slime Mould Algorithm and
Shannon’s entropy. Then, the authors use watershed segmentation to mine the BTS for
useful information. After the BTS were extracted, they were compared to the ground truth
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to obtain the necessary image performance values. Breast cancer was detected with the use
of an extreme learning machine (ELM) by the authors in [55]. Second, irrelevant features
were filtered out by employing the gain ratio feature selection strategy. At last, the authors
demonstrated and validated a cloud-based approach to remote breast cancer diagnoses on
the Wisconsin Diagnostic Breast Cancer dataset.

With edge detection and the U-NET model, the authors in [56] proposed a method for
diagnosing brain tumors. Image enhancement, edge detection, and classification utilizing
fuzzy logic form the basis of the proposed tumor segmentation system by preprocessing
the input images with a contrast enhancement strategy, then using a fuzzy logic-based
edge detection method to locate the edge in the original images, and finally using a dual
tree-complex wavelet transform at various scale levels. To identify meningioma in brain
scans, the authors used the fading sub-band images to calculate the features, which were
subsequently categorized using the U-NET CNN classification. Breast thermal images
were used to develop an automated breast cancer diagnostic system by the authors in [57].
In the first step, they photographed women with their breasts in a variety of positions.
Extensive connection and sophisticated coarse segmentation were used in this research.
In subsequent steps, the nodule was honed using a dilated filter. Additionally, the accuracy
of the proposed architecture was recommended to be enhanced by introducing a class
imbalance loss function.

According to the methods discussed, researchers often overlook the preprocessing
stage. The researchers often began with the segmentation process and then moved on to
the feature extraction phase. To enhance their categorization accuracy, several of them tried
feature fusion. Unfortunately, they did not put much effort into picking the best features.
Computational time is now a significant consideration they did not consider. In this study,
we put forth a best practice for classifying breast masses using a combination of several
deep-learning features. Table 1 summarizes some of the most cutting-edge methods.

Table 1. A review of classification methods for breast cancer.

Article Approach Dataset Features

[56] Fuzzy logic and U-Net BUSI CNN features
[14] deep representation scaling and CNN BUSI Deep features through scaling layers
[49] Radiomics and Machine learning BUSI Geometric features and Textural
[3] Semantic segmentation and Fuzzy logic BUSI Deep features
[50] U-Net Encoder-Decoder CNN BUSI High level contextual features
[48] Watershed and Hilbert transform BUSI Textural features
[47] Shape Adaptive CNN Breast Ultrasound Images Deep features

3. The Proposed Methodology

This section describes the proposed framework for ultrasonic breast imaging breast
cancer categorization. For a visual representation of the proposed framework’s structure,
see Figure 1. The original ultrasound images are first enhanced with additional data
before being sent into GoogleNet, a fine-tuned deep network, to be trained. To train,
transfer learning is utilized to draw features from a global average pool layer. Improved
optimization methods for the extracted features, such as the dipper throated and particle
swarm varieties, are used. By applying a probabilistic method, the most useful features are
combined. A machine learning classifier is then utilized to categorize the fused features.
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Figure 1. Architecture of the proposed methodology.

3.1. Dataset Augmentation

Recent years have seen significant research on data augmentation’s role in deep
learning. However, available datasets in the medical sector are considered to be a low
resource, which is a problem for deep learning, as it requires a large number of training
samples. Because of this, a data augmentation process is required to boost the variety of the
primary dataset. When validating these results, the BUSI dataset is consulted. There are
780 images (500 × 500) in the dataset, with 133 “normal” images, 210 “malignant” images,
and 487 “benign” images [58], as shown in Figure 2. All of these data were split in half for
use in training and testing. Following this, the normal (56 images), malignant (105 images),
and benign images used for training were all collected (243 images). The deep learning
model cannot be trained without an additional data augmentation phase. The original
ultrasound images are implemented and processed by three different operations, including
horizontal flip, vertical flip, and rotation 90 degrees, to expand the variety of the original
dataset. The implemented actions are repeated until there are 4000 images in each class.
With the enhancements applied, the dataset now contains 12,000 images.

Figure 2. The three classes of the samples in the adopted dataset.

3.2. Transfer Learning

Transfer learning (TL) is a machine learning technique that applies a previously learned
model to a new problem. From a practical aspect, a supervised learning agent’s sampling
efficiency may be vastly improved by reusing or transferring data from previously taught
tasks for the newly learned tasks [59]. Deep feature extraction is performed using TL in this
case. To do this, first a model that has been pre-trained is adjusted, and then, another model
is trained using TL. An updated deep model is trained using information from the previous
model (source domain) (target domain). The new model is then trained with the following
hyperparameters: learning rate = 0.001, mini-batch size = 16, epochs = 200, and learning
technique = stochastic gradient descent. These features are derived from the modified deep
model’s Global Average Pooling (GAP) layer. Then, two reformed optimization techniques
are used to fine-tune the retrieved features. Figure 3 depicts a graphical representation of
the transfer learning process.
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Figure 3. Architecture of the transfer learning process.

3.3. Classification of Selected Features

The proposed feature selection method selects the most significant features that can
be used to robustly categorize the breast cancer case. The classification of the selected
features is performed in terms of a convolutional neural network (CNN). The performance
of this CNN is boosted by utilizing the proposed optimization algorithm for optimizing the
parameters of the CNN. The optimized CNN is then used to classify the selected features.
The output of the optimized CNN is analyzed and evaluated using several criteria and
is finally compared to the recent classification models to demonstrate its effectiveness
and superiority.

3.4. The Proposed Optimization Algorithm

The proposed optimization algorithm is based on two optimization algorithms, namely,
dipper throated optimization (DTO) and particle swarm optimization (PSO) algorithms,
which swaps between the two algorithms dynamically and is denoted by dynamic DTPSO
(DDPSO). The proposed algorithm exploits the advantages of both algorithms to improve
the exploration and exploitation of the optimization process and thus finds the best solution
optimally. The steps of the proposed algorithm are shown in the flowchart depicted in
Figure 4.
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Figure 4. Flowchart of the proposed DDTPSO algorithm.

3.5. Feature Selection Algorithm

The feature selection process proposed in this work is based on the proposed optimiza-
tion algorithm but with converting the resulting solution to binary. Therefore, the proposed
feature selection method is denoted by binary DDTPSO (bDDTPSO). The conversion to
binary is based on the sigmoid function that converts the result of the continuous DDTPSO
into binary. The proposed feature selection algorithm is presented in Algorithm 1. This
algorithm is used to select the significant features resulting from the feature extraction
process performed using the GoogleNet deep network. The selected features are then used
to classify the input ultrasound image of a breast to determine the case of cancer.
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Algorithm 1: The proposed binary DDTPSO algorithm.
1: Initialize the parameters of DDPSO algorithm
2: Convert the resulting best solution to binary [0, 1]
3: Evaluate the fitness of the resulting solutions
4: Train KNN to assess the resulting solutions
5: Set t = 1
6: while t ≤ Maxiteration do
7: Run DDPSO algorithm to obtain best solutions Sbest
8: Convert best solutions to binary using the following equation:

Sbinary =

{
1 if F(Sbest) ≥ 0.5
0 otherwise

,

F(SBest) =
1

1 + e−10(SBest−0.5)

9: Calculate the fitness value
10: Update the parameters of DDTPSO algorithm
11: Update t = t + 1
12: end while
13: Return best set of features

4. Experimental Results

The specifications of the machine used to run the conducted experiment are: Windows
11 PC with Core(TM) i5-2430M CPU @ 2.40 GHz and 16 GB of RAM and NVidia GPU with
8 GB memory. Python 3.10 is also used to implement the proposed methodology. A freely
available dataset on Kaggle is used to train the proposed methodology for classifying breast
cancer cases. The dataset’s training, validation, and testing subsets are all assigned identical
random sizes. The testing set is used to evaluate the effectiveness of the provided model,
whereas validation is employed while calculating the fitness function for a given solution.

4.1. Configuration Parameters

The experimental setup for the proposed approach is shown in Table 2 for the opti-
mization methods employed in this work. Ten search agents are used for each optimization
algorithm with 80 iterations and 20 runs. A k-fold cross-validation value of 10 is applied
while training the classification models.

4.2. Evaluation Metrics

The achieved results are assessed using the criteria presented in Table 3. The criteria
listed in this table are used to evaluate the performance of the proposed feature selection
method [60–65]. In addition, the criteria listed in this table are used to assess the perfor-
mance of the proposed optimized classification model. In this table, the number of runs is
denoted by M, the best solution at run j is denoted by S∗

j , and size(S∗
j ) refers to the best

solution vector length. In addition, the size of the test set is denoted by N, and the predicted
and actual values are denoted by V̂n and Vn, respectively. Moreover, the true positive, true
negative, false positive, and false negative are denoted by TP, TN, FP, and FN, respectively.
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Table 2. Configuration parameters of the optimization algorithms.

Algorithm Parameter Value

DTO [66] Iterations 500
Number of runs 30
Exploration percentage 70

PSO [67] Acceleration constants [2, 12]
Inertia Wmax, Wmin [0.6, 0.9]
Number of particles 10
Number of iterations 80

WOA [68] r [0, 1]
Number of iterations 80
Number of whales 10
a 2 to 0

GWO [69] a 2 to 0
Number of iterations 80
Number of wolves 10

SBO [70] Step size 0.94
Mutation probability 0.05
Lowe and upper limit difference 0.02

GA [71] Cross over 0.9
Mutation ratio 0.1
Selection mechanism Roulette wheel
Number of iterations 80
Number of agents 10

MVO [72] Wormhole existence probability [0.2, 1]
FA [73] Number of fireflies 10
BA [74] Inertia factor [0, 1]

Table 3. Evaluation metrics used in assessing the proposed methods.

Metric Value

Mean 1
M ∑M

i=1 S∗
i

Best fitness minM
i=1S∗

i

Worst fitness maxM
i=1S∗

i

Average fitness size 1
M ∑M

i=1 size(S∗
i )

Average error 1
M ∑M

j=1
1
N ∑N

i=1 mse(V̂i − Vi)

Standard deviation
√

1
M−1 ∑M

i=1
(
S∗

i − Mean
)2

Accuracy TP+TN
TP+TN+FP+FN

p value TP
TP+FP

N value TN
TN+FN

Specificity TN
TN+FP

Sensitivity TP
TP+FN

F Score TP
TP+0.5(FP+FN)

4.3. Feature Extraction Evaluation

The evaluation of the feature extraction was performed, and the results are presented
and discussed in this section. Table 4 presents the evaluation results of the feature extraction
process. The feature extraction is performed in terms of four deep learning models, and the
classification results are recorded in the table. This table shows that the results achieved
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by the GoogleNet deep model are superior to the other deep learning models. Therefore,
the GoogleNet deep model is adopted for further steps in the proposed methodology.

Table 4. Evaluation of the results achieved by various deep learning models.

Accuracy Sensitivity Specificity p Value N Value F Score

VGG16Net 0.776 0.750 0.778 0.231 0.972 0.353
ResNet-50 0.789 0.769 0.791 0.250 0.974 0.377
AlexNet 0.828 0.811 0.830 0.273 0.982 0.408
GoogLeNet 0.853 0.784 0.857 0.266 0.984 0.397

4.4. Feature Selection Evaluation

Once the features are extracted, the best set of features that can be used to classify the
input image are selected. The feature selection is performed using the proposed algorithm
presented in the previous section. Eleven other feature selection algorithms are employed
for comparison to prove the effectiveness and superiority of the proposed feature selection
method. The evaluation of the results achieved by the proposed and other feature selection
methods is presented in Table 5. This table shows that the results achieved by the proposed
feature selection method are much better than those of the other methods.

Table 5. Evaluation of the resutls achieved by the feature selection methods.

bDDTPSO DTO bPSO bBA bWAO bBBO bMVO bSBO bFA bGA bGWO_PSO bGWO_GA

Average error 0.557 0.574 0.608 0.617 0.608 0.576 0.584 0.616 0.606 0.588 0.613 0.594
Average select size 0.510 0.710 0.710 0.849 0.873 0.873 0.806 0.880 0.744 0.652 0.843 0.632
Average fitness 0.620 0.636 0.635 0.657 0.642 0.640 0.664 0.674 0.686 0.648 0.644 0.642
Best fitness 0.522 0.556 0.615 0.547 0.606 0.630 0.589 0.617 0.605 0.551 0.598 0.620
Worst fitness 0.620 0.623 0.683 0.649 0.683 0.716 0.707 0.697 0.703 0.666 0.708 0.696
Std. fitness 0.442 0.447 0.446 0.456 0.449 0.491 0.497 0.507 0.483 0.449 0.465 0.448

In addition, a statistical analysis is applied to study the stability of the proposed feature
selection methods, and the results are listed in Table 6. In this table, the proposed feature
selection methods achieved the minimum standard deviation of the best mean, median,
minimum, and maximum measurements compared to the other feature selection methods.

Table 6. Statistical analysis of the results achieved by the feature selection methods.

bDDTPSO DTO bPSO bBA bWAO bBBO bMVO bSBO bFA bGA bGWO_PSO bGWO_GA

Number of values 11 11 11 11 11 11 11 11 11 11 11 11
75% Percentile 0.557 0.574 0.608 0.617 0.608 0.596 0.585 0.616 0.606 0.588 0.613 0.594
25% Percentile 0.557 0.574 0.608 0.617 0.608 0.576 0.585 0.616 0.606 0.588 0.613 0.594
Maximum 0.557 0.576 0.618 0.617 0.628 0.628 0.615 0.636 0.626 0.638 0.633 0.629
Median 0.557 0.574 0.608 0.617 0.608 0.576 0.585 0.616 0.606 0.588 0.613 0.594
Minimum 0.557 0.564 0.604 0.607 0.608 0.576 0.585 0.616 0.606 0.588 0.613 0.594
Range 0.000 0.012 0.014 0.010 0.020 0.052 0.030 0.020 0.020 0.050 0.020 0.035
Std. error of mean 0.000 0.001 0.001 0.001 0.002 0.006 0.003 0.002 0.002 0.005 0.002 0.003
Std. deviation 0.000 0.003 0.003 0.003 0.006 0.019 0.009 0.006 0.006 0.015 0.006 0.011
Mean 0.557 0.573 0.608 0.617 0.610 0.586 0.588 0.619 0.609 0.593 0.616 0.598

On the other hand, two statistical tests were conducted to study the statistical dif-
ference between the proposed feature selection method and the other feature selection
methods. The first test is the one-way analysis of variance (ANOVA) test, and the other test
is the Wilcoxon signed-rank test. The results of these tests are presented in Tables 7 and 8.
As presented in these tables, the most significant parameter is p, which indicates a statistical
difference when its value is less than 0.005. The results presented in these tables confirm the
statistical difference between the proposed feature selection method and the other feature
selection methods.
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Table 7. One-way analysis of variance (ANOVA) test of the feature selection methods compared to
the proposed feature selection method.

SS DF MS F (DFn, DFd) p Value

Treatment 0.04443 11 0.004039 F (11, 120) = 49.80 p < 0.0001
Residual 0.009733 120 0.00008111
Total 0.05416 131

Table 8. Wilcoxon signed-rank test of the feature selection methods compared to the proposed feature
selection method.

bDDTPSO DTO bPSO bBA bWAO bBBO bMVO bSBO bFA bGA bGWO_PSO bGWO_GA

Theoretical median 0 0 0 0 0 0 0 0 0 0 0 0
Actual median 0.5568 0.574 0.6078 0.6174 0.6076 0.576 0.5845 0.6161 0.6062 0.5876 0.6133 0.5941
Sum of negative ranks 0 0 0 0 0 0 0 0 0 0 0 0
Sum of signed ranks (W) 66 66 66 66 66 66 66 66 66 66 66 66
Sum of positive ranks 66 66 66 66 66 66 66 66 66 66 66 66
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Discrepancy 0.5568 0.574 0.6078 0.6174 0.6076 0.576 0.5845 0.6161 0.6062 0.5876 0.6133 0.5941
p value (two tailed) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Number of values 11 11 11 11 11 11 11 11 11 11 11 11

A more in-depth analysis of the results achieved by the proposed feature selection
method is presented in terms of the plots shown in Figures 5 and 6. These plots represent
the average error the proposed feature selection method achieves compared to the other
feature selection methods. As shown in this plot, the proposed method is superior and
more robust in selecting the best set of features that can be used to classify breast cancer
cases robustly. More analysis of the robustness of the proposed approach is represented
by the residual, homoscedasticity, quartile–quartile (QQ), and heatmap plots of Figure 6.
In the residual and homoscedasticity plots, the error values are in the range from 0.01
to 0.04, indicating the proposed approach’s accuracy. In addition, the results of the QQ
plot are aligned close to the red diagonal line, confirming the accuracy of the proposed
method. On the other hand, a set of 11 runs are performed to study the average error of
the proposed method with comparison to the other methods. In the heatmap (bottom-
right) plot, the results achieved by the proposed method are superior to the results of
the other methods. These plots’ results emphasize the proposed method’s effectiveness
and superiority.

Figure 5. The average error achieved by the proposed feature selection method compared to
other methods.
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Figure 6. Analysis plots of the results achieved by the proposed feature selection algorithm bDDTPSO.

4.5. Evaluation of Classification Models

The best set of features selected by the proposed feature selection algorithm are
then used to train the classification models. In this work, four classifiers are evaluated
to choose the best classifier. These classifiers are convolutional neural networks (CNN),
neural networks (NN), support vector machines (SVM), and K-nearest neighbors (KNN).
The results of these classifiers are presented in Table 9. In this table, the performance of the
CNN model is much better than the other models is and thus adopted for optimization to
further improve its performance.

Table 9. Evaluation of the results achieved by various classification models.

Accuracy Sensitivity Specificity p Value N Value F Score

CNN 0.925 0.300 0.981 0.588 0.940 0.397
NN 0.917 0.300 0.972 0.492 0.940 0.373
SVM 0.894 0.333 0.947 0.375 0.938 0.353
KNN 0.884 0.727 0.897 0.364 0.976 0.485

4.6. Evaluation of Optimized CNN Classification

As the CNN model is adopted for the classification of the input images, this model is
subjected to optimization using the proposed DDTPSO algorithm to improve its perfor-
mance. The optimization of this model is performed using four optimization algorithms
in addition to the proposed optimization algorithm. The results of the optimized CNN
using these optimization algorithms are presented in Table 10. This table shows that the
performance of the optimized CNN is much better than the CNN without optimization,
especially using the proposed DDTPSO optimization algorithm. These results confirm the
effectiveness of the proposed optimization algorithm.
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Table 10. Evaluation results of the optimized CNN for classifying breast cancer cases.

Accuracy Sensitivity Specificity p Value N Value F Score

DDTPSO-CNN 0.981 0.984 0.981 0.865 0.998 0.920
DTO-CNN 0.961 0.982 0.949 0.914 0.990 0.947
PSO-CNN 0.952 0.982 0.927 0.914 0.985 0.947
GA-CNN 0.943 0.980 0.909 0.909 0.980 0.943
WAO-CNN 0.938 0.980 0.889 0.909 0.976 0.943

To further analyze the proposed optimization algorithm’s performance, the optimized
CNN’s results using different optimization methods are analyzed statistically to show the
proposed algorithm’s superiority and statistical difference. Table 11 presents the results of
the statistical analysis, which confirm the stability of the optimization of CNN using the
proposed algorithm with the minimum value of standard deviation and the best values
achieved for the other criteria in the statistical analysis.

Table 11. Statistical analysis of the results achieved by the optimized CNN.

DDTPSO-CNN DTO-CNN PSO-CNN GA-CNN WAO-CNN

Number of values 10 10 10 10 10
Minimum 0.981 0.951 0.952 0.943 0.938
Mean 0.983 0.961 0.954 0.946 0.939
Median 0.981 0.961 0.952 0.943 0.938
Maximum 0.991 0.971 0.962 0.955 0.948
75% Percentile 0.983 0.961 0.954 0.946 0.939
25% Percentile 0.981 0.961 0.952 0.943 0.938
Std. error of mean 0.0012 0.0015 0.0013 0.0015 0.0010
Std. deviation 0.0038 0.0047 0.0042 0.0046 0.0033
Range 0.010 0.020 0.010 0.012 0.010

The statistical difference of the proposed optimization algorithm is studied in terms of
the ANOVA and Wilcoxon tests, similar to the study performed on the proposed feature
selection method discussed in the previous section. The results of these tests are presented
in Tables 12 and 13. The p values in these tables are less than 0.005, proving the statistical
difference between the proposed optimization algorithm and the other algorithms.

Table 12. Wilcoxon signed-rank test of the optimization models compared to the proposed optimiza-
tion model.

DDTPSO-CNN DTO-CNN PSO-CNN GA-CNN WAO-CNN

Theoretical median 0 0 0 0 0
Actual median 0.9811 0.9607 0.9516 0.9434 0.9375
Sum of negative ranks 0 0 0 0 0
Sum of signed ranks (W) 55 55 55 55 55
Sum of positive ranks 55 55 55 55 55
p value (two tailed) 0.002 0.002 0.002 0.002 0.002
Exact or estimate Exact Exact Exact Exact Exact
Discrepancy 0.9811 0.9607 0.9516 0.9434 0.9375
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes
Number of values 10 10 10 10 10
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Table 13. One-way analysis of variance (ANOVA) test of the optimization models compared to the
proposed optimization model.

SS DF MS F (DFn, DFd) p Value

Treatment 0.01153 4 0.002882 F (4, 45) = 165.9 p < 0.0001
Residual 0.0007819 45 0.00001738
Total 0.01231 49

Another in-depth analysis of the results achieved by the proposed optimization
method for CNN is presented in terms of the plots shown in Figures 7–9. These plots
represent the accuracy, histogram of accuracy, and analysis plots achieved by the proposed
optimization of CNN compared to the other optimization methods. These plots show that
the proposed method is superior and more robust in classifying breast cancer cases.

Figure 7. Accuracy of the results achieved by CNN optimization using the proposed DDTPSO
method compared to other methods.

Figure 8. Histogram of the accuracy achieved by the proposed method compared to other methods.
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Figure 9. Analysis plots of the results achieved by the proposed DDTPSO optimization algorithm
when applied to CNN.

On the other hand, the convergence curve is depicted in Figure 10. This curve is used
to study the cost function values versus the computation time. In the figure, it can be noted
that the proposed approach is converging faster than the other competitor methods. This
result gives additional emphasize of the superiority of the proposed methodology.

Figure 10. Convergence curve of the proposed method with comparison to other methods.
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In addition, the linear regression test is performed to study the relationship between
the proposed and other approaches. The regression test results are presented in Table 14.
In this table, the calculated p value is less than 0.05, indicating the significant relationship
between the proposed methodology and the competitor methodologies.

Table 14. Linear regression test results.

Linear Regression DTO-CNN PSO-CNN GA-CNN WAO-CNN

Best-fit values
Slope −0.1515 1.094 1.186 0.8053
Y-intercept 1.11 −0.1217 −0.2197 0.1473
X-intercept 7.326 0.1113 0.1853 −0.1829
1/slope −6.603 0.9141 0.8435 1.242
Std. error
Slope 0.4324 0.04789 0.09457 0.09921
Y-intercept 0.425 0.04707 0.09295 0.09751
95% confidence intervals
Slope −1.149 to 0.8457 0.9835 to 1.204 0.9675 to 1.404 0.5766 to 1.034
Y-intercept 0.1294 to 2.090 −0.2303 to −0.01317 −0.4341 to −0.005363 −0.07754 to 0.3722
X-intercept 1.819 to +infinity 0.01339 to 0.1912 0.005543 to 0.3092 −0.6455 to 0.07498
Goodness of fit
R square 0.0151 0.9849 0.9516 0.8917
Sy.x 0.004962 0.0005496 0.001085 0.001138
Is slope significantly non-zero?
F 0.1227 521.8 157.2 65.9
DFn, DFd 1, 8 1, 8 1, 8 1, 8
p value <0.0001 <0.0001 <0.0001 <0.0001
Deviation from zero Significant Significant Significant Significant

5. Conclusions

This paper proposes a fully automated technique to analyze ultrasound images for
signs of breast cancer. The proposed approach relies on a series of consecutive procedures.
At first, a GoogleNet deep learning model is applied to the breast ultrasound data, enhanc-
ing and retraining it. Therefore, a novel optimization technique is derived from the dipper
throated optimization algorithm and the particle swarm optimization algorithm to select
the best set of features. This set of features is used in classifying breast cancer cases. Experi-
mental results showed that the proposed approach achieved the highest accuracy, at 98.1%
(using the selected features and CNN classifier). Compared to more modern methods,
the outcomes are better when the proposed framework is used. This work’s strengths lie in
the enhanced dataset, thereby increasing the training strength. In addition, the irrelevant
features were eliminated through the selection of best features using a novel feature selec-
tion algorithm. In the future, two main steps can be considered: utilizing a dataset of larger
size and (ii) developing a new CNN model specifically for breast cancer classification.
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