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Abstract: In this article, a chaotic computing paradigm is investigated for the parameter estimation
of the autoregressive exogenous (ARX) model by exploiting the optimization knacks of an improved
chaotic grey wolf optimizer (ICGWO). The identification problem is formulated by defining a mean
square error-based fitness function between true and estimated responses of the ARX system. The
decision parameters of the ARX model are calculated by ICGWO for various populations, generations,
and noise levels. The comparative performance analyses with standard counterparts indicate the
worth of the ICGWO for ARX model identification, while the statistical analyses endorse the efficacy
of the proposed chaotic scheme in terms of accuracy, robustness, and reliability.

Keywords: chaos; parameter estimation; ARX; grey wolf optimizer

1. Introduction

Parameter estimation plays an important role in system identification, which is the
frontier of research in signal processing [1]. It is widely applied in various applications
such as Hammerstein autoregressive system [2], water turbine [3], electrical machines [4],
fuel cells [5], recurrent neural networks [6], health [7], Hammerstein–Wiener system [8],
computer-aided design [9], renewable energy resources [10], honey production [11], Mag-
netorheological dampers [12], and smart grids [13]. Various techniques were proposed in
the literature related to parameter estimation such as metaheuristics [14], fractional algo-
rithms [15], least mean square [16], fuzzy logic [17], analytical methods [18], and machine
learning [19].

Among these techniques, metaheuristics have gained significant attraction in recent
decades for system identification. As presented in Figure 1, metaheuristic techniques are
classified into five domains. The first domain is bio-inspired techniques, and various tech-
niques are proposed in this domain. The particle swarm optimization (PSO) [20] is inspired
by the movement and intelligence of swarms. The artificial rabbits optimization [21] is
inspired by the survival strategies of rabbits, which include detour foraging and random
hiding. The grey wolf optimization (GWO) [22] mimics the behavior of grey wolves for
hunting and leadership hierarchy. Manta ray foraging optimization [23] mimics the three
unique strategies of manta rays, which includes chain, cyclone, and somersault for solv-
ing optimization problems. Artificial hummingbirds [24] use flight skills and foraging
strategies of hummingbirds.

The second domain is human-based techniques which were used for optimization. In
teaching–learning-based optimization [25], inspired by a classroom environment in which
optimal solution is calculated by knowledge sharing between teacher and students. In
city councils evolution [26], the councils evolved from smallest to largest neighborhoods.
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Based on the performance of council members, they became members of the larger councils.
The mountaineering team-based optimization [27] is inspired by the leader’s experience
of guided and regular movement by climbers to reach the mountain top. In political
optimizer [28], the optimization solution is obtained by considering each party member
as a solution, and their election behavior is used for evaluation. In the parliamentary
optimization algorithm [29], intra- and inter-group competitions are conducted for taking
control of parliament.
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Figure 1. Classification of metaheuristic techniques.

The third domain is evolutionary techniques applied to optimization problems. In dif-
ferential evolution [30], an optimization solution is obtained by using mutation, crossover,
and selection operators. In egret swarm optimization [31], sit-and-wait strategy, aggressive
strategy, and discriminant conditions were used for finding the optimal solution. Genetic
algorithm [32], uses the concept of genetics and natural selection for solving optimization
problems. The evolutionary mating algorithm [33] adopts Hardy–Weinberg equilibrium
and crossover index in finding solutions to optimization problems.

The fourth domain includes physics-based techniques applied for optimization. In
big bang big crunch [34], two phases, namely, big bang and big crunch, were used for
randomness and ordered particle distribution in solving optimization problems. In the
circle search algorithm [35], features of a circle such as a diameter, radius, perimeter, tangent
lines, and angle were used for obtaining optimization solutions. Newton’s metaheuristic
algorithm [36] uses Newton’s gradient-based method for population update and incorpo-
rates a term containing the best solution in its update rule. Transit search [37] uses the
exoplanet exploration method for finding the best optimal solution.

The fifth domain is nature-inspired techniques used in optimization. In the water cycle
algorithm [38], the behavior of water flow in rivers, streams, and the sea is formulated for
solving optimization problems. Farmland fertility [39] divides farmland into different parts
for increasing optimal efficiency in internal and external memory. Sunflower optimizer [40]
mimics the movement of sunflowers towards the sun by aggregating the distance between
the sun for finding the best solution. In wind-driven optimization [41], velocity and position
are updated based on atmospheric motion.

Chaos theory relates the chaotic dynamics of systems with initial conditions and
unstable periodic motions [42]. It is applied in various applications such as biometric
security [43], embedded systems [44], communications [45], lasers [46], pumped storage
units [47], encryption systems [48], the Internet of Things [49], image processing [50], and
image encryption [51].
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Combining chaos in metaheuristics increases the exploration and exploitation of
optimization techniques. Various chaotic metaheuristics were presented in the literature.
In [52], a chaotic biogeography-based optimizer is proposed in which chaotic maps were
incorporated in the migration, selection, and mutation operations of the optimizer. In [53],
an improved version of manta ray foraging called the elite chaotic manta ray algorithm is
proposed in which chaotic maps and opposition-based learning are implemented so that it
does not fall in local minima. In [54], a chaotic version of the bonobo optimizer is proposed
and applied for optimal power flow analysis in renewable energy sources. In [55], a chaotic
variant of the salp search algorithm is used for the solution of the economic dispatch
problem for different combinations of renewable energy resources. In [56], a chaotic variant
of fruit fly optimization is proposed which incorporates fourteen chaotic maps and is tested
on ten benchmark problems. In [57], an enhanced version of kill herd optimization is
proposed by incorporating sine, circle, and tent chaotic maps. In [58], a chaotic version
of invasive weed optimization is proposed for solving optimization problems. In [59], a
chaotic quasi-oppositional arithmetic optimization algorithm is proposed for the thermo-
economic design of tube and shell. In [60], a chaotic billiards optimization is proposed for
optimum parameter estimation of solar hydrogen variable speed induction motor.

Grey wolf optimizer (GWO) has gained significant attention in recent years due to its
flexibility, scalability, and few parameters [61]. It is applied in various applications such
as gait analysis [62], structural strain reconstruction [63], engines [64], renewable energy
systems [65], robotics [66], deep learning [67], wireless sensor networks [68], smart grid [69],
medical [70], and energy management [71]. Even though GWO has been utilized in
different applications, due to the complexity of real-world optimization problems, various
improvements have been made in GWO in terms of updating mechanisms, hybridization,
encoding schemes, multi-objective, and new operators.

In [72], a modified GWO for a wireless sensor network is presented. In this work,
the weights are dynamically updated based on the distance between the wolves, their
prey, and coefficient vectors for improving the optimization ability of GWO. In [73], a
chaotic GWO is proposed for solving optimization problems. In this work, chaotic maps
were incorporated into GWO for accelerating its convergence. Afterward, it is applied
to thirteen constrained benchmark problems and five engineering-constrained problems.
In [74], an improved GWO is proposed by incorporating variable weights along with a
new governing equation for controlling parameters. In [75], a hybrid version of GWO is
proposed. In this work a hybrid sparrow search algorithm GWO is proposed and applied
for gain optimization of the proportional–integral–derivative controller. In [76], a hybrid
algorithm called GWOPSO is proposed and applied for optimal parameter estimation of
the proportional–integral–derivative used for the controlled pump-motor servo system.
In [77], an improved chaotic GWO (ICGWO) is proposed by incorporating an adaptive
convergence factor and chaotic map in GWO which is further applied in the extraction of
supercritical carbon dioxide from a multi-herbal formula.

The autoregressive exogenous model (ARX) is used in different engineering problems
such as time series data prediction [78], pneumatic positioning systems [79], wheeled
robots [80], multiple-input–multiple-output (MIMO) systems [81], and human driving
behavior modeling [82]. Various identification techniques were proposed for the parameter
estimation of ARX. In [83], a modified momentum gradient descent algorithm is proposed
which uses two gradient directions and sizes in each iteration for ARX identification. In [84],
a recursive least squares, decomposition least squares, and interval-varying least squares
were used for ARX identification. In [85], dwarf mongoose optimization is used for system
identification of the ARX model. In [86], multi-innovation fractional least mean squares
were used in estimation. In [87], an Aquila optimizer is used in parameter estimation of
the ARX model, In [88], Kalman filter-based multi-step length gradient iterative algorithm
with missing outputs is used for parameter estimation of the ARX models. In [89], a Renyi
square error entropy and fourth-order statistic of the error–kurtosis–into the variable step
size input for used ARX model identification.
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The current study is a novel investigation exploring the potential of chaotic maps
through an ICGWO for effective parameter estimation of ARX structure. The innovative
contributions of the proposed study are as follows:

• The parameter estimation problem of a system represented by the ARX model is
investigated through optimization knacks of an improved chaotic grey wolf optimizer
(ICGWO).

• The performance of the proposed ICGWO scheme is examined in detail through
comparison with the conventional counterparts for various generations, populations,
and noise levels.

• The statistical analysis through multiple independent trials confirms the accurate and
robust performance of the ICGWO over the GWO, CGWO, and AGWO.

• The accurate estimation for a practical example of a temperature process system further
validates the convergent performance of the ICGWO.

The remainder of the article is structured as follows: ARX mathematical structure
is presented in Section 2. In Section 3, the ICGWO-based proposed scheme is provided.
Section 4 presents the performance comparison of ICGWO, GWO, AGWO, and CGWO.
The article is concluded in Section 5.

2. ARX Mathematical Model

The ARX structure effectively model various engineering and applied sciences prob-
lems such as time series prediction, pneumatic positioning system, wheeled robots, MIMO
systems, and behavior modeling [78–82]. The block diagram of the ARX model is presented
in Figure 2, where B

(
z−1) and C

(
z−1) are polynomials with a degree nb and nc respectively,

and given in (1) and (2). µ(i) is random noise, (i)ג is the input, and (i) is the output

B
(

z−1
)
= 1 + b1z−1 + b2z−2 + · · ·+ bnbz−nb (1)

C
(

z−1
)
= c1z−1 + c2z−2 + · · ·+ cnc z−nc (2)
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The output from Figure 2 is presented in (3).

(i) =
C
(
z−1)

B(z−1)
(i)ג + 1

B(z−1)
µ(i) (3)

Solving (3) as presented in (4)

B
(

z−1
)

(i) = C
(

z−1
)
(i)ג + µ(i) (4)
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(4) can be rearranged as presented in (5)

(i) =
[
1− B

(
z−1
)]

(i) + C
(

z−1
)
(i)ג + µ(i) (5)

The information vectors are defined in (6) and (7).

b(i) =
[
− (i− 1),− (i− 2), · · · ,− (i− nb)

]
(6)

c(i) = −i)ג−] −i)ג−,(1 2), · · · −i)ג−, nc)] (7)

The parameter vectors are presented in (8) and (9).

b = [b1, b2, · · · , bnb ] (8)

c = [c1, c2, · · · , cnc ] (9)

The overall information and parameter vectors are given in (10) and (11), respectively.

(i) =
[

b(i) c(i)
]

(10)

£ =
[
b c

]
(11)

The identification model of ARX system presented in Figure 1 is given in (12), and the
parameter vector of ARX provided in (11) is estimated through the proposed optimization
heuristics.

(i) =
T
(i)£ + µ(i) (12)

3. An Improved Chaotic Grey Wolf Optimization (ICGWO)

GWO is a recently proposed metaheuristic inspired by social hierarchy and the hunting
behavior of grey wolves. Grey wolves are apex predators and prefer to live in a pack size of
five to twelve on average with a strict dominant hierarchy. The leaders are male and female
and responsible for decisions regarding hunting, the place for sleep, time for waking up,
etc. The leader wolf is dominant, and the pack should follow his/her orders. The leader
wolves may not be the strongest, but it is the best in terms of management. Hunting is the
second interesting behavior of grey wolves after social hierarchy. The main steps of hunting
in grey wolves are approaching the prey after tracking and chasing it, harassing the prey
until it stops moving after pursuing and encircling, and finally, attack towards the prey.

ICGWO is an improved version of GWO for solving optimization problems. Its
mathematical model is presented below.

3.1. Social Hierarchy

In this step, the fittest solution α1 along with the second and third fittest solutions α2
and α3, respectively, were considered. The rest of the solutions were presumed to be ω.

3.2. Encircling Prey

In this step, the wolves encircle the prey as presented in (13) and (14).

→
F =

∣∣∣∣→E.
→
Xpr(gn)−

→
X(gn)

∣∣∣∣ (13)

→
X(gn + 1) =

→
Xpr(gn)−

→
Y.
→
F (14)
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where
→
Xpr(gn) is the prey’s position, and

→
Y and

→
F are vectors of coefficients as defined in

(15) and (16).
→
Y = 2

→
y .
→
s 1 −

→
y
∣∣∣∣→E.
→
Xpr(gn)−

→
X(gn)

∣∣∣∣ (15)

→
E = 2.

→
s 2 (16)

where s1 and s2 are random vectors, and
→
y is an improved convergence factor whose value

decreases non-linearly from 2 to 0, as presented in (17).

→
Y = 2− 2×

(
1

e− 1
×
(

e
gn

Maxgn − 1
))

(17)

where Maxgn is the maximum number of generations, and gn is the current generation.

3.3. Hunting

In this step, the positions from the three best solutions α1, α2, and α3 are considered,
while the rest of the solutions ω were required to follow the best solutions. It is presented
in (18)–(24).

→
Fα1 =

∣∣∣∣→E1.
→
Xα1(gn)−

→
X(gn)

∣∣∣∣ (18)

→
Fα2 =

∣∣∣∣→E2.
→
Xα2(gn)−

→
X(gn)

∣∣∣∣ (19)

→
Fα3 =

∣∣∣∣→E3.
→
Xα3(gn)−

→
X(gn)

∣∣∣∣ (20)

→
Xk1(gn) =

→
Xα1(gn)−

→
Yk1.

→
Fα1(gn) (21)

→
Xk2(gn) =

→
Xα2(gn)−

→
Yk2.

→
Fα2(gn) (22)

→
Xk3(gn) =

→
Xα3(gn)−

→
Yk3.

→
Fα3(gn) (23)

→
X(gn + 1) =

→
Xk1(gn) +

→
Xk2(gn) +

→
Xk3(gn)

3
(24)

where
→
Yk1,

→
Yk2, and

→
Yk3 were calculated from (15), and

→
E1,
→
E2, and

→
E3 were calculated

from (16).

3.4. Attacking

In this step, the hunting step is terminated based on
→
y presented in (17) as it decreases

non-linearly over generations for better exploration and exploitation in ICGWO.

3.5. Chaotic Map

To maintain the diversity, a logistic map is used such that the algorithm avoids the
local minimum values during optimization. Its mapping is presented in (25).

xj+1 = βxj
(
1− xj

)
(25)

where β = 4 for chaotic state population. The flowchart of ICGWO is shown in Figure 3.
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First, the parameters of ICGWO were set. Then, the best fitness solutions were
assigned to α1, α2, and α3. Afterward, ω and the logistic chaotic map were updated. Finally,
parameters were updated, and an optimal solution can be obtained.

4. Experimental Analysis

In this section, the experimental analysis of ICGWO for the ARX model is presented.
The analysis was conducted on several variations of populations (pn), generations (gn), and
noise levels. The simulations were conducted in a MATLAB environment with zero mean
unit variance input signal, and the noise signal has a normal distribution with constant
variance. The accuracy is evaluated in terms of fitness given in (26).

FF = mean
(
− ˆ

)2
(26)

where ˆ is the estimated/approximated response and is the true/actual response. The
model used for simulations is taken from [90] and presented in (27)–(28).

B
(

z−1
)
= 1− 1.53z−1 + 0.66z−2 (27)

C
(

z−1
)
= 0.25z−1 + 0.30z−2 (28)

The noise µ(i) is taken as white Gaussian with variances [0.05, 0.10, 0.15, 0.20]. The
performance is evaluated on the population (pn = 10, 30) and generations (gn = 200, 500).
Figure 4 shows the curves for different variations of the convergence factor of ICGWO.
It is perceived from Figure 4a–d that upon ICGWO balances between exploration and
exploitation when

→
y decreases nonlinearly from 2 to 0 for all noise variations. Table 1 shows

the difference between variants of GWO. In AGWO, adaptive convergence is incorporated
in GWO. This convergence factor decreases nonlinearly from 2 to 0. In CGWO, a logistic
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chaotic map is incorporated in GWO for balance between exploration and exploitation.
In ICGWO, both the adaptive convergence factor and chaotic map were incorporated in
GWO.
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Table 1. Parameters setting.

Method Parameter

GWO →
y = 2, decreases linearly to 0

AGWO →
y = 2, decreases non-linearly to 0

CGWO →
y = 2, decreases linearly to 0 with the chaotic map given in (25)

ICGWO →
y = 2, decreases non-linearly to 0 with the chaotic map given in (25)

Figure 5 displays the convergence curves of ICGWO for all noise variances. It is
perceived from Figure 5a–d that upon increasing pn and gn, the value of fitness reduces.
However, for high noise variances, the fitness also increases.
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Tables 2–5 exhibit the performance of ICGWO with GWO, AGWO, and CGWO for
best-estimated parameters and corresponding fitness values for [0.05, 0.10, 0.15, 0.20] noise
levels. It is notable that for low noise level, i.e., 0.05, the outcomes of ICGWO are better
in contrast to higher noise levels. It is also notable from Tables 2–5 that the best fitness for
0.05, 0.10, 0.15, and 0.20 noise levels are 0.00222, 0.00863, 0.01946, and 0.03440, respectively.
Therefore, it is established from Tables 2–5 that the fitness of ICGWO reduces with an
increase in noise levels.
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Table 2. Parameters estimates with respect to gn and pn at 0.05 noise level.

Methods gn pn
Parameters

Best Fitness
b1 b2 c1 c2

GWO
200

10 −1.5201 0.6553 0.2973 0.2588 0.00409
30 −1.5418 0.6695 0.2617 0.2880 0.00232

500
10 −1.5435 0.6772 0.2232 0.3523 0.00235
30 −1.5542 0.6810 0.2287 0.3179 0.00219

AGWO
200

10 −1.4913 0.6427 0.2357 0.3969 0.00428
30 −1.5459 0.6733 0.2059 0.3416 0.00229

500
10 −1.5658 0.6916 0.2346 0.3067 0.00228
30 −1.5339 0.6619 0.2320 0.3209 0.00218

CGWO
200

10 −1.5785 0.7069 0.2165 0.3121 0.00293
30 −1.5304 0.6617 0.2482 0.3239 0.00223

500
10 −1.5496 0.6705 0.2117 0.2990 0.00285
30 −1.5517 0.6775 0.2176 0.3160 0.00231

ICGWO
200

10 −1.5363 0.6676 0.3003 0.2620 0.00294
30 −1.5345 0.6664 0.2631 0.3037 0.00226

500
10 −1.5363 0.6675 0.2230 0.3278 0.00241
30 −1.5495 0.6806 0.2308 0.3242 0.00222

True Parameters −1.5300 0.6600 0.2500 0.3000 0

Table 3. Parameters estimates with respect to gn and pn at 0.10 noise level.

Methods gn pn
Parameters

Best Fitness
b1 b2 c1 c2

GWO
200

10 −1.5547 0.6779 0.2139 0.3290 0.00886
30 −1.559 0.6862 0.2218 0.3388 0.00879

500
10 −1.5729 0.6983 0.2152 0.3265 0.00884
30 −1.5298 0.6582 0.2119 0.3581 0.00875

AGWO
200

10 −1.5088 0.6453 0.2003 0.3967 0.00899
30 −1.5602 0.6902 0.2292 0.3390 0.00867

500
10 −1.5698 0.6989 0.2378 0.3221 0.00881
30 −1.5425 0.6681 0.2086 0.3481 0.00878

CGWO
200

10 −1.5740 0.7116 0.2677 0.3247 0.00975
30 −1.5661 0.6938 0.2319 0.3349 0.00892

500
10 −1.5030 0.6384 0.2214 0.3758 0.00892
30 −1.5507 0.6806 0.2144 0.3549 0.00861

ICGWO
200

10 −1.5907 0.7213 0.2108 0.3339 0.00975
30 −1.5511 0.6785 0.2473 0.3088 0.00881

500
10 −1.5486 0.6831 0.2512 0.3257 0.00889
30 −1.5317 0.6641 0.2405 0.3409 0.00863

True Parameters −1.5300 0.6600 0.2500 0.3000 0

Figures 6–9 confirm the convergence of ICGWO with GWO, AGWO, and CGWO for
all levels of noise. Figure 6 shows the convergence for the 0.05 noise level. Figure 7 shows
the convergence for the 0.10 noise level. Similarly Figures 8 and 9 shows the convergence
for 0.15 and 0.20 noise levels respectively. It is notable from Figures 6–9 that upon the rise
in noise levels, the fitness value increases. For the noise levels shown in Figures 6–9, it is
evident that the convergence of ICGWO is consistent and it accomplishes the lowest fitness
value than GWO, AGWO, and CGWO for all scenarios.
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Table 4. Parameters estimates with respect to gn and pn at 0.15 noise level.

Methods gn pn
Parameters

Best Fitness
b1 b2 c1 c2

GWO
200

10 −1.5511 0.6743 0.2067 0.3709 0.02077
30 −1.5597 0.6875 0.2056 0.3773 0.01984

500
10 −1.5266 0.6530 0.2330 0.3289 0.02018
30 −1.5427 0.6776 0.2099 0.3823 0.01940

AGWO
200

10 −1.5655 0.6914 0.1608 0.3953 0.01997
30 −1.5164 0.6568 0.2318 0.3900 0.01959

500
10 −1.5524 0.6787 0.2076 0.3679 0.01975
30 −1.5420 0.6715 0.2111 0.3621 0.01943

CGWO
200

10 −1.5034 0.6401 0.2316 0.3693 0.01994
30 −1.5457 0.6790 0.2354 0.3592 0.01944

500
10 −1.5394 0.6723 0.1991 0.3866 0.01938
30 −1.5129 0.6483 0.2231 0.3865 0.01951

ICGWO
200

10 −1.5041 0.6408 0.1903 0.4027 0.02031
30 −1.5163 0.6495 0.2248 0.3755 0.01953

500
10 −1.5496 0.6803 0.2131 0.3565 0.01958
30 −1.5382 0.6739 0.1925 0.4079 0.01946

True Parameters −1.5300 0.6600 0.2500 0.3000 0
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A statistical study of ICGWO against GWO, AGWO, and CGWO at pn = 30, gn = 500
for 100 independent runs is displayed in Figure 10. Figure 10a shows the performance for
0.05 noise level. Similarly, Figure 10b–d shows the performance for noise levels 0.10, 0.15
and 0.20 respectively. It is perceived from Figure 10 that the fitness value of ICGWO against
GWO, AGWO, and CGWO is lower on run#1, run#50, and run#100 for all levels of noise.

The investigation of ICGWO is further explored in terms of average fitness values
for all scenarios of pn and gn, as revealed in Figures 11–13. Figure 11 shows the values
of average fitness for noise variances = 0.05, 0.10, 0.15, 0.20], population (pn = 10, 30)
and generations (gn = 200, 500) between ICGWO and GWO. Similarly, Figures 12 and 13
show these variations between ICGWO vs AGWO and ICGWO vs CGWO respectively. In
Figure 11 it is established that ICGWO achieves the lowest fitness values than GWO for all
sixteen variations. In Figure 12, the performance of ICGWO is still more significant than
AGWO. Similarly, ICGWO outperforms CGWO in all variations in Figure 13. Therefore,
it is established from Figures 11–13 that ICGWO accomplishes a better performance than
GWO, AGWO, and CGWO for all scenarios.
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Table 5. Parameters estimates with respect to gn and pn at 0.20 noise level.

Methods gn pn
Parameters

Best Fitness
b1 b2 c1 c2

GWO
200

10 −1.5064 0.6478 0.2525 0.3872 0.03496
30 −1.5504 0.6782 0.1934 0.3844 0.03470

500
10 −1.5498 0.6788 0.1838 0.3972 0.03464
30 −1.5342 0.6703 0.2040 0.4188 0.03446

AGWO
200

10 −1.5016 0.6498 0.2500 0.4098 0.03550
30 −1.5572 0.6877 0.2002 0.3906 0.03461

500
10 −1.5637 0.6967 0.2228 0.3752 0.03483
30 −1.5370 0.6689 0.1895 0.4069 0.03444

CGWO
200

10 −1.4745 0.6126 0.1896 0.4320 0.03577
30 −1.5228 0.6583 0.1983 0.4179 0.03437

500
10 −1.5052 0.6419 0.2009 0.4272 0.03460
30 −1.5305 0.6617 0.1899 0.4073 0.03449

ICGWO
200

10 −1.5753 0.7045 0.1642 0.4106 0.03520
30 −1.5329 0.6646 0.1877 0.4102 0.03445

500
10 −1.5610 0.6916 0.1865 0.4064 0.03470
30 −1.5261 0.6627 0.2060 0.4179 0.03440

True Parameters −1.5300 0.6600 0.2500 0.3000 0
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Application to LD-Didactic Temperature Process Plant

To validate the performance of the proposed methodology, an ARX-based LD-Didactic
temperature process plant model is considered. The authors of [91] described that the
LD-Didactic temperature process consists of the pre-processing unit, a model selection unit,
model estimation, and model validation. During pre-processing, noise data is filtered from
temperature data. In model selection, ARX is considered due to low complexity [91]. The
true parameters of ARX structure reflecting the actual dynamics of temperature process
system are taken from the real time experimentation [91]. These parameters are presented
in (29). The model is estimated by using variants of GWO i.e., AGWO, CGWO, and ICGWO.

τ = [−0.2532,−0.7594, 98.7000,−97.6400]T (29)

The convergence curves for all noise levels at pn = 30, noise level = 0.05, and gn = 500
is displayed in Figure 14.
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Figure 14. Convergence curves for LD-Didactic temperature process plant model.

The results presented in Figure 14 further validate the inferences drawn form the
detailed analyses of the numerical example that the proposed ICGWO provides better
a performance in comparison with the conventional GWO, AGWO, and simple CGWO
counterparts for parameter estimation of the temperature process plant model.



Biomimetics 2023, 8, 141 18 of 21

5. Conclusions

In this article, the strength of GWO and its various variants CGWO, AGWO, and
ICGWO is exploited for parameter estimation of the ARX structure required to model
various engineering and applied sciences processes. The decision parameters of the ARX
model were optimized over various populations, generations, and noise levels. The logistic
chaotic map along with the improved convergence factor were fused in GWO. The ICGWO
is robust, accurate, and convergent for the parameter estimation of the ARX system. The
convergence plots and statistical analysis through the ample number of autonomous
trials confirmed that ICGWO performs better in terms of convergence and robustness
as compared to conventional counterparts of the standard GWO, an improved GWO,
and a simple chaotic GWO. The accurate estimation of ARX parameters reflecting the
LD-Didactic temperature process plant model further validates the better performance
of ICGWO. Future studies can extend the application of the proposed scheme to solve
problems such as PV solar panels, constraint-preserving mixers, and real-time estimation
of harmonics in nonlinear loads [92–96].
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