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Abstract: One of the most important challenges for heterogeneous wireless sensor networks (HWSNs)
is adequate network coverage and connectivity. Aiming at this problem, this paper proposes an
improved wild horse optimizer algorithm (IWHO). Firstly, the population’s variety is increased by
using the SPM chaotic mapping at initialization; secondly, the WHO and Golden Sine Algorithm
(Golden-SA) are hybridized to improve the WHO’s accuracy and arrive at faster convergence; Thirdly,
the IWHO can escape from a local optimum and broaden the search space by using opposition-based
learning and the Cauchy variation strategy. The results indicate that the IWHO has the best capacity
for optimization by contrasting the simulation tests with seven algorithms on 23 test functions. Finally,
three sets of coverage optimization experiments in different simulated environments are designed
to test the effectiveness of this algorithm. The validation results demonstrate that the IWHO can
achieve better and more effective sensor connectivity and coverage ratio compared to that of several
algorithms. After optimization, the HWSN’s coverage and connectivity ratio attained 98.51% and
20.04%, and after adding obstacles, 97.79% and 17.44%, respectively.

Keywords: heterogeneous wireless sensor network; improved wild horse optimizer; coverage
optimization; coverage ratio; connectivity ratio

1. Introduction

Over the past decade, wireless sensor networks (WSNs) have been used in different
fields, such as urban management, environmental monitoring, disaster prevention, and
military applications, etc. [1–4]. A large number of tiny sensors make up the self-organizing
distributed network system known as the WSN, and the sensors are typically heterogeneous.
In WSN applications, coverage and connectivity are important indicators for determining
whether real-time data can be provided to users through the inter-collaboration of sen-
sors. However, the traditional WSN coverage approach deploys sensors at random. This
approach will result in insufficient coverage, causing communication conflicts [5,6]. In
existing research, scholars usually consider coverage when optimizing HWSN coverage,
but connectivity is frequently overlooked. Therefore, this paper studies how to improve
the coverage and connectivity of HWSNs.

The swarm intelligence (SI) optimization algorithm is a biologically inspired method
that is one of the most successful strategies for solving optimization problems [7,8]. It
is characterized by a fast search speed and strong search capability, avoiding complex
theoretical derivation. Examples include particle swarm optimization (PSO) [9], bald eagle
search optimization algorithm (BES) [10], cuckoo search (CS) [11], sparrow search algorithm
(SSA) [12], northern goshawk optimization (NGO) [13], mayfly optimization algorithm
(MA) [14], gray wolf optimization algorithm (GWO) [15], Harris hawks optimization
(HHO) [16], coot optimization algorithm (COOT) [17], wild horse optimizer (WHO) [18]
and other algorithms.
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The WHO was put forth by Naruei et al. in 2021 as a method of solving algebraic
optimization issues. Its optimization performance has significant advantages over the
majority of classical algorithms, and it has been widely used to solve various engineering
problems. In 2022, Milovanović et al. applied the WHO to multi-objective energy man-
agement in microgrids [19]. Ali et al. applied the WHO to the frequency regulation of a
hybrid multi-area power system with a new type of combined fuzzy fractional order PI
and TID controllers [20]. Furthermore, many researchers have improved WHO to improve
its optimization capability. In 2022, Li et al. proposed a hybrid multi-strategy improved
wild horse optimizer, which can improve the algorithm’s convergence speed, accuracy,
and stability [21]. Ali et al. proposed an improved wild horse optimization algorithm for
reliability-based optimal DG planning of radial distribution networks. This algorithm is a
high-performance optimization method in terms of exploration–exploitation balance and
convergence speed [22].

In 2017, Tanyildizi et al. proposed the Gold-SA algorithm [23], which is based on the
sine trigonometric function. This algorithm uses a golden sine operator to condense the
solution space, efficiently avoiding the local optimal outcome and quickly approaching
the global optimum. Additionally, the algorithm contains few parameters and algorithm-
dependent operators, which can be well integrated with the other algorithms. In 2022,
Wang et al. proposed an improved crystal structure algorithm for engineering optimization
problems. This algorithm makes good use of the relationship between the golden sine
operator and the unit circle to make the algorithm exploration space more comprehensive,
which can effectively speed up the convergence rate of the algorithm [24]. Yuan et al.
proposed a hybrid golden jackal optimization and golden sine algorithm with dynamic lens
imaging learning for global optimization problems; the golden sine algorithm is integrated
to improve the ability and efficiency of golden jackal optimization [25]. In 2023, Jia et al.
proposed the fusion swarm-intelligence-based decision optimization for energy-efficient
train-stopping schemes. Their algorithm incorporates the golden sine strategy to improve
the performance of the algorithm [26].

In recent years, SI optimization algorithms have been used by many scholars for the
study of WSN coverage optimization, and fruitful results have been achieved with the
continuous development of SI. In 2013, Huang et al. proposed an AFSA-based coverage
optimization method for WSN. Simulation results show that AFSA increases the sensors’
coverage in WSN [27]. In 2015, Zhang proposed a hybrid algorithm of particle swarm and
firefly, with particle swarm as the main body and firefly for local search, thus improving
the sensor coverage [28]. In 2016, Wu et al. suggested an improved adaptive PSO-based
coverage optimization. This approach first increases the evolution factor and aggrega-
tion factor to improve the inertia weights, and then, in order to ensure that the particle
population is diverse, it introduces a collision resilience strategy during each iteration of
the algorithm [29]. In 2018, Lu et al. proposed an FA-based WSN coverage optimization
technique that involves switching out two sensors’ placements at once to increase network
coverage [30]. In 2019, Nguyen et al. suggested a powerful genetic algorithm based on cov-
erage optimization, effectively addressing various drawbacks of the current metaheuristic
algorithms [31].

Although these SI optimization algorithms have produced many positive results, there
is still room for further research into the algorithm’s performance and the optimization
of WSN coverage. This research suggests an IWHO to optimize sensor coverage and
connectivity. The main contributions are the following:

• We improve the WHO algorithm in order to achieve better optimization. The SPM
chaotic map is used to improve the population’s quality. The WHO and Golden-SA
are hybridized to improve the WHO’s accuracy and arrive at faster convergence. The
Cauchy variation and opposition-based learning strategies are also used to avoid
falling into a local optimum and broaden the search space.

• We test 23 test functions and compare the results to the performance of the IWHO
and seven other algorithms. The findings reveal that IWHO has a stronger optimiza-



Biomimetics 2023, 8, 70 3 of 21

tion performance than the others. We use the IWHO to optimize the coverage of a
homogeneous WSN and compare the performance with five other algorithms and four
improved algorithms proposed in References. The experimental data demonstrate
that IWHO can optimize WSN coverage more effectively.

• The HWSN coverage problem is optimized using the IWHO, which significantly
increases coverage and the connectivity ratio. With the situation of barriers, the same
high level of coverage and connectivity of sensors is attained.

2. WSN Coverage Model

Suppose that the monitoring area is a two-dimensional region with an area of M × N. The
n sensors are randomly arranged in this area and they can be expressed as U = {u1, u2 . . . un}.
Assume that the sensors are heterogeneous with different sensing radii Rs and communication
radii Rc, and Rc ≥ 2Rs. Every sensor can move, and their position can be updated instantly.
The sensor is centered on itself and has a sensing radius Rs as its radius, covering a circular
area. If the coordinates of the detected arbitrary sensor Ui are (xi,yi), the coordinates of the
target detected sensor Oj are (xj,yj). The Euclidean distance from the detected arbitrary sensor
Ui to the target detected sensor Oj is expressed as:

d(Ui, Oj) =
√
(xi − xj)

2 + (yi − yj)
2 (1)

The probability of sensor Oi being perceived by sensor Ui is denoted by p(Ui,Oi). It
signifies that the goal is covered and the probability is 1 when the distance between sensors
is smaller than Rs. It is 0 if it is not covered. The expression is as follows:

p
(
Ui, Oj

)
=

{
0 Rs > d

(
Ui, Oj

)
1 Rs ≤ d

(
Ui, Oj

) (2)

Joint sensors’ perception probabilities are defined as follows:

P
(
U, Oj

)
= 1−

n

∏
i=1

[
1− p

(
Ui, Oj

)]
(3)

The coverage ratio is an important indicator of the HWSN deployment problem. The
coverage ratio is calculated as follows:

f1 = Cov =

M×N
∑

j=1
P
(
U, Oj

)
M× N

(4)

The utilization of sensor coverage is evaluated using coverage efficiency. Higher
coverage efficiency means achieving the same coverage area with fewer sensors. It is
determined by dividing the region’s effective coverage range by the sum of all of the
sensors’ coverage ranges. The coverage efficiency CE is calculated as shown in the following
equation, where Ai denotes the area covered by the i-th sensor:

CE =
∪

i=1...n
Ai

∑
i=1...n

Ai
(5)

In the coverage problem, the connectivity ratio is equally as important as the coverage
among sensors. To ensure the reliability of network connectivity, each sensor should be
able to connect with at least two or more sensors. If the separation between two sensors
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is within the Rc, it is known that the two sensors can be connected to each other. The
connectivity ratio between sensor Oi and target detection sensor Oj (i 6= j) can be defined as:

p
(
Oi, Oj

)
=

{
0 Rc > d

(
Oi, Oj

)
1 Rc ≤ d

(
Oi, Oj

) (6)

As shown in Figure 1, a network is connected if there is a path between any two
sensors. The connectivity ratio is the proportion of connected paths to the maximum
connected paths between sensors. The expression is as follows:

f2 =

n
∑

i=1

n
∑

j=1
P
(
Oi, Oj

)
n(n− 1)/2

(i 6= j) (7)
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The amount of paths between any two nodes is n(n − 1)/2. Therefore, according to
sensor coverage and connection, the objective function is:

max F( f1, f2) = w1 f1 + w2 f2

st.



w1 + w2 = 1
M×N

∑
j=1

P(U, Oj) ≤ M× N

p(Ui, Oj) ≥ 0
p(Oi, Oj) ≥ 0

(8)

After several experiments, the values of w1 and w2, respectively were 0.9 and 0.1.

3. Wild Horse Optimizer

The social behavior of wild horses served as a model for the WHO. In the population
construction of wild horses, there exist stallions and the rest of the horse herd. The WHO is
designed and optimized for various problems based on group behavior, grazing, mating,
dominance, and leadership among the stallions and herds in the wild horse population.

• Establishing an initial population and choosing leaders

The population members are first distributed at random throughout the search ranges.
In the beginning, we group this population. If there are N members overall, the number of
stallions is G = (N × PS). PS represents the percentage of stallions in the herd, and it serves
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as the algorithm’s control parameter. The algorithm begins with the group leaders being
chosen at random, and as the algorithm progresses, the leaders are chosen based on which
group member has the best fitness function.

• Grazing and mating of horses

The stallion is regarded as the center of the grazing area, and the group members
move about the center to promote grazing behavior. We propose Equation (9) to model the
grazing behavior. Members of the group move and conduct searches with varying radii
around the leader:

X j
i,G = 2Z cos(2πRZ) ∗ (Stallionj − X j

i,G) + Stallionj (9)

where Stallion is the leader’s position and R is a random number within [−2, 2]; Z is
calculated as:

P =
→
R1 < TDR; IDX = (P == 0) ; Z = R2ΘIDX +

→
R3Θ( ∼ IDX) (10)

where P is a vector consisting of 0 and 1. The random numbers
→
R1, R2, and

→
R3 have a

uniform distribution and fall between [0, 1]. Returns for the IDX indices of the random

vector
→
R1 that satisfy the condition (P == 0). During algorithm execution, TDR declines,

starting at 1 and eventually reaching 0. The expression is as follows:

TDR = 1− iter
1

maxiter
(11)

where iter indicates how many iterations are being performed right now, and maxiter
indicates the maximum number of iterations.

In order to simulate the behavior of horses leaving and mating, Equation (12) has
proposed the same Crossover operator as the mean value type:

Xp
G,K = Crossover(Xq

G,i, Xz
G,j), i 6= j 6= k, p = q = end; Crossover = Mean (12)

• Group is led by a leader

In nature, leaders mostly guide groups to appropriate living environments. If another
population dominates the habitat, then that population must leave it. Equation (13) allows
calculation of the location of the next habitat searched by the leader in each population:

StallionGi =

{
2Z cos(2πRZ) ∗ (WH − StallionGi) + WH, i f R3 > 0.5
2Z cos(2πRZ) ∗ (WH − StallionGi)−WH, else

(13)

where WH is the current location of the most suitable habitat, and R, RZ, and Z are defined
as before.

• Exchange of leaders

As mentioned in the population initialization phase, the two positions are switched if
a group member has a greater fitness value than the leader:

StallionGi =

{
XGi, i f cos t(XGi) < cos t(StallionGi)
StallionGi, else

(14)

4. Improved Wild Horse Optimizer

To address the issues of the original algorithm, including the difficulty of escaping
local optima, lack of accuracy during convergence, and slow speed, three methods are
introduced in this study as ways to enhance the WHO algorithm. They improve the
starting population, boost optimization speed and accuracy, increase the optimal solution’s
disruption, and aid the algorithm’s exit from the local optimum.
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4.1. SPM Chaotic Mapping Initialization Population

The optimization ability can benefit from a diversified initial population. In the
original WHO algorithm, the rand function is used to randomly initialize the population,
which results in uneven distribution and overlapping individuals, and the population
diversity decreases rapidly in the later iterations. Chaos is a unique and widespread form
of acyclic motion in nonlinear systems, which is widely used in population intelligence
algorithms for optimizing the diversity of populations because of its ergodic and stochastic
nature. In this paper, we introduce the SPM chaotic mapping model, which has superior
chaotic and ergodic properties [32]. The expression is shown as follows:

X(t + 1) =



mod( x(t)
η + µ sin(πx(t)) + r, 1), 0 ≤ x(t) < η

mod( x(t)/n
0.5−η + µ sin(πx(t)) + r, 1), 0 ≤ x(t) < 0.5

mod( 1−x(t)/n
0.5−η + µ sin(π(1− x(t))) + r, 1), 0.5 ≤ x(t) < 1− η

mod( 1−x(t)
η + µ sin(π(1− x(t))) + r, 1), 1− η ≤ x(t) < 1

(15)

Scholars usually choose different chaotic mapping models for optimization of popu-
lation initialization of population intelligence algorithms. This paper selects the Logistic
mapping and Sine mapping with high usage rate, and compares them with SPM mapping
under the condition of setting the same initial value and iterating 2000 times. Figure 2
shows the histograms of the three chaotic mappings, where the horizontal coordinate is
the chaotic value and the vertical coordinate is the frequency of that chaotic value. The
results prove that SPM mapping has better chaos performance and traversal. SPM mapping
was therefore chosen to enhance population variety and make the population distribution
more uniform. Figure 3 shows the population distribution of different chaotic mappings
when the population size is 2000. The Logistic and Sine mappings show many individuals
overlapping at the boundary, whereas the SPM mapping has a more uniform distribution.
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4.2. Golden Sine Algorithm

To fix the disadvantages of the stallion position update method in the WHO algorithm,
the Golden-SA algorithm is used in this research. In this paper, the stallion position is
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updated using the golden sine operator to condense the algorithm’s solution space and
enhance the capability of the optimal search. The expression is shown as follows:

StallionGi = StallionGi ∗ |sin(r1)| − r2 sin(r1) ∗ |x1 ∗WH − x2 ∗ StallionGi| (16)

where r1, r2 are random numbers between [0, 2π] and [0, π]. In the following iteration, r1
determines the distance that individual i travels and r2 determines the direction in which
individual i travels. x1 and x2 are the golden partition coefficients. During the iteration,
they are utilized to condense the search space and direct the solution to the place that is
globally optimal. Its partitioning implementation is shown below:

x1 = a ∗ (1− τ) + b ∗ τ
x2 = a ∗ τ + b ∗ (1− τ)

τ =
(√

5− 1
)

/2
(17)

where a and b are the initial golden mean, and τ is the golden mean ratio.

4.3. Cauchy Variation and Opposition-Based Learning

The WHO algorithm does not perturb the optimal solution after each iteration, which
can keep the solution in a locally optimal state. To address this issue, we employ Cauchy
variation and opposition-based learning strategies to perturb the solution. This was inspired
by MAO et al., who proposed a chaotic squirrel search algorithm with a mixture of stochastic
opposition-based learning and Cauchy variation in 2021 [33].

4.3.1. Cauchy Variation

Gaussian and Cauchy distributions are two similar classical probability density dis-
tribution functions, and Gaussian variation has also been used by scholars in algorithm
improvements. Figure 4 displays the probability density function curves for both.
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In comparison to the Gaussian distribution, as seen in Figure 4, the Cauchy distribution
is longer and flatter at both ends. It flattens out as it approaches 0, moves more slowly, and
has a smaller peak close to the origin. As a result, Cauchy variance has better perturbation
properties than Gaussian variance. As a result, introducing the Cauchy variation strategy
can expand the search space and improve the perturbation ability. The expression is as
follows:

WH = WH ∗ (1 + (1/Max_iter) ∗ tan(π ∗ (rand− 0.2))) (18)
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4.3.2. Opposition-Based Learning

By building the reverse solution from the existing solution, the opposition-based
learning strategy can broaden the solution space of algorithms. To determine which solution
is preferable, existing solution is contrasted with the reverse solution. The expression for
incorporating the opposition-based learning strategy into the WHO algorithm is as follows:

WHback = ub + rand ∗ (lb−WH)

WH = WHback + b1 ∗ (WH −WHback)

b1 = (max_iter− l/max_iter)l
(19)

where WHback is the reverse solution to the stallion’s optimal position in the lth generation,
rand is a random matrix of dimension obeying the standard uniform distribution of (0, 1),
upper and lower boundaries are denoted by ub and lb, respectively, and b1 denotes the
information exchange control parameter.

4.3.3. A Dynamic Selection Probability

This paper sets a dynamic selection probability Pz to choose the strategy to update the
stallion position more appropriately. The Pz is shown as follows:

Pz = − exp (1− l/max_iter)20 + 0.05 (20)

Pz will be compared to a number chosen at random between (0,1). If Pz > rand then a
opposition-based learning strategy starts to work. If Pz < rand then the Cauchy variation
strategy is utilized to disturb at the present stallion.

4.4. The Pseudo Code of IWHO

1. Initialize the first population of horses using the new SPM chaotic sequence
2. Input IWHO parameters, PC = 0.13, PS = 0.1, a = π, b = −π
3. Calculate the fitness
4. Create foal groups and select stallions
5. Find the best horse
6. While the end criterion is not satisfied
7. Calculate TDR using Equation (11)
8. For number of stallions
9. Calculate Z using Equation (10)
10. For number of foals of any group
11. If rand > PC
12. Update the position of the foal using Equation (9)
13. Else
14. Update the position of the foal using Equation (12)
15. End
16. End
17. Update the position of the StallionGi using Equation (16)
18. If cost (StallionGi) < cost (Stallion)
19. Stallion = StallionGi
20. End
21. Sort foals of group by cost
22. Select foal with minimum cost
23. If cost (foal) < cost (Stallion)
24. Exchange foal and Stallion position using Equation (14)
25. End
26. Calculate Pz using Equation (20)
27. If Pz < rand
28. Update the position of Stallion using Equation (19)
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29. Else
30. Update the position of Stallion using Equation (18)
31. End
32. End
33. Update optimum
34. End

4.5. Time Complexity Analysis

Time complexity is a significant factor in determining an algorithm’s quality and shows
how effectively it operates. The time complexity of the WHO algorithm can be represented
as O(N×D×L), where N is the entire population, D is the search space’s dimension, and L is
the maximum number of iterations. The following is a depiction of the IWHO algorithm’s
time complexity analysis:

• The population is initialized using the SPM chaotic mapping model, and the time
complexity is as follows:

T1 = O((N1 + N2)× D) = O(N × D) (21)

• The position update formula of the original stallion is replaced by the golden sine
strategy without the addition of any extra strategies. The time complexity is as follows:

T2 = O(N × D× L) (22)

• After iterations, incorporating the Cauchy variance and opposition-based learning,
the time complexity is as follows:

T3 = O(N × D× L) + O(N × D× L) = O(N × D× L) (23)

• Thus, the IWHO time complexity is as follows:

T1 + T2 + T3 = O(N × D) + O(N × D× L) + O(N × D× L) = O(N × D× L) (24)

In conclusion, IWHO has the same time complexity as WHO, and the three improve-
ment techniques do not make the algorithm’s time complexity any more difficult.

5. IWHO Algorithm-Based Coverage Optimization Design

The process of finding a suitable habitat for a horse herd is analogous to the process of
obtaining the optimal coverage of sensors, and the position of the stallion represents the
coordinates covered by the sensors. Using the same number of sensors to cover a bigger
area while maintaining effective communication is the aim of WSN optimization coverage
based on the IWHO. These are the steps:

Step 1: Enter the size of the area to be detected by the WSN, the number of sensors,
sensing radius, communication radius, and the IWHO algorithm’s settings;

Step 2: The population is initialized according to Equation (15), where each individual
represents a coverage scheme. At this step, the sensors are dispersed randomly around
the monitoring region, and Equation (8) is used to determine the initial coverage and
connectivity;

Step 3: Update the location information of stallions and foals, and calculate the corre-
sponding adaptation degree. Update the coverage ratio and connectivity ratio according to
Equation (8). Find the optimal sensor location;

Step 4: Create a new solution by perturbing at the optimal solution position through
dynamic probabilistic selection of a Cauchy variation or a opposition-based learning
strategy;

Step 5: Immediately exit the loop if the condition is met. Output the sensor’s best
coverage scheme.
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6. Simulation Experiments and Analysis
6.1. IWHO Algorithm Performance Test Analysis
6.1.1. Simulation Test Environment

The environment for this simulation test was: Windows 10 Professional, 64-bit OS, Intel(R)
Core (TM) i5-4210H CPU @2.90 GHz, 8GB. The simulation software was MATLAB 2016a.

6.1.2. Comparison Objects and Parameter Settings

In this paper, the WHO, SSA, NGO, MA, PSO, COOT, GWO and the IWHO algorithms
were selected for comparison. In order to make a fair comparison between each algorithm,
we have unified the number of consumed fitness evaluations in the experiment, and the
number of consumed fitness evaluations by each algorithm is 30,000. The parameters ware
set as shown in Table 1.

Table 1. Parameter settings of the algorithm.

Algorithm Parameters

GWO α = [0, 2]
SSA ST = 0.6, PD = 0.7, SD = 0.2
MA g = 0.8, a1 = 1, a2 = a3 = 1.5
PSO c1,c2 = 2, wmin = 0.2, wmax = 0.9

COOT R = [−1, 1], R1 = R2 = [0, 1]
WHO PS = 0.1, PC = 0.13
IWHO PS = 0.1, PC = 0.13, a = π, b = −π

In GWO, α represents the control parameter of a grey wolf when hunting prey. In
SSA, ST represents the alarm value, PD represents the number of producers, SD represents
the number of sparrows who perceive the danger. In MA, g represents the inertia weight,
a1 represents the personal learning coefficient, and a2 and a3 represent the global learning
coefficient. In PSO, c1 and c2 represent the learning coefficient, wmin and wmax represent
the upper and lower limits of inertia weight. In COOT, R, R1 and R2 are random vectors
along the dimensions of the problem.

6.1.3. Benchmark Functions Test

To verify the IWHO algorithm’s capacity for optimization, 23 benchmark functions
were chosen for simulation in this study. There are three categories of test function, among
which F1–F7 listed in Table 2 are single-peak test functions, F8–F13 are multi-peak test
functions listed in Table 3 and F14–F23 are fixed-dimension test functions listed in Table 4.
The single-peak test functions are characterized by a single extreme value and are used to
test the convergence speed and convergence accuracy of the IWHO. The multi-peak test
functions are characterized by multiple local extremes, which can be applied to evaluate
the IWHO algorithm’s local and global search capabilities.

Table 2. Single-peak test functions.

F Function Range Dim fmin

F1 f1(x) =
n
∑

i=1
x2

i [−100, 100] 30 0

F2 f2(x) =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | [−10, 10] 30 0

F3 f3(x) =
n
∑

i=1

(
n
∑

j=1
xj

)2

[−100, 100] 30 0

F4 f4(x) = max{|xi |, 1 ≤ i ≤ n} [−100, 100] 30 0

F5 f5(x) =
n−1
∑

i=1

[
100
(
xi+1 − x2

i
)2

+ (xi − 1)2
]

[−30, 30] 30 0

F6 f6(x) =
n−1
∑

i=1
([xi + 0.5])

2
[−100, 100] 30 0

F7 f7(x) = max{|xi |, 1 ≤ i ≤ n} [−1.28, 1.28] 30 0
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Table 3. Multi-peak test functions.

F Function Range Dim fmin

F8 f8(x) =
n
∑

i=1
−xi sin(

√
|xi|) [−500, 500] 30 −418.9829 × n

F9 f9(x) =
n
∑

i=1
x2

i − 10 cos(2πxi) + 10 [−5.12, 5.12] 30 0

F10 f10(x) = −20 exp(−0.2

√
1
n

n
∑

i=1
x2

i )−exp( 1
n

n
∑

i=1
cos(2πxi)) + 20 + e [−32, 32] 30 0

F11 f11(x) =
n
∑

i=1

x2
i

4000 −
n
∏
i=1

cos( xi√
i
)− 1 [−600, 600] 30 0

F12 f12(x) = π
n

 10 sin2(πyi) +
n−1
∑

i=1
(yi − 1)2

[1 + 10 sin2(πyi+1)] + (yn − 1)2

+
n
∑

i=1
u(xi, 10, 100, 4) [−50, 50] 30 0

F13 f13(x) = 0.1


sin2(3πxi) +

n
∑

i=1
(xi − 1)2[

1 + sin2(3πxi + 1)
]
+

(xn − 1)2[1 + sin2(2πxn)
]
+

n
∑

i=1
u(xi, 5, 100, 4) [−50, 50] 30 0

Table 4. Fixed-dimension test functions.

F Function Range Dim fmin

F14 f14(x) = ( 1
500 + ∑25

j=1
1

j+∑2
i=1 (xi−aij)

6 )
−1

[−65, 65] 2 1

F15 f15(x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
[−5, 5] 4 0.00030

F16 f16(x) = 4x2
1
− 2.1x4

1
+ 1

3 x6
1
+ x1x2 − 4x2

2
+ 4x4

2 [−5, 5] 2 −1.0316

F17 f17(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1− 1

8π ) cos x1 + 10 [−5, 5] 2 0.398

F18
f18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)]

∗[30 + (2x1 − 3x2)
2 ∗ (18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

[−2, 2] 2 3

F19 f19(x) = −∑4
i=1 ci exp(−∑3

j=1 aij(xi − pij)
2
) [1, 3] 3 −3.86

F20 f20(x) = −∑4
i=1 ci exp(−∑6

j=1 aij(xi − pij)
2
) [0, 1] 6 −3.32

F21 f21(x) = −∑5
i=1 [(X− ai)(X− ai)

T + ci]
−1 [0, 10] 4 −10.1532

F22 f22(x) = −∑7
i=1 [(X− ai)(X− ai)

T + ci]
−1 [0, 10] 4 −10.4028

F23 f23(x) = −∑10
i=1 [(X− ai)(X− ai)

T + ci]
−1 [0, 10] 4 −10.5363

6.1.4. Simulation Test Results

After 30 independent runs, Table 5 displays the average value and standard deviation
for eight algorithms. The IWHO outperforms others. For the single-peak test functions
F1–F4 and F7, the IWHO has the best performance and the fastest convergence speed, with
a standard deviation of 0, demonstrating that it is robust and stable. IWHO has the second-
best performance for F5 and F6. For F9 and F11, although most of the algorithms converge
to the ideal optimum, as illustrated in Figure 5i,k, the IWHO converges faster. Both the
IWHO and SSA algorithms have the best results for F10, however, the IWHO goes through
fewer iterations, as can be seen in Figure 5j. For F13, both the PSO algorithm and the SSA
algorithm outperform the IWHO, which is ranked third among the eight optimization
algorithms. The results in Table 5 and Figure 5 for the fixed-dimension test functions show
that the IWHO converges to the theoretical optimum with a standard deviation of 0.

In conclusion, the results of 30 independent experiments with eight different algo-
rithms and 23 benchmark test functions show that the IWHO can converge to the ideal
optimal values for 14 test functions, F1, F3, F9, F11, F14–F23. This means that the conver-
gence accuracy of IWHO has been improved a lot, but when optimizing some test functions,
although the optimal value can be obtained, the convergence speed can still be improved.
Additionally, some test functions still fall into local optimization. Among the 23 test results,
IWHO ranked first 20 times, second twice, and third once. It can be concluded that the
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IWHO performs better than the WHO algorithm and effectively improves some of its flaws.
Similarly, the IWHO has significant advantages over other algorithms.

Table 5. Results of single-peak and multi-peak benchmark functions.

Function Criteria IWHO WHO MA PSO NGO SSA GWO COOT

F1
avg 0 6.629 × 10−91 4.714 × 10−12 2.737 × 10−10 3.979 × 10−211 1.122 × 10−43 4.529 × 10−59 1.321 × 10−39

std 0 3.567 × 10−90 2.421 × 10−11 1.086 × 10−9 0 4.747 × 10−43 9.959 × 10−12 7.114 × 10−39

F2
avg 1.025 × 10−291 2.506 × 10−50 9.438 × 10−8 4.021 × 10−4 4.77 × 10−106 1.461 × 10−26 1.109 × 10−34 3.414 × 10−26

std 0 1.344 × 10−49 1.563 × 10−7 3.329 × 10−3 2.553 × 10−105 6.542 × 10−26 1.475 × 10−34 1.834 × 10−25

F3
avg 0 1.572 × 10−56 1.859 × 103 1.085 7.325 × 10−207 7.957 × 10−38 3.953 × 10−15 5.870 × 10−44

std 0 7.437 × 10−56 9.828 × 102 3.62 × 10−1 0 4.285 × 10−37 1.486 × 10−14 3.109 × 10−43

F4
avg 2.494 × 10−82 6.154 × 10−37 3.457 × 101 1.102 × 101 4.512 × 10−103 1.243 × 10−37 1.642 × 10−14 3.053 × 10−7

std 0 1.232 × 10−36 8.807 3.057 × 102 2.311 × 10−102 6.698 × 10−37 2.238 × 10−14 1.644 × 10−6

F5
avg 2.485 × 10−1 5.292 × 101 5.338 × 101 2.987 × 101 2.810 × 101 8.877 × 10−3 2.686 × 101 2.971 × 101

std 2.283 × 10−1 10.059 × 102 4.787 × 101 1.551 × 101 9.521 × 10−1 7.998 × 10−3 9.602 × 10−1 7.874

F6
avg 4.562 × 10−10 1.595 × 10−8 6.424 × 10−14 8.325 × 10−10 2.553 2.641 × 10−5 6.713 × 10−1 8.996 × 10−3

std 1.356 × 10−9 4.095 × 10−8 1.867 × 10−13 1.826 × 10−9 5.301 × 10−1 1.352 × 10−5 3.432 × 10−1 5.114 × 10−3

F7
avg 3.703 × 10−5 3.498 × 10−4 1.234 × 10−2 1.982 × 10−2 1.079 × 10−4 1.077 × 10−3 9.155 × 10−4 1.098 × 10−3

std 3.150 × 10−5 1.879 × 10−4 2.861 × 10−3 3.175 × 10−3 2.009 × 10−5 1.331 × 10−4 1.368 × 10−4 9.571 × 10−4

F8
avg −1.232 × 104 −9.025 × 103 −1.053 × 104 −2.752 × 103 −7.968 × 103 −8.195 × 103 −6.279 × 103 −7.543 × 103

std 4.721 × 102 7.426 × 102 3.316 × 102 3.766 × 102 5.581 × 102 2.483 × 103 7.877 × 102 6.622 × 102

F9
avg 0 0 7.617 4.905 × 101 0 0 1.518 × 10−1 4.661 × 10−13

std 0 0 4.252 1.301 × 101 0 0 8.176 × 10−1 2.334 × 10−12

F10
avg 8.881 × 10−16 3.611 × 10−15 3.965 × 10−1 5.111 × 10−6 3.73 × 10−15 8.881 × 10−16 1.581 × 10−14 2.836 × 10−11

std 0 1.760 × 10−15 5.369 × 10−1 7.288 × 10−6 1.421 × 10−15 0 2.495 × 10−15 1.525 × 10−10

F11
avg 0 0 1.709 × 10−2 1.397 × 101 0 0 3.712 × 10−3 3.33 × 10−17

std 0 0 1.993 × 10−2 3.651 0 0 8.541 × 10−3 9.132 × 10−17

F12
avg 2.310 × 10−11 1.727 × 10−2 2.839 × 10−2 2.901 × 10−1 1.524 × 10−1 3.643 × 10−6 3.721 × 10−2 2.676 × 10−2

std 6.685 × 10−11 3.863 × 10−2 5.284 × 10−2 3.890 × 10−1 6.048 × 10−2 1.858 × 10−6 1.853 × 10−2 7.688 × 10−2

F13
avg 2.080 × 10−2 6.233 × 10−2 1.054 × 10−2 1.831 × 10−3 2.579 5.259 × 10−3 6.249 × 10−1 5.709 × 10−2

std 3.187 × 10−2 3.187 × 10−2 2.092 × 10−2 4.094 × 10−3 4.391 × 10−1 6.224 × 10−3 2.481 × 10−1 4.912 × 10−2

F14
avg 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 1.171 × 101 1.99 9.98 × 10−1

std 0 0 0 3.047 × 10−12 0 9.536 × 10−1 9.920 × 10−1 0

F15
avg 3.075 × 10−4 7.653 × 10−4 3.075 × 10−4 6.441 × 10−4 3.075 × 10−4 3.163 × 10−4 2.036 × 10−2 7.271 × 10−4

std 1.038 × 10−8 2.375 × 10−4 3.833 × 10−4 3.369 × 10−4 4.578 × 10−4 6.587 × 10−4 2.491 × 10−8 5.714 × 10−5

F16
avg −1.031 −1.031 −1.031 −1.031 −1.031 −1.031 −1.031 −1.031
std 0 1.570 × 10−16 0 0 1.57 × 10−16 1.087 × 10−9 4.158 × 10−10 1.776 × 10−15

F17
avg 3.978 × 10−1 3.978 × 10−1 3.978 × 10−1 3.978 × 10−1 3.978 × 10−1 3.978 × 10−1 3.978 × 10−1 3.978 × 10−1

std 0 0 1.153 × 10−7 0 0 1.180 × 10−9 1.498 × 10−7 1.667 × 10−10

F18
avg 3 3 3 3 3 3 3 3
std 0 0 3.140 × 10−16 7.021 × 10−16 0 5.518 × 10−8 1.017 × 10−5 8.038 × 10−14

F19
avg −3.862 −3.862 −3.862 −3.862 −3.862 −3.862 −3.862 −3.862
std 0 0 0 0 4.440 × 10−16 3.859 × 10−7 3.810 × 10−3 4.440 × 10−16

F20
avg −3.322 −3.626 −3.322 −3.203 −3.322 −3.322 −3.261 −3.322
std 0 5.944 × 10−2 0 0 5.916 × 10−7 1.097 × 10−6 6.038 × 10−2 1.416 × 10−10

F21
avg −1.015 × 101 6.418 −6.391 −1.015 × 101 −1.015 × 101 −1.015 × 101 −7.604 −1.015 × 101

std 0 3.735 3.761 0 6.21 × 10−5 6.568 × 10−6 2.548 1.433 × 10−10

F22
avg −1.040 × 101 −7.765 −1.040 × 101 −7.063 −1.040 × 101 −1.040 × 101 −1.040 × 101 −1.040 × 101

std 0 2.637 0 3.339 2.660 × 10−5 1.666 × 10−5 3.949 × 10−4 1.810 × 10−11

F23
avg −1.053 × 101 −1.053 × 101 −1.053 × 101 −6.671 −1.053 × 101 −1.053 × 101 −1.053 × 101 −1.053 × 101

std 0 0 0 3.864 2.882 × 10−8 6.094 × 10−6 1.722 × 10−5 6.436 × 10−12
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6.1.5. Wilcoxon Rank Sum Test

Such data analysis lacks integrity and scientific validity if it only compares and an-
alyzes the mean and standard deviation of the different algorithms. We therefore chose
a non-parametric statistical test, the Wilcoxon rank sum test, to further validate the algo-
rithm’s performance. We ran each algorithm independently for 30 times in 23 test functions.
For Wilcoxon rank sum test and p calculation, we compared the experimental results of the
other algorithms with those of the IWHO. When p < 5%, it was marked it as “+”, indicating
that IWHO was better than the comparison algorithm. When p > 5%, it was marked as “−”,
indicating that IWHO is inferior to the comparison algorithm. When p was equal to 1, it
indicates that it is not suitable for judgment.

The comparison results are shown in Table 6. In the comparison of various algorithms,
most of the rank sum test p values are less than 0.05, which indicates that the IWHO
has significant differences with other algorithms; that is, the IWHO algorithm has better
optimization performance.

Table 6. The result of Wilcoxon rank sum test.

Function WHO MA PSO NGO SSA GWO COOT

F1 1.734 × 10−6 1.734 × 10−6 1.821 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F2 1.734 × 10−6 1.734 × 10−6 7.691 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F3 1.734 × 10−6 1.734 × 10−6 4.01 × 10−5 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F4 1.734 × 10−6 1.734 × 10−6 1.360 × 10−5 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F5 3.882 × 10−6 6.564 × 10−6 2.224 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 5.171 × 10−1

F6 1.639 × 10−5 1.356 × 10−1 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F7 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F8 1.734 × 10−6 2.353 × 10−6 1.734 × 10−6 1.734 × 10−6 4.729 × 10−6 1.734 × 10−6 1.734 × 10−6

F9 1 1.734 × 10−6 1.734 × 10−6 1 1 2.441 × 10−4 1.25 × 10−2

F10 7.744 × 10−6 1.734 × 10−6 1.734 × 10−6 2.727 × 10−6 1 6.932 × 10−7 1.789 × 10−5

F11 1 1.734 × 10−6 1.734 × 10−6 1 1 2.5 × 10−1 2.5 × 10−1

F12 8.466 × 10−6 2.182 × 10−2 4.729 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F13 7.035 × 10−1 2.623 × 10−1 1.025 × 10−5 1.734 × 10−6 2.585 × 10−3 1.734 × 10−6 1.020 × 10−2

F14 8.134 × 10−1 1.562 × 10−2 7.744 × 10−1 1.562 × 10−2 7.723 × 10−6 1.592 × 10−3 5.712 × 10−3

F15 1.036 × 10−3 4.405 × 10−1 5.446 × 10−2 8.188 × 10−5 2.623 × 10−1 1.915 × 10−1 2.411 × 10−4

F16 1 1 1 1 1.734 × 10−6 1.734 × 10−6 6.25 × 10−2

F17 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 2.437 × 10−4 7.821 × 10−6 1.734 × 10−6 1.734 × 10−6

F18 7.626 × 10−1 2.186 × 10−1 1 3.75 × 10−1 1.734 × 10−6 1.734 × 10−6 1.47 × 10−6

F19 1 1 1 1 1.734 × 10−6 1.734 × 10−6 5 × 10−1

F20 2.492 × 10−2 6.875 × 10−1 2.148 × 10−2 9.271 × 10−3 1.494 × 10−5 1.891 × 10−4 6.088 × 10−3

F21 1.856 × 10−2 1.530 × 10−4 1.058 × 10−3 4.508 × 10−2 5.791 × 10−2 4.193 × 10−2 5.689 × 10−2

F22 1.114 × 10−2 8.596 × 10−2 1.397 × 10−2 8.365 × 10−2 1.975 × 10−2 6.732 × 10−2 1.556 × 10−2

F23 7.275 × 10−3 1.879 × 10−2 2.456 × 10−3 1.504 × 10−1 1.359 × 10−2 4.4913 × 10−2 7.139 × 10−1

+/=/− 16/4/3 15/2/6 18/3/2 16/4/3 17/3/3 19/0/4 18/0/5

6.2. Coverage Performance Simulation Test Analysis

To verify the performance of IWHO in optimizing coverage in HWSNs, three experi-
ments were set up by simulating different scenarios and setting different parameters.

• Experiment 1 used homogenous sensors, and the IWHO was used to improve the
coverage ratio of WSN. In order to demonstrate the IWHO algorithm’s efficacy, five
algorithms and four4 improved algorithms were chosen for comparison.

• The results of Experiment 1 show how effective the IWHO is in solving the sensor
coverage optimization issue. In Experiment 2, the IWHO was used in an HWSN to
increase sensor coverage and ensure sensor connectivity.

• In Experiment 3, an obstacle was added to the monitoring area to simulate a more
realistic scenario. The sensors must avoid the obstacle for coverage, and the IWHO
was used to improve the coverage and connectivity ratio of the sensors in the monitor-
ing area.
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6.2.1. Simulation Experiment 1 Comparison Results Analysis

In Experiment 1, we only considered the improvement in coverage ratio using Equation (4)
as the objective function. To avoid the possibility of the algorithm, the algorithm was run thirty
times independently. Table 7 displays the settings for the sensor parameters.

Table 7. Experimental 1 parameter configurations.

Parameters Values

Area of monitoring (S) 100 m × 100 m
Sensing radius (Rs) 10 m

Number of sensors (N) 45
Number of iterations (iteration) 150

Figure 6a shows how the sensors were initially covered in the monitoring area at
random. With the optimization of the IWHO, the overlapping sensors started to decrease.
Finally, as shown in Figure 6b, they were evenly distributed in the monitoring area. Table 8
demonstrates that the initial coverage reached 79.13%, while after the optimization of the
IWHO the coverage reached 97.58%, which is an improvement of 18.45%. At the beginning,
there were more redundant sensors in the region, and the region had more obvious energy
voids and appeared to be cluttered. After the optimization of the algorithm, the sensor
distribution became obviously uniform and the coverage ratio was significantly improved.
As a result, the IWHO is effective for WSN coverage optimization.
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Table 8. Comparison of initial coverage and optimize coverage experimental results.

Sensors Initial Coverage Ratio Optimize Coverage Ratio

N = 45 79.13% 97.58%

WHO, PSO, WOA, BES, HHO algorithms were selected for further comparative
experiments. All algorithms were run independently thirty times. Table 6 displays the
settings for the sensor parameters.

Table 9 demonstrates that the IWHO, with a coverage ratio of 97.58%, has the best
optimization result. The results of the experiments can prove that the IWHO shows better
results than the WHO algorithm in solving the WSN coverage optimization problem, with
an average coverage improvement of 5.52% and a coverage efficiency improvement of
3.93% after thirty independent runs. It also outperforms the other four algorithms. The
coverage ratio after IWHO optimization is 14.56% higher than the worst PSO algorithm
and 1.1% higher than the best HHO algorithm. Figure 7 shows that the IWHO maintains a
better coverage ratio for almost all iterations. Additionally, the IWHO algorithm’s coverage
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efficiency is the highest, coming in at 69.08%, surpassing the PSO algorithm’s coverage
efficiency by 10.3%. It demonstrates that the IWHO is optimized by reducing redundancy
in sensor coverage.

Table 9. Comparison of experimental results from various algorithms.

Algorithm Coverage Ratio Coverage Efficiency

PSO 83.02% 58.75%
BES 91.32% 64.63%

WOA 94.62% 66.96%
HHO 96.48% 68.28%
WHO 92.06% 65.15%
IWHO 97.58% 69.08%
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To further verify the superiority of IWHO in optimizing sensors coverage, the IWHO
was compared with the four improved algorithms. To ensure fairness, the parameter
settings are kept consistent with those in reference.

As Tables 10–13 demonstrate, with the same parameter values, the IWHO improves
WSN coverage.

Table 10. Comparison of TABC and IWHO experimental results.

Method Coverage Ratio

TABC [34] 96.07%
IWHO 97.58%

Table 11. Comparison of COOTCLCO and IWHO experimental results.

Method Coverage Ratio

COOTCLCO [35] 96.99%
IWHO 99.17%
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Table 12. Comparison of GWO-EH and IWHO experimental results.

Method Coverage Ratio

GWO-EH [36] 83.64%
IWHO 97.78%

Table 13. Comparison of VFLGWO and IWHO experimental results.

Method Coverage Ratio

VFLGWO [37] 94.52%
IWHO 99.48%

6.2.2. Simulation Experiment 2 Comparison Results Analysis

In a complex sensor coverage environment, it is difficult to unify the types of sensors.
Therefore, more of the HWSN is often covered in real environments. In Experiment 2,
two different types of sensors were set up, and the sensors were dispersed at random
throughout the monitoring area. The IWHO was used to optimize the HWSN coverage.
Table 14 displays the settings for the sensor parameters. N1,2 indicates the number of two
types of sensors.

Table 14. Experimental 2 parameter configurations.

Parameters Values

Area of monitoring (S) 100 m × 100 m
Sensing radius (Rs1) 12 m
Sensing radius (Rs2) 10 m

Communication radius (Rs1) 24 m
Communication radius (Rs2) 20 m

Number of sensor sensors (N1,2) 20
Number of iterations (iteration) 150

As shown in Figure 8a,b and Table 15, IWHO improved coverage equally well when
two kinds of different sensors are deployed. The optimized coverage achieved 98.51%, a
17.08% improvement over the initial state. In contrast to Experiment 1, IWHO improved
connectivity while improving coverage. As illustrated in Figure 8c,d and Table 16, some
of the sensors were not connected in the initial state, and the connectivity ratio was only
16.03%. However, after optimization, the connectivity ratio rose to 20.04%, and the overall
network connectivity improved.

Table 15. Comparison of HWSN coverage optimization experimental results.

Sensors Initial Coverage Ratio Optimize Coverage Ratio

N1,2 = 20 81.43% 98.51%

Table 16. Comparison of HWSN connectivity optimization experimental results.

Sensors Initial Connectivity Ratio Optimize Connectivity Ratio

N1,2 = 20 16.03% 20.04%
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6.2.3. Simulation Experiment 3 Comparison Results Analysis

In the actual coverage area, there are some non-deployable units. In order to simulate
a more realistic simulation scenario, a 25 m × 25 m obstacle was added to the monitoring
area. Experiment 3 evaluated the IWHO algorithm’s performance in optimizing HWNs
coverage with the existence of obstacles. Table 13 displays the settings for the sensor
parameters.

Similarly, as shown in Figure 9a,b and Table 17, IWHO can also effectively improve
the coverage ratio after adding obstacles to the monitoring area, reaching 99.25%, which is
16.96% higher than the initial state. As shown in Figure 9c,d and Table 18, some sensors
were not connected at the start. Following optimization, the network connectivity ratio
increased to 17.44%.

Table 17. Comparison of HWSN obstacle coverage optimization experimental results.

Sensors Initial Coverage Ratio Optimize Coverage Ratio

N1,2 = 20 86.61% 97.79%

Table 18. Comparison of HWSN obstacle connectivity optimization experimental results.

Sensors Initial Connectivity Ratio Optimize Connectivity Ratio

N1,2 = 20 15.77% 17.44%
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7. Conclusions

This paper proposes an IWHO to increase the coverage and connectivity of HWSNs.
The WHO algorithm’s flaws include a slow rate of convergence, poor convergence accuracy,
and a propensity for falling into a local optimum. How can the algorithm be made to
perform better as a result? The population is initialized using the SPM chaotic mapping
model, followed by the integration of the Golden-SA to enhance the algorithm’s search
for optimization, and finally, the best solution is perturbed using the opposition-based
learning and Cauchy variation strategy to avoid a local optimum being reached. This
study evaluates the optimization performance of the IWHO, the WHO algorithm, and
another seven algorithms using 23 benchmark test functions to confirm the performance
of the IWHO. According to the results of the simulation, the IWHO outperforms other
algorithms in terms of convergence accuracy and speed, as well as the ability to escape local
optimization. Although the IWHO can find the ideal optimal value for the majority of test
functions, the convergence rate can still be improved. For individual test functions, IWHO
still falls into local optimization. To further verify IWHO’s superiority in optimizing sensor
coverage, five other algorithms and four improved algorithms were used. The outcomes
demonstrate that the IWHO achieves optimum sensor coverage and is superior to other
algorithms. The coverage issue of HWSNs is finally resolved via IWHO, which optimizes
sensor coverage and enhances sensor connectivity. After adding an obstacle, it can also be
optimized to obtain good results.

However, the current research is still insufficient. We can continue enhancing the
IWHO to increase its performance and researching the IWHO for multi-objective optimiza-
tion so that it can handle more complex HWSN coverage and engineering issues.
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