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Abstract: Fungi are very promising biological objects for the green synthesis of nanoparticles. Bio-
genic synthesis of nanoparticles using different mycological cultures and substances obtained from 
them is a promising, easy and environmentally friendly method. By varying the synthesis condi-
tions, the same culture can be used to produce nanoparticles with different sizes, shapes, stability 
in colloids and, therefore, different biological activity. Fungi are capable of producing a wide range 
of biologically active compounds and have a powerful enzymatic system that allows them to form 
nanoparticles of various chemical elements. This review attempts to summarize and provide a com-
parative analysis of the currently accumulated data, including, among others, our research group’s 
works, on the variety of the characteristics of the nanoparticles produced by various fungal species, 
their mycelium, fruiting bodies, extracts and purified fungal metabolites. 
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1. Introduction 
The most important task of modern nanotechnology is the development of reliable 

and efficient techniques allowing one to produce monodisperse nanoparticles with 
needed parameters. Nanoparticle production methods can be divided into physical, 
chemical and biological (or bio-assisted) [1,2], as well as combined methods putting to-
gether biological materials and physical influences, such as microwave radiation [3,4]. The 
chemical and physical methods traditionally used to produce nanoparticles allow large 
quantities of particles to be synthesized in a short time, but they are often expensive and 
difficult to perform; the issue of their environmental safety is a big problem as well. There-
fore, in recent years, there has been an increasing interest in green nanotechnology and 
the biological synthesis of nanoparticles [5–8]. The introduction of green synthesis tech-
niques can reduce the negative impact of nanotechnology on the environment by using 
less toxic reagents and reducing the risks of secondary pollution. Furthermore, nanopar-
ticles produced via biosynthesis may have higher stability and biocompatibility and lower 
toxicity owing to their coating with biogenic surfactants or capping agents [9–11]. 

The ability to form nanoparticles has been found in all groups of organisms. Numer-
ous studies have shown that plants [12–15], animals [10,16,17], bacteria [16,18], fungi 
[11,19–21], actinomycetes [22,23], algae [14,16,24,25], lichens [26] and viruses [10] can be 
successfully used to produce nanoparticles. Along with living cultures, their biomass, cell 
fractions, extracts, metabolites and spent media can also be used in green nanosynthesis 
[6,11,12,14,27,28], as well as various plant and animal food products [29–32] and organic 
industrial wastes [33–35]. Fungal cultures of different taxonomic groups are very promis-
ing biological objects for the green synthesis of nanoparticles [11,20,36]. The advantage of 
fungi in comparison to other organisms is their ability to produce a wide range of active 
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protein molecules, convert ions of heavy metals and other trace elements into less toxic 
forms under the action of their enzymes and accumulate them in large quantities both 
within their mycelium and extracellularly. Therefore, fungi-mediated nanosynthesis has 
been increasingly studied in the past two decades. In fungal cultures, the ability to form a 
wide range of nanoparticles of different chemical compositions was found, including met-
als, metalloids, metal oxides and sulfides and other compounds, as well as composite na-
noparticles [19,36,37]. 

All biological methods of nanosynthesis can be divided into two main types. In the 
first one, living cultures are used directly to serve as “nanofactories“, forming nanoparti-
cles in vivo and accumulating them in their cells, on their cell surface or in the medium. 
Fungal biomass separated from the culture liquid can also be used. The disadvantage of 
this method is the need to separate the obtained nanoparticles from the bio-object’s cells; 
moreover, the process of biosynthesis by growing cultures may take a long time. The level 
of the precursor may also be a limiting factor, because high concentrations of metals and 
other compounds used to biosynthesize nanoparticles inhibit the growth processes. An-
other option for green nanoparticle synthesis is the use of various substances derived from 
bio-objects, such as culture liquids, intracellular extracts, protein fractions or individual 
fungal metabolites. The use of such techniques greatly facilitates the process of nanosyn-
thesis, as there is no need to destroy the producing organism’s cells and separate nano-
particles from them. 

The physico-chemical properties of nanoparticles are closely related not only to their 
chemical composition and crystal structure but also to their size and morphology, includ-
ing particle physical shape, surface topography and the presence of pores and cavities 
[38,39]. It is also important that the synthesized nanoparticles are homogeneous in size 
and shape and resistant to aggregation in suspensions. The properties of biogenic nano-
particles have been found to depend on the species and strain of the microorganism, the 
extracts and metabolites used, the precursor compound and its concentration, media com-
position, stirring rate, incubation time, temperature, pH and other conditions, the varying 
of which can control nanoparticle formation [40–42]. The characteristics of the resulting 
nanoparticles determine their future applications. In this regard, an important challenge 
in nanobiotechnology is to develop methods allowing one to produce nanoparticles with 
better control over their size, shape and other properties. However, not enough attention 
has been paid to the study of the influence of the synthesis conditions on the properties of 
biogenic nanoparticles. In particular, there are still few comparative studies on the myco-
synthesis of nanoparticles with different characteristics using the same fungal species but 
under different conditions. 

In this review, we tried to summarize the currently available data on the variety of 
characteristics of the nanoparticles produced by various fungal species, their mycelium, 
fruit bodies, extracts and purified fungal metabolites. We paid special attention to the na-
noparticles of the elements that currently remain understudied and insufficiently covered 
in reviews. 

2. Fungi-Mediated Synthesis of Nanoparticles 
2.1. Mycosynthesis of Silver Nanoparticles 

Owing to their unique features, silver nanoparticles (AgNPs) have many applications 
in various fields of medicine and engineering. The area of their applications includes elec-
tronic components, biomedical devices, textile engineering, cosmetics, agricultural engi-
neering and many others [43,44]. AgNPs have been found to have a wide range of biolog-
ical activities, including antibacterial, antifungal, antiviral, antitumor, hepatoprotective 
and hypotensive properties, which is why they are actively used for therapeutic purposes 
[45,46]. 

To date, the biological synthesis of AgNPs in fungi has been the most extensively 
studied of all elements. The ability to produce nanosilver has been detected in more than 
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120 species of fungi from different taxa, including Ascomycota (Alternaria [47], Aspergillus 
[48,49], Beauveria [50], Bionectria [51], Botryodiplodia [52], Chrysosporium [53], Cladosporium 
[54], Colletotrichum [55], Epicoccum [56], Fusarium [57,58], Geotricum [59], Guignardia [60], 
Helvella [61], Hormoconis [62], Humicola [63], Macrophomina [64], Neurospora [65], Paecilomy-
ces [66], Penicillium [67–72], Pestalotia [73], Phoma [74,75], Picoa [76], Saccharomyces [77], 
Sclerotinia [78], Scopulariopsis [79], Talaromyces [80], Tirmania [81], Trichoderma [42,48,82–
84], Verticillium [85], Yarrowia [86]), Mucoromycota (Rhizopus [87]) and Basidiomycota 
(Agaricus [41,88–91], Auricularia [92], Bjerkandera [93], Boletus [94], Calocybe [95], Coriolus 
[94], Cryptococcus [96], Flammulina [97,98], Fomes [99], Fomitopsis [100], Ganoderma 
[41,82,101,102], Grifola [41], Hypsizygus [103], Inonotus [104], Lactarius [105], Laxitextum 
[106], Lentinus [41,107], Microporus [108], Phaenerochaete [109], Phellinus [88], Piriformospora 
[110], Pleurotus [41,111–114], Pycnoporus [115], Rhodotorula [116], Schizophylluum [117], 
Trametes [118], Tricholoma [119], Volvariella [120]). Basidiomycetes are of particular interest 
as promising bio-objects for nanoparticle fabrication. Most of the basidiomycetes studied 
for mycosynthesis belong to edible and medicinal mushrooms, many of which are grown 
in artificial culture. These fungi produce a wide range of biologically active molecules, 
which not only can act as capping and stabilizing agents but also have anticancer, anti-
inflammatory, antioxidant and antimicrobial activities themselves, allowing the produc-
tion of nanoparticles with complex biomedical properties. 

The number of research papers on nanosilver mycosynthesis includes many dozens 
and is constantly growing. In recent years, there have been several reviews detailing the 
production of biogenic nanoparticles of this element using fungal cultures [45,121,122]. 
Therefore, below we will focus on some of the most recent publications in the past five 
years (Table 1). 

Table 1. Mycosynthesis of silver nanoparticles. 

Species Source Precursor Nanoparticles References 

Agaricus arvensis 
Living culture AgNO3 Spherical (10–20 nm) 

[41] Cultural liquid AgNO3 Irregular spherical (10–100 nm) 
Mycelial extract AgNO3 Spherical (1–10 nm) 

Agaricus bisporus 
Living culture AgNO3 Spherical (10–20 nm) 

[41] Cultural liquid AgNO3 Irregular spherical (10–100 nm) 
Mycelial extract AgNO3 Spherical (1–10 nm) 

Agaricus bisporus Crude polysaccharide extract AgNO3 Irregularly quasi-spherical (20–40 nm) [88] 
Agaricus bisporus Fruit body extract AgNO3 Face-centered cubic (average size of 43.9 nm) [89] 
Agaricus bisporus Fruit body extract AgNO3 Cubic (average size of 50.44 nm) [90] 
Agaricus bisporus Fruit body extract AgNO3 Spherical (average size of 16 nm) [91] 

Agaricus brasiliensis Crude polysaccharide extract AgNO3 Irregularly quasi-spherical (20–40 nm) [88] 
Alternaria sp. Mycelial extract AgNO3 Spherical (3–10 nm) [47] 

Aspergillus niger Crude xylanase AgNO3 Spherical, cylindrical, oval (15.21–77.49 nm) [48] 
Auricularia polytricha Mycelial extract AgNO3 Spherical (5–50 nm) [92] 

Beauveria bassiana Mycelial extract AgNO3 Triangular, circular, hexagonal (10–50 nm) [50] 

Botryodiplodia theobromae 
Mycelial extract AgNO3 66.75–111.23 nm  

[52] 
Mycelial biomass AgNO3 62.77–103 nm 

Flammulina velutipes Fungal extract AgNO3 Spherical (average size of 21.4 nm) [97] 
Flammulina velutipes Fruit body extract AgNO3 Spherical (average size of 22 nm) [98] 

Fomes fomentarius Fruit body extract AgNO3 Spherical (10–20 nm) [99] 
Fomitopsis pinicola Fruit body extract AgNO3 Spherical (10–30 nm) [100] 

Ganoderma applanatum Fruit body extract AgNO3 Spherical (average size of 58.77 nm) [102] 

Ganoderma lucidum 

Living culture AgNO3 Spherical (10–20 nm) 

[41] Cultural liquid AgNO3 Irregular spherical (10–100 nm) 
Mycelial extract AgNO3 Spherical (1–10 nm) 

Fruit body extract AgNO3 Near-cubic (20–200 nm) 
Ganoderma lucidum Fungal extract AgNO3 Spherical (23–58 nm) [123] 
Ganoderma lucidum Fruit body extract AgNO3 Spherical (15–22 nm) [124] 
Ganoderma lucidum Fruit body extract AgNO3 Spherical (average size of 11.38 nm) [125] 

Ganoderma sessile Mycelial extract AgNO3 
Quasi-spherical (average size of 5.4 or 8.9 nm de-

pending on the extraction method) 
[82] 

Ganoderma sessiliforme Fruit body extract AgNO3 Spherical (average size of 45 nm) [101] 
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Grifola frondosa 
Living culture AgNO3 Spherical (10–20 nm) 

[41] Cultural liquid AgNO3 Irregular spherical (10–100 nm) 
Mycelial extract AgNO3 Spherical (1–10 nm) 

Helvella leucopus Fruit body extract AgNO3 Spherical (80–100 nm), aggregated [61] 
Lactarius piperatus Fruit body extract AgNO3 Spherical (average size of 49 nm) [105] 

Lentinus edodes 

Living culture AgNO3 Spherical (10–20 nm) 

[41] Cultural liquid AgNO3 
Irregular spherical (10–100 nm), spherical con-

glomerates 50–250) 
Mycelial extract AgNO3 Spherical (1–10 nm) 

Lentinus tuber-regium Fruit body extract AgNO3 Spherical (5–35 nm) [107] 
Penicillium citrinum Mycelial extract AgNO3 Spherical (2–5 nm) [67] 

Penicillium cyclopium Mycelial biomass AgNO3 Mostly irregular (12–25 nm) [68] 
Penicillium janthinellum Mycelial extract AgNO3 Spherical (1–30 nm) [69] 

Penicillium oxalicum Mycelial extract AgNO3 Spherical (60–80 nm) [70] 
Penicillium oxalicum Mycelial extract AgNO3 Spherical (average size of 52.26 nm) [71] 

Penicillium polonicum Mycelial extract AgNO3 
Mostly spherical (10–15 nm), hexagonal, polyhe-

dral (above 30 nm) 
[72] 

Phaenerochaete chrysosporium Mycelial extract AgNO3 Spherical, oval (34–90 nm) [109] 
Phellinus linteus Crude polysaccharide extract AgNO3 Irregularly quasi-spherical (20–40 nm) [88] 

Picoa sp. Fruit body extract AgNO3 Irregular (average size of 19.5 nm) [76] 
Pleurotus djamor Fruit body extract AgNO3 Spherical (average size of 55.76 nm) [114] 
Pleurotus eryngii Fruit body extract AgNO3 Spherical (average size of 18.45 nm) [112] 
Pleurotus florida Fruit body extract AgNO3 Spherical (average size of 10 nm) [111] 

Pleurotus ostreatus 
Living culture AgNO3 Spherical (10–20 nm) 

[41] Cultural liquid AgNO3 Irregular spherical (10–100 nm) 
Mycelial extract AgNO3 Spherical (1–10 nm) 

Pleurotus ostreatus Fruit body extract AgNO3 Spherical, hexagonal (18–82 nm) [126] 
Pleurotus ostreatus Fruit body extract AgNO3 Spherical (average size of 28.44 nm) [114] 
Pleurotus sajor caju Fruit body extract AgNO3 Spherical (11–44 nm) [127] 
Pleurotus sajor caju Fruit body extract AgNO3 Spherical (average size of 15–20 nm) [113] 

Tirmania sp. Fruit body extract AgNO3 Irregular, spherical (average size of 72 nm) [81] 
Trametes trogii Mycelial extract AgNO3 Mostly spherical (5–65 nm) [118] 

Trichoderma atroviride Mycelial extract AgNO3 15–25 nm [84] 

Trichoderma atroviride 
Cultural liquid AgNO3 Spherical (20–30 nm) 

[42] Mycelial extract AgNO3 Spherical (15–35 nm) 
Trichoderma harzianum Mycelial extract AgNO3 Spherical (10–25 nm) [83] 

Trichoderma harzianum Mycelial extract AgNO3 
Quasi-spherical (average size of 9.6 or 19.1 nm 

depending on the extraction method) 
[82] 

Trichoderma longibrachiatum Crude xylanase AgNO3 Spherical, cylindrical, oval (15.21–77.49 nm) [48] 

Trichoderma longibrachiatum 
Cultural liquid AgNO3 Spherical (5–15 nm) 

[42] 
Mycelial extract AgNO3 Spherical (10–25 nm) 

As can be seen from the table, AgNPs are commonly spherical in shape; irregular, 
oval, cubic, triangular, polygonal and other shapes are less common. Extracts from fruit 
bodies and mycelium are the most frequently used biological material for AgNP myco-
synthesis, while culture liquids, biomass, living cultures and fungal metabolites of differ-
ent purity (including enzymes, polysaccharides and phenolic compounds) are less com-
monly used. 

A number of researchers have screened fungal cultures to find the most promising 
ones for AgNP biofabrication. For example, Qu et al. studied 10 Trichoderma species and 
found that AgNPs obtained using different species differed in the degree of antimicrobial 
activity [42]. Other researchers found that among nine different fungi isolated from metal-
rich sites, a strain of Penicillium janthinellum exhibited maximum metal tolerance capacity 
and AgNP-synthesizing ability [69]. 

The shape, size, homogeneity and stability of nanoparticles are influenced by the pro-
cess conditions, the optimization of which can improve the quality of the obtained parti-
cles. For example, Mohanta et al. used various ratios of a Ganoderma sessiliforme mushroom 
extract to AgNO3 for AgNP synthesis [101]. At a 0.5:10 ratio, nanoparticles formed very 
slowly; at a 1.5:10 ratio, the reaction was very rapid but nanoparticles formed large aggre-
gates. The 1:10 ratio was optimal and allowed the authors to obtain nanoparticles with an 
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average size of 45 nm with antimicrobial and antioxidant activity. In another study, the 
utilization of a Ganoderma lucidum fruit body extract was scrutinized under different op-
erational conditions including the AgNO3:extract ratio, reaction time and temperature to 
establish an effective myconanosynthesis method with a high yield rate and nanoparticle 
stabilization [125]. Vetchinkina et al. studied the effect of the Lentinus edodes culture age 
and stage of ontogenesis on the biogenic AgNP synthesis using culture liquids of different 
ages [41] and extracts obtained from the different morphological structures of L. edodes 
[128]. Parametric optimization, including the concentration of AgNO3, fungal biomass, 
ratio of cell filtrate to AgNO3, pH, reaction time and presence of light, was performed for 
the rapid synthesis of silver nanoparticles by Penicillium polonicum [72]. For Trichoderma 
harzianum and Ganoderma sessile, different methods of mycelial extraction for silver myco-
synthesis were compared [82]. The extract containing intracellular components of fungal 
strains was obtained from a mechanically disrupted mycelium, while for the extract con-
taining extracellular components of fungal strains, the biomass was extracted without dis-
ruption. The second method produced smaller particles. 

A number of researchers have studied the effect of various additional external phys-
ical influences on the fungi-mediated nanoparticle formation and developed combined 
methods of myconanosynthesis to improve AgNP characteristics. For example, UV radi-
ation enhanced the characteristics of AgNPs obtained with an Agaricus bisporus pilei ex-
tract [89]. Microwave irritation enhanced the properties of AgNPs synthesized with the 
use of a Pleurotus sajor-caju fruit body extract [113]. AgNPs were synthesized from Pleuro-
tus florida fruit body extracts using different electro-magnetic radiations, microwaves, vis-
ible light and UV rays [111]. Microwave irradiation led to the synthesis of monodisperse 
AgNPs of 10 nm size within 150 s of exposure, whereas visible light and UV radiation led 
to the synthesis of polydisperse AgNPs with inconsistent dimensions. 

Numerous studies have shown that mycosynthesized AgNPs have antibacterial, an-
tifungal, anticancer, antioxidant, larvicidal and other properties, and the same nanoparti-
cles can exhibit a wide range of biological activities. For example, silver nanospheres ob-
tained by using Flammulina velutipes had bactericidal, fungicidal, anti-Alzheimer, anti-
cancer, antioxidant and anti-diabetic activities, as well as good biocompatibility against 
human red blood cells [97]. Silver nanospheres produced using Aspergillus niger and 
Trichoderma longibrachiatum xylanases exhibited antibacterial, antifungal, antioxidant, an-
ticoagulant, thrombolytic and dye-degrading activities [48]. All these properties offer 
great prospects for biomedical applications of mycogenic AgNPs. 

2.2. Mycosynthesis of Gold Nanoparticles 
Gold nanoparticles (AuNPs) have attracted attention owing to their unique optical, 

electronic, thermal, chemical and biological properties. They have been used in chemical 
and biological sensing, bio-imaging, nonlinear optics, catalysis, targeted drug delivery, 
gene delivery and as antimicrobial and antioxidant agents, as well as in cancer, Alz-
heimer’s, cardiovascular and infectious disease therapy [129–131]. In the past two dec-
ades, the biological synthesis of gold nanoparticles by fungi has been studied almost as 
extensively as that of silver. The ability to form AuNPs has been found in dozens of micro- 
and macromycete species. The table shows the AuNP mycosynthesis data published in 
the past five years (Table 2). 
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Table 2. Mycosynthesis of gold nanoparticles. 

Species Source Precursor Nanoparticles References 

Agaricus arvensis 
Living culture HAuCl4 Spherical (5–50 nm) 

[41] Cultural liquid HAuCl4 Spherical (2–10 nm) 
Mycelial extract HAuCl4 Irregular spherical (25–20 nm) 

Agaricus bisporus Fruit body extract HAuCl4 Spherical (average size of 25 nm) [132] 

Agaricus bisporus 

Living culture HAuCl4 Spherical (5–50 nm) 

[41] Cultural liquid HAuCl4 Spherical (2–10 nm) 

Mycelial extract HAuCl4 Spherical (10–50 nm), hexagonal, tetragonal, 
triangular (30–100 nm) 

Agaricus bisporus Fruit body extract HAuCl4 
Oval, spherical, drum-like, hexagonal, trian-

gular (average size of 53 nm) [133] 

Agaricus bisporus Fruit body extract HAuCl4 Spherical (10–50 nm) [134] 
Alternaria spp. Fungal extract HAuCl4 Triangular, circular (average size of 28 nm) [135] 
Cantharellus sp. Fungal extract HAuCl4 Spherical (average size of 60.6 nm) [136] 

Coprinus comatus Fruit body extract HAuCl4 Face-centered cubic (average size of 17.39 nm) [137] 

Flammulina velutipes Fruit body extract HAuCl4 
Triangular, spherical, irregular (average size 

of 74.32 nm) [138] 

Fusarium oxysporum Cultural liquid HAuCl4 Spherical, hexagonal (22–30 nm) [139] 

Fusarium solani Biomass extract HAuCl4 Needle and flower-like structures with spin-
dle shape (40–45 nm) 

[140] 

Ganoderma applanatum Isolated phenolic com-
pounds 

HAuCl4 Face-centered cubic (average size of 18.70 nm) [141] 

Ganoderma lucidum 

Living culture HAuCl4 Spherical (5–50 nm) 

[41] 
Cultural liquid HAuCl4 Spherical (5–60 nm) 

Mycelial extract HAuCl4 
Spherical (10–50 nm), hexagonal, tetragonal, 

triangular (30–100 nm) 
Ganoderma lucidum Fruit body extract HAuCl4 Spherical, oval, irregular (1–100 nm) [142] 

Grifola frondosa 

Living culture HAuCl4 Spherical (5–50 nm) 

[41] Cultural liquid HAuCl4 Spherical (2–10 nm) 

Mycelial extract HAuCl4 
Spherical (10–50 nm), hexagonal, tetragonal, 

triangular (30–100 nm) 
Inonotus obliquus Fruit body extract HAuCl4 Mostly spherical (below 20 nm) [143] 

Laetiporus versisporus Fruit body extract HAuCl4 Spherical (average size of 10 nm) [144] 

Lentinus edodes Fruit body extract HAuCl4 Triangular, hexagonal, spherical, irregular 
(average size of 72 nm) 

[145] 

Lentinus edodes 

Living culture HAuCl4 Spherical (5–50 nm) 

[41,146] 

Cultural liquid HAuCl4 Spherical (2–20 nm) 

Mycelial extract HAuCl4 
Spherical (10–50 nm), hexagonal, tetragonal, 

triangular (30–200 nm) 
Intracellular Mn-pe-

roxidase 
HAuCl4 Spherical (2–20 nm) 

Intracellular laccases 
and tyrosinases HAuCl4 Irregular spherical, triangular, tetrahedral (5–

120 nm) 
Morchella esculenta Fruit body extract HAuCl4 Face-centered cubic (average size of 16.51 nm) [147] 

Penicillium janthinellum Mycelial extract HAuCl4 Spherical (1–40 nm) [69] 
Phoma sp. Mycelial biomass HAuCl4 Spherical (10–100 nm) [148] 

Pleurotus ostreatus 

Living culture HAuCl4 Spherical (5–50 nm) 

[41] Cultural liquid HAuCl4 Spherical (2–20 nm) 

Mycelial extract HAuCl4 Spherical (10–50 nm), hexagonal, tetragonal, 
triangular (30–200 nm) 
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Pleurotus sajor-caju Fruit body extract HAuCl4 Spherical (average size of 16–18 nm) [113] 
Trichoderma hamatum Mycelial extract HAuCl4 Spherical, pentagonal, hexagonal (5–30 nm) [149] 

Trichoderma harzianum Mycelial biomass HAuCl4 Spherical (below 30 nm) [150] 

Tricholoma crassum Mycelial extract HAuCl4 Circular, rhomboid (5 nm or less), hexagonal, 
cubic, triangular (4.36–22.94 nm) 

[151] 

As with silver, the ability to biosynthesize gold nanoparticles has been studied 
mainly in two groups of fungi—ascomycetes and basidiomycetes. Mycogenic AuNPs 
most often have a spherical shape, but triangular, hexagonal, cubic, irregular and other 
shapes were also found. 

Needle- and flower-like nanostructures with a spindle shape were obtained using 
Fusarium solani biomass extract [140]. Spherical and hexagonal particles 22–30 nm in size 
were mycosynthesized with the use of Fusarium oxysporum cultural liquid [139]. 

Spherical, pentagonal and hexagonal nanoparticles (5–30 nm) were obtained with 
Trichoderma hamatum mycelial extract [149]. The authors optimized the conditions for the 
synthesis of AuNPs with the smallest size using T. hamatum. Nanoparticles biosynthesized 
using T. harzianum mycelial biomass had a nanometric size distribution below 30 nanome-
ters and a spherical shape [150]. 

AuNPs of variable shapes with considerable antibacterial, antioxidant and antimi-
totic activities were obtained with an Alternaria spp. extract [135]. Gold nanospheres (10–
100 nm) with antibacterial and antifungal properties were obtained using Phoma sp. my-
celial biomass [148]. Cubic AuNPs with strong antimicrobial, cytotoxic and antioxidant 
activity were synthesized using a Morchella esculenta fruit body extract [147]. 

Molnár et al. studied AuNP mycosynthesis by 29 thermophilic fungi and compared 
the results of three different approaches for the synthesis of gold nanoparticles using the 
extracellular fraction, the autolysate or the intracellular fraction of the fungi [152]. They 
observed the formation of nanoparticles with different sizes (ranging between 6 nm and 
40 nm) and size distributions depending on the fungal strain and experimental conditions. 

Vetchinkina et al. studied AuNP mycosynthesis by A. bisporus and Agaricus arvensis 
cultures [41,153]. The use of live cultures, culture liquids and mycelial extracts resulted in 
the formation of nanoparticles of different sizes and shapes. Nanospheres were formed 
with living cultures and culture liquids, while irregularly spherical particles in the case of 
A. bisporus and various shapes with A. arvensis were formed using intracellular mycelial 
extracts. 

An extract from the A. bisporus fruit body was prepared and utilized as a reducing 
and stabilizing agent toward a green synthesis of AuNPs [134]. The different parameters 
such as the precursor concentration, precursor:extract ratio, pH, temperature, reaction 
mode and reaction time were optimized for the mycosynthesis of AuNPs. The synthesized 
gold nanospheres (10–50 nm) significantly inhibited the growth of clinically important 
pathogenic Gram-positive and Gram-negative bacteria and pathogenic fungi. AuNPs 
with a dye-degrading activity obtained by Dheyab et al. using an A. bisporus fruit body 
extract were oval, spherical, drum-like, hexagonal and triangular (average size of 53 nm) 
[133]. An A. bisporus mushroom extract was also used to synthesize gold nanospheres 
through a hydrothermal process (at a pressure of 15 psi and a temperature of 121°C for 15 
min) [132]. The optimal conditions for the maximum nanoparticle concentration and sta-
bility were selected. 

Face-centered cubic nanocrystals with dye-reducing properties were synthesized us-
ing phenolic compounds isolated from Ganoderma applanatum [141]. Anticancer AuNPs 
biofabricated using a G. lucidum fruit body extract exhibited shapes such as spherical, oval 
and irregular, and their size ranged between 1 and 100 nm [142]. 

AuNPs synthesized using G. lucidum living cultures, as well as cultural liquid, were 
spherical, while the use of G. lucidum mycelial extract resulted in spherical, hexagonal, 
tetragonal and triangular particle formation [41]. The same results were obtained for Gri-
fola frondosa and Pleurotus ostreatus cultures as well [41]. 
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Chaturvedi et al. combined AuNP synthesis with the use of a P. sajor-caju fruit body 
extract followed by microwave irritation to further enhance the effects of fabricated gold 
nanospheres [113]. 

Vetchinkina et al. studied AuNP mycosynthesis by the L. edodes culture [41]. Living 
cultures formed nanospheres of 5–50 nm; smaller nanospheres were formed by the incu-
bation of culture liquid with HAuCl4, and spherical, hexagonal, tetragonal and triangular 
particles of various sizes were formed with mycelial extract. Nanoparticles different in 
shape and size were synthesized using enzymes isolated and purified from the L. edodes 
mycelium. Spherical nanoparticles (2–20 nm) were obtained using intracellular Mn-pe-
roxidase, and particles forming with the use of intracellular laccases and tyrosinases were 
bigger and irregularly spherical, triangular and tetrahedral in shape. When AuNPs were 
made with extracts from different morphogenetic stages of L. edodes and G. lucidum, their 
size, shape and degree of aggregation differed between the morphological structures in-
volved [128]. The cytotoxicity of the AuNPs was negligible in a broad concentration range. 

Other researchers used an L. edodes fruit body extract to produce AuNPs of various 
shapes [145]. 

Basu et al. obtained variously shaped gold nanoparticles using a Tricholoma crassum 
mycelial extract [151]. They showed that particle size could be altered by changing syn-
thesis parameters such as temperature and substrate and precursor concentrations. A mix-
ture of triangular, spherical and irregular shapes with an average size of 74.32 nm was 
fabricated using a Flammulina velutipes fruit body extract [138]. A chaga (Inonotus obliquus) 
medicinal mushroom extract induced the formation of mostly spherical AuNPs with a 
size below 20 nm [143]. These AuNPs are promising dual-modal (chemo-photothermal) 
therapeutic candidates for anticancer applications. The production of AuNPs by a 
Coprinus comatus fruit body extract and the effect of UV irradiation at different times on 
nanoparticle size were investigated [137]. Gold nanospheres were also obtained using 
fruit body extracts of Cantharellus sp. (average particle size of 60.6 nm) [136] and Laetiporus 
versisporus (average particle size of 10 nm) [144]. 

2.3. Mycosynthesis of Platinum Nanoparticles 
Platinum nanoparticles (PtNPs) are of great interest in various fields of engineering 

and biomedicine owing to their unique physico-chemical (catalytic, magnetic and optical) 
and biological (antimicrobial, antioxidant, anticancer) properties [154–156]. The mycosyn-
thesis of PtNPs is much less studied, as compared to that of silver and gold. To date, the 
ability to form nanoparticles of this noble metal has been detected in several Ascomycota 
species (Table 3). 

Table 3. Mycosynthesis of platinum nanoparticles. 

Species Source Precursor Nanoparticles References 
Alternaria alternata Cultural liquid H2PtCl6 Irregular (50–315) [157] 

Fusarium oxysporum Mycelial biomass H2PtCl6 
Hexagonal, pentagonal, 

circular, square, rectangular 
(10–100 nm) 

[158] 

Fusarium oxysporum 

Purified mycelial en-
zyme PtCl2 

Rectangular, triangular 
(100–180 nm) 

[159] Purified mycelial en-
zyme 

H2PtCl6 Spherical (100–140 nm) 

Fusarium oxysporum 

Mycelial extract H2PtCl6 Irregular (30–40 nm) 

[160] Purified mycelial en-
zyme 

H2PtCl6 
Circular, triangular, pentag-

onal, hexagonal, often as 
nanoplates (40–60 nm) 

Fusarium oxysporum Mycelial biomass H2PtCl6 Spherical (15–30 nm) [161] 
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Fusarium oxysporum Cultural liquid H2PtCl6 
Face-centered cubic (aver-

age size of 25 nm) [162] 

Neurospora crassa 

Mycelial biomass H2PtCl6 

Quazi-spherical single 
PtNPs (4–35 nm) and spher-
ical nanoaggregates (20–110 

nm) [163] 

Mycelial extract H2PtCl6 

Spherical nanoaggregates 
(17–76 nm), containing indi-

vidual single crystals 2–3 
nm in diameter 

Penicillium chrysogenum Cultural liquid H2PtCl6 Spherical (5–40 nm) [164] 
Saccharomyces boulardii Cell free extract H2PtCl6 Spherical (80–150 nm) [165] 

PtNP biosynthesis has been best studied in F. oxysporum. Riddin et al. showed that 
the mycelial biomass of F. oxysporum is capable of producing nanoparticles of various 
shapes (hexagons, pentagons, circles, squares, rectangles) and sizes (10–100 nm) and de-
termined the optimal conditions (pH, temperature and concentration of the precursor 
compound H2PtCl6) for maximum nanoparticle yield [158]. Nanoparticles were formed 
both extracellularly and intracellularly as well as on the hyphae surface, but only the ex-
tracellular production of nanoparticles proved to be statistically significant. In further 
studies [161], a hydrogenase with Pt(IV)-reductase activity was isolated from this strain 
of F. oxysporum. It was shown that the bioreduction of platinum salt by hydrogenase takes 
place by a passive process and not an active one as previously understood. PtNPs formed 
by cell-free mycelial extract and purified hydrogenase differed in size and shape. The par-
ticles formed with the extract were irregular in shape, with an average nanoparticle size 
of 30–40 nm. Circular, triangular, pentagonal and hexagonal nanoparticles, often appear-
ing as nanoplates, with a mean size range of 40–60 nm, were formed using the enzyme. It 
was found that the oxidation state of the platinum salt also plays an important role in 
nanoparticle formation [160]. When PtCl2 was used as a precursor, large (100–180 nm) 
nanoparticles of predominantly rectangular and triangular shape forming aggregates 
were biosynthesized with F. oxysporum hydrogenase. Bioreduction of H2PtCl6 produced 
spherical monodisperse nanoparticles varying in size with the mean nanoparticle size be-
tween 100 and 140 nm. 

Syed and Ahmad were able to produce spherical PtNPs with a diameter of 15–30 nm 
using F. oxysporum mycelial biomass [161]. The particles were formed extracellularly and 
were capped by natural proteins secreted by the fungus and therefore did not require the 
addition of stabilizing agents. Gupta and Chundawat obtained face-centered cubic nano-
particles with an average size of 25 nm with antimicrobial and photocatalytic activity us-
ing F. oxysporum filtrate [162].  

The use of Penicillium chrysogenum culture filtrate made it possible to obtain highly 
dispersed non-aggregating platinum nanospheres (5–40 nm) [164]. Another ascomycete 
in which the ability to synthesize platinum nanoparticles has been found is Neurospora 
crassa [163]. Incubation of mycelial biomass with H2PtCl6 produced extracellular PtNPs 
(4–35 nm in diameter) and spherical nanoaggregates (20–110 nm in diameter). Using a 
mycelial extract from the same fungi, round single-crystal nanoagglomerates with diam-
eters of 17 to 76 nm were obtained, containing individual single crystals of approximately 
2–3 nm in diameter. Nanoplatinum was also obtained using the culture filtrate of the phy-
topathogenic fungus Alternaria alternata [157]. The particles were found to be irregular in 
shape presenting an overall quasi-spherical, rectangular, tetrahedral and hexagonal as 
well as polygonal morphology. Their size varied in the range of 50–315 nm with an aver-
age size of 135 nm. 

Borse et al. investigated the production of platinum nanospheres using cell-free ex-
tract of Saccharomyces boulardii yeast biomass and the effect of parameters such as the 
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concentration of H2PtCl6, temperature, pH, reaction time and cell concentration [165]. A 
cell mass concentration of 500 mg/ mLin, the presence of 0.5 mM chloroplatinic acid at 35 
°C, pH 7 and 200 rpm for 36 h showed maximum PtNP synthesis. Under these conditions, 
platinum nanospheres (80–150 nm) with anticancer activity were formed. It was also 
shown that nanoparticles were formed intracellularly when whole yeast cells were incu-
bated with H2PtCl6. 

2.4. Mycosynthesis of Palladium Nanoparticles 
The ability to biofabricate nanoparticles of another platinum-group noble metal, pal-

ladium, has been also discovered in fungi. Palladium nanoparticles (PdNPs) have brilliant 
catalytic, electronic, physical, mechanical and optical properties and have impressive po-
tential for the development of novel photothermal, photoacoustic, antimicrobial and anti-
tumor agents, gene/drug carriers, prodrug activators and biosensors [166]. Biosynthesized 
PdNPs have been found to possess more enhanced anticancer activities, as compared to 
other synthetic anticancer drugs [167]. However, the possibility of using the unique prop-
erties of palladium in various areas of biomedicine is still understudied and needs further 
research. To date, the mycosynthesis of this element in fungal cultures has remained ex-
tremely understudied, as compared to plants [167], and has been reported only in a few 
publications (Table 4). 

Table 4. Mycosynthesis of palladium nanoparticles. 

Species Source Precursor Nanoparticles References 

Agaricus bisporus Mushroom extract [Pd(OAc)2]n Triangular and spherical (13–
18 nm) [168] 

Inonotus obliquus 
Fruit body powder 

extract PdCl42− Porous spherical [169] 

Saccharomyces cerevisiae Biomass extract [Pd(OAc)2]n Hexagonal (average size of 32 
nm), agglomerated 

[170] 

Saccharomyces cerevisiae Biomass Na2PdCl4 Spherical (10–20 nm) [171] 

Incubation of an Agaricus bisporus mushroom extract with palladium acetate resulted 
in the formation of PdNPs with anticancer, anti-inflammatory, antibacterial and antioxi-
dant activities [168]. Porous anisotropic palladium nanoparticles were synthesized using 
an extract from the powder of the medicinal chaga mushroom (I. obliquus) [169]. The mor-
phology of these nanoparticles could be controlled by changing the chaga extract concen-
tration—with its increase, their rough surface morphology and porosity also increased. 
The properties of the obtained nanostructures showed their potential for biological-
chemo-thermo tri-modal anticancer therapy. 

PdNP synthesis using the baker’s yeast Saccharomyces cerevisiae biomass has also been 
reported. Saitoh and colleagues described the formation of crystalline PdNPs with diam-
eters of 10–20 nm, deposited on the surfaces of the S. cerevisiae cells [171]. Other research-
ers have obtained hexagonal PdNPs using a dry yeast extract [170]. The synthesized 
PdNPs were found to be active toward the photocatalytic degradation of the azo dye. 

2.5. Mycosynthesis of Copper Nanoparticles 
Copper nanoparticles (CuNPs) have attracted attention owing to their optical, cata-

lytic, mechanical, electrical and biomedical properties [172]. Biosynthesized CuNPs have 
antibacterial, antifungal, antiviral and anticancer properties and can be used in targeted 
drug delivery, cosmetic applications, catalysis, microelectronics, gas sensors, high-tem-
perature superconductors, solar cells, as bactericide agents, wound dressings, biopesti-
cides, in bioremediation, biodegradation and energy storage [172–174]. 
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The mycosynthesis of CuNPs also remains poorly studied. An analysis of the litera-
ture showed that CuNPs produced by fungi are predominantly spherical in shape (Table 
5). 

Table 5. Mycosynthesis of copper nanoparticles. 

Species Source Precursor Nanoparticles References 
Agaricus bisporus Fruit body extract Cu(NO3)2 Spherical (10–60 nm) [175] 
Aspergillus flavus Mycelial biomass CuSO4 Spherical (2–60 nm) [176] 
Aspergillus niger Mycelial extract CuSO4 Spherical (5–100 nm) [177] 

Aspergillus versicolor Mycelial extract CuSO4 Spherical, polygonal (23–
82 nm) 

[178] 

Fusarium oxysporum Mycelial biomass Copper-containing 
waste Spherical (93–115 nm) [179] 

Hypocrea lixii Mycelial biomass CuCl2 
Spherical (average size of 

24.5 nm) [180] 

Shizophyllum commune Mycelial biomass CuCl2 Spherical (40–65 nm) [181] 
Stereum hirsutum Mycelial extract CuCl2 Spherical (5–20 nm) [182] 

Trichoderma atroviride Mycelial extract CuSO4 Irregular spherical (5–25 
nm) 

[183] 

Trichoderma koningiop-
sis Mycelial biomass CuCl2 

Spherical (average size of 
87.5 nm) [184]  

Irregular spherical CuNPs of 5–25 size with antimicrobial activity against phytopath-
ogens were obtained from a mycelial extract of Trichoderma atroviride [183]. Salvadori et 
al. found that Trichoderma koningiopsis can produce CuNPs [184]. Live, dead (autoclaved) 
and dried biomass of T. koningiopsis was used in the experiment. The dead biomass 
showed a higher capacity to adsorb copper metal ions than live and dried biomass and 
was used for further nanoparticle production. The resulting nanoparticles were predom-
inantly spheric (average size of 87.5 nm) and were formed extracellularly. Similar results 
were shown for Hypocrea lixii, but the nanoparticles were smaller (average size of 24.5 nm) 
[180]. 

Cuevas et al. compared the CuNP mycosynthesis by a Stereum hirsutum extract using 
three different salts (CuSO4, Cu(NO3)2 and CuCl2) [182]. Nanoparticle biosynthesis in the 
presence of all copper salts demonstrated higher formation with 5 mM CuCl2 under alka-
line conditions. The nanoparticles were mainly spherical (5 to 20 nm). 

Copper nanospheres with their diameters ranging from 2 to 60 nm were formed on 
the surface of the Aspergillus flavus mycelium [176]. Noor et al. studied CuNP synthesis 
with A. niger [177]. The ability to mycosynthesize CuNPs was found in only one of the 
eight A. niger strains studied. The CuNPs were spherical and uniformly distributed with-
out substantial agglomeration. Their size ranged from 5 to 100 nm. These nanoparticles 
showed anticancer, antimicrobial and antidiabetic activity. Nanoparticles 23–82 nm in size 
with a round to polygonal shape were obtained using an Aspergillus versicolor mycelial 
extract [178]. An antifungal study showed their potential antifungal activity against rot-
ting plant pathogens. 

Spherical CuNPs with excellent antibacterial, free-radical-scavenging and cytotoxic 
effects were obtained using an aqueous extract of A. bisporus fruit bodies [175]. CuNPs 
(40–65 nm in diameter) obtained with Shizophyllum commune biomass [181] exhibited an-
timicrobial and antibiofilm activity against human pathogens. F. oxysporum was found to 
leach copper from electronic waste composed of integrated circuits from obsolete and dis-
carded electronic goods, forming nanoparticles [179], which opens the prospect of using 
myconanosynthesis in the bioremediation of electronic waste in order to recycle valuable 
metals. 
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2.6. Mycosynthesis of Iron Nanoparticles 
Iron is one of the most abundant elements in the Earth’s crust that has been used by 

humankind for thousands of years, but only recently, with the development of nanotech-
nology, has it become a focus of interest in this new field of application. Iron nanoparticles 
(FeNPs) and iron-based nanomaterials are very important for the abatement of environ-
mental pollution (degradation of organic dyes and other pollutants, heavy metal removal, 
wastewater treatment) and for use in biomedicine as antimicrobial agents [185,186]. So 
far, the production of FeNPs has been studied mainly in Ascomycota micromycetes (Table 
6). 

Table 6. Mycosynthesis of iron nanoparticles. 

Species Source Precursor Nanoparticles References 
Alternaria alternata Mycelial extract Fe(NO3)3 Cubic (average size of 9 nm) [187] 

Alternaria alternata Mycelial extract FeSO4 
Semi-oval (20–40 nm)/spherical (10–

80 nm) 
[188] 

Aspergillus oryzae Mycelial extract FeCl3 Spherical (10–24.6 nm) [189] 

Fusarium oxysporum Mycelial biomass 
K3Fe(CN)6  

Spherical (20–40 nm) [190] K4Fe(CN)6 
Penicillium oxalicum Mycelial extract FeSO4 Spherical (average size of 140 nm) [191] 

Pleurotus florida Fruit body extract FeCl3 Spherical (100 nm) [192] 
Pleurotus sp. Mycelial biomass FeSO4 – [193] 

Rhizopus stolonifer Mycelial extract FeCl3 – [194] 
Trichoderma sp. Mycelial extract FeCl3 – [195] 

The table shows that mycogenic FeNPs are predominantly spherical in shape. For 
example, iron nanospheres approximately 100 nm in diameter with antimicrobial activity 
were obtained from a P. florida fruit body extract [192]. 

An Aspergillus oryzae extract was used to make 10–24.6 nm nanospheres [189]. Incu-
bation of a Penicillium oxalicum mycelial extract with FeSO4 produced spherical nanopar-
ticles with an average diameter of 140 nm, which effectively decolorized methylene blue 
dye [191]. FeNPs were also obtained using a cell-free filtrate extract of the Rhizopus sto-
lonifer mycelium [194] and Trichoderma sp. [195]. 

Small cubic-shaped FeNPs with antibacterial activity against Gram-positive and 
Gram-negative bacteria were obtained by incubating an A. alternata mycelial extract with 
Fe(NO3)3 [187]. Other researchers obtained FeNPs using an A. alternata extract and FeSO4 
as a precursor and found that the size and shape of the synthesized nanoparticles de-
pended on the medium in which the fungal culture was grown [188]. The culture grown 
in a potato dextrose broth biosynthesized semi-oval polydisperse particles with size in the 
range of 20–40 nm, while fungi grown on the Czapek media produced particles with sphe-
roid morphology of 10 to 80 nm. Six months after their production, 5 µm microparticles 
were formed from the mycosynthesized nanoparticles, possibly owing to the magnetic 
attraction of these materials. 

Mazumdar and Haloi found that when a Pleurotus sp. mycelium was incubated with 
FeSO4, nanoparticles were synthesized both extra- and intracellularly [193]. A distinct 
layer of ferric nanoparticles was formed around the cells. The amount of nanoparticles 
inside the cells was significantly lower than outside. Nanoparticles synthesized with F. 
oxysporum biomass [190] had a size of 20–40 nm and possessed antimicrobial activity, but 
it was less pronounced than that of silver nanoparticles studied in the same work. 

2.7. Mycosynthesis of Selenium Nanoparticles 
In addition to metals, fungi have also been found to biosynthesize nanoparticles of 

metalloids, most notably selenium. Selenium is an essential element for humans, animals 
and microorganisms, but many of its compounds are highly toxic. Selenium nanoparticles 
(SeNPs) are of great interest owing to their lower toxicity than inorganic and organic 
forms of selenium and their biocompatibility, bioavailability and biomedical properties. 
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Nano-selenium exhibits excellent antimicrobial, anticancer, antidiabetic, antiparasitic and 
antioxidant activities [196]. SeNPs can be used in targeted drug delivery, bioremediation, 
nanobiosensors, as a food supplement and in many other areas [197,198]. 

The ability of fungi to convert selenium from selenites, selenates and other com-
pounds into elementary form to reduce their toxic effects has long been known to mycol-
ogists. For example, in as early as 1995, a number of fungal cultures were shown to reduce 
selenite to elementary selenium [199]. Aspergillus funiculosus and Fusarium sp. incubated 
with sodium selenite produced needle-like crystals of elementary selenium on the sur-
faces of hyphae and conidia. A. funiculosus also deposited electron-dense granules in vac-
uoles of selenite-treated fungi. However, SeNP mycosynthesis has received considerable 
attention only in recent years. So far, the biological synthesis of SeNPs has been detected 
in a fairly large number of fungal species and is best studied in microscopic ascomycetes 
(Table 7). As can be seen from the table, mycogenic SeNPs are mostly spherical in shape, 
and their diameter can vary widely. In some cultures, such as A. alternata, Fusarium equiseti 
and Rhodotorula mucilaginosa, the formation of selenium nanorods was also observed. 

Table 7. Mycosynthesis of selenium nanoparticles. 

Species Source Precursor Nanoparticles References 

Agaricus arvensis 
Cultural liquid Na2SeO3 Spherical (150–550 nm) 

[41,153] 
Mycelial extract Na2SeO3 Spherical (100–250 nm) 

Agaricus bisporus 
Cultural liquid Na2SeO3 Spherical (100–250 nm) 

[41,153] 
Mycelial extract Na2SeO3 Spherical (40–140 nm) 

Alternaria alternata Cultural liquid Na2SeO4 Spherical (30–150 nm) [200] 

Alternaria alternata Cultural liquid Na2SeO4 
Nanorods (200–800 nm in length, 50–70 nm in 

width) 
[201] 

Aspergillus flavus Cultural liquid Na2SeO4 Spherical (average size of 51.5 nm) [202] 
Aspergillus ochraceus Living culture Na2SeO3 Spherical (average size of 45.22 nm) [203 

Aspergillus quadrilineatus Living culture Na2SeO3 Spherical (average size of 55.37 nm) [203]] 
Aspergillus terreus Cultural liquid Se4+ ions solution Spherical (average size of 47 nm) [204] 
Aspergillus terreus Living culture Na2SeO3 Spherical (average size of 30.98 nm) [203] 

Aureobasidium pullulans Living culture Na2SeO3 Spherical (average size of 60 nm) [205] 
Aureobasidium pullulans Cultural liquid Na2SeO3 Spherical (20–120 nm) [206] 

Candida albicans Cultural liquid Na2SeO4 Spherical (average size of 64 nm) [202] 

Fusarium equiseti Living culture Na2SeO3 
Spherical and rod-shaped (average size of 

30.11 nm) 
[203] 

Fusarium oxysporum Biomass H2SeO3 Spherical (34.32–231.98 nm) [207] 
Ganoderma lucidum Living culture Na2SeO3 Spherical (20–50 nm) [208] 

Ganoderma lucidum 
Cultural liquid Na2SeO3 Spherical (20–50 nm) 

[41] 
Mycelial extract Na2SeO3 Spherical (100–300 nm) 

Grifola frondosa Living culture Na2SeO3 Spherical (50–320 nm) [208] 

Grifola frondosa 
Cultural liquid Na2SeO3 Spherical (20–50 nm) 

[41] 
Mycelial extract Na2SeO3 Spherical (100–300 nm) 

Lentinus edodes Living culture Na2SeO3 Spherical (50–320 nm) [208] 

Lentinus edodes 
Cultural liquid Na2SeO3 Spherical (50–150 nm) 

[41] 
Mycelial extract Na2SeO3 Irregular spherical (50–150 nm) 

Magnusiomyces ingens Biomass extract SeO2 Spherical, quasi-spherical (70–90 nm) [209] 

Mariannaea sp. Living culture SeO2 
Spherical (average size of 45.19/212.65 nm de-

pending on the nanoparticle location) 
[210] 

Mortierella humilis Living culture Na2SeO3 Spherical (average size of 48 nm) [205] 
Nematospora coryli Biomass Na2SeO3 Spherical (50–250 nm) [211] 

Penicillium chrysogenum Cultural liquid Na2SeO3 Spherical (average size of 24.65 nm) [212] 
Penicillium chrysogenum Cultural liquid Na2SeO3 Spherical (44–78 nm) [213] 
Penicillium chrysogenum Cultural liquid Na2SeO4 Spherical (average size of 33.84 nm) [214] 

Penicillium citrinum Biomass HNaO3Se 
Spherical (various sizes depending on the con-

ditions) 
[215] 

Penicillium corylophilum Cultural liquid Na2SeO3 Spherical (29.1–48.9 nm) [216] 
Penicillium crustosum Cultural liquid Na2SeO3 Spherical (3–22 nm) [217] 
Penicillium expansum Cultural liquid SeO2 Spherical (4–12.7 nm) [218] 

Phoma glomerata Living culture Na2SeO3 Spherical (100–200 nm) [219] 
Pleurotus ostreatus Living culture Na2SeO3 Spherical (50–320 nm) [208] 
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Pleurotus ostreatus 
Cultural liquid Na2SeO3 Spherical (50–150 nm) 

[41] 
Mycelial extract Na2SeO3 Irregular spherical (50–150 nm) 

Rhodotorula mucilaginosa Biomass Na2SeO3 
Spherical, rod-shaped (83–478 nm depending 

on the precursor concentration) 
[220] 

Trichoderma atroviride Mycelial extract Na2SeO3 Spherical (60.48–123.16 nm) [221] 

Trichoderma harzianum Mycelial extract Na2SeO3 Irregular (average size of 60 nm) [222] 

Trichoderma sp. Living culture SeO2 Spherical, pseudo-spherical (20–220 nm) [223] 
Trichoderma sp. Mycelial extract – Spherical (40–100 nm) [224] 

The ability to mycosynthesize SeNPs has been best studied in several species of Pen-
icillium, Aspergillus and Trichoderma. For example, monodispersed selenium nanospheres 
with an average size of 24.65 nm exhibiting antibacterial activity were obtained using P. 
chrysogenum culture liquid and Na2SeO3 as a precursor [212]. Other researchers obtained 
molluscicidal and larvicidal SeNPs (44–78 nm) using a P. chrysogenum culture liquid [213]. 
El-Sayyad et al. developed a method to produce nanoparticles involving the incubation of 
a P. chrysogenum filtrate with Na2SeO4 following the application of gamma irradiation 
[214]. These nanospheres had an average diameter of 33.84 nm and exhibited antimicro-
bial and antibiofilm activities. 

Amin et al. used another method to produce SeNPs involving the use of gamma ra-
diation [215]. The spore suspension of Penicillium citrinum was exposed to different doses 
of gamma radiation, and SeNPs were then produced by an irradiated P. citrinum. Irradia-
tion by gamma rays enhanced the mycosynthesis of SeNPs, and the size of the nanoparti-
cles was dependent on the radiation dose. 

Spherical SeNPs obtained with Penicillium corylophilum culture liquid had antimicro-
bial, cytotoxic and larvicidal activity against the mosquito vector of malaria [216]. Nano-
spheres with a diameter of 3–22 nm exhibiting antimicrobial, anticancer and catalytic ac-
tivity were obtained using Penicillium crustosum culture liquid [217]. It was found that the 
presence of light is one of the influential parameters to promote these activities of SeNPs. 
Small selenium nanospheres with a wide range of biomedical activities, including antimi-
crobial activity against fungi, Gram-positive and Gram-negative bacteria and antioxidant 
and anticancer activity, were obtained using Penicillium expansum culture liquid [218]. 

Hussein et al. isolated several species of microscopic fungi with the ability to myco-
synthesize SeNPs [203]. Aspergillus quadrilineatus, Aspergillus ochraceusand and Aspergillus 
terreus produced nanospheres of different sizes depending on the species, and Fusarium 
equiseti synthesized spherical and rod-shaped particles. The nanoparticles obtained had 
antibacterial, antifungal and antioxidant properties. Selenium nanospheres (average size 
of 47 nm) were also obtained using A. terreus culture liquid [204]. Selenium nanospheres 
mycosynthesized with Aspergillus flavus and Candida albicans culture liquid exhibited high 
antifungal activity showing inhibition of fungal growth in the presence of lower concen-
trations of nanoparticles than antifungal drugs [202]. 

Mycogenic selenium nanospheres synthesized from a T. atroviride extract had anti-
fungal activity and also possessed the unique property of aggregating and binding to the 
zoospores of the phytopatogenic oomycete fungi Phytophthora infestans [221]. Spherical 
and pseudospherical SeNPs were synthesized by Trichoderma sp. on a medium with SeO2 
[223]. The authors determined the optimal pH values, precursor concentration and appli-
cation time for nanoparticle synthesis. Elementary selenium nanospheres (40–100 nm) 
with larvicidal activity were obtained using a Trichoderma sp. extract [224]. Hu et al. ob-
tained irregularly spherical SeNPs using T. harzianum [222]. Many organic acids, sugars 
and their derivatives, such as heptonic acid, ferulate, fumaric acid and threonic acid, as 
well as glucose and mannitol, capped the selenium nanoparticles and played the role of 
stabilizing agents. Mycogenic nanoparticles inhibited the growth of pathogenic fungi bet-
ter than traditionally produced SeNPs. 
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The fungi T. harzianum, Aureobasidium pullulans, Mortierella humilis and Phoma glom-
erata were able to grow on selenium-containing media resulting in the extensive precipi-
tation of elementary selenium nanoparticles on fungal surfaces [205]. The average size of 
the A. pullulans-synthesized nanospheres was 60 nm, and that of M. humilis-synthesized 
nanoparticles was about 48 nm. Nanospheres with the size of 20–120 nm were formed 
when A. pullulans culture liquid was incubated with selenite [206]. Spherical nanoparticles 
(100–200 nm) formed on fungal surfaces and in the medium during the growth of P. glom-
erata with selenite [219].  

Sarkar et al. reported on the synthesis of SeNPs with a spherical [200] or rod-like 
shape [201] using an A. alternata culture filtrate. When F. oxysporum biomass was incu-
bated with selenious acid as a precursor, spherical selenium and selenium sulfide nano-
particles with their size between 34.32 and 231.98 nm were formed [207]. When the fungus 
Mariannaea sp. was grown in the presence of SeO2, intracellular and extracellular selenium 
nanospheres deposited on the cell wall and in the cytoplasmic region were formed [210]. 
The average size of the nanospheres was 45.19 nm for intracellular SeNPs and 212.65 nm 
for extracellular SeNPs. 

Lian et al. studied SeNP production using cell-free extracts of a novel yeast, Mag-
nusiomyces ingens, and showed that the pH, concentration of the selenium-containing com-
pound SeO2 and protein content in the yeast extract could distinctly influence the for-
mation and stabilization of SeNPs [209]. The SeNPs were almost quasispherical and spher-
ical with a small number of irregular SeNPs. The diameter was mainly between 70 and 90 
nm. Using the biomass of the yeast Nematospora coryli, selenium nanospheres with anti-
Candida and anti-oxidant activities were obtained [211]. The aquatic yeast R. mucilaginosa 
synthesized SeNPs extracellularly and intracellularly [220]. Utilization of low selenite pre-
cursor concentrations (1–4 mM) resulted in the formation of spherical nanoparticles, and 
they formed rod-shaped structures at a higher precursor concentration (5 mM). 

Compared to the cultures described above, the possibility of SeNP mycosynthesis 
using basidial macromycetes has been much less studied. 

Vetchinkina et al. compared SeNP mycosynthesis by a number of edible and medic-
inal basidiomycetes using their mycelial extracts and culture liquids [41]. A. arvensis, A. 
bisporus, G. lucidum and G. frondosa produced selenium nanospheres whose size varied 
depending on the culture and method of their biosynthesis. In the case of L. edodes and P. 
ostreatus, nanospheres were fabricated using culture liquids while mycelial extracts pro-
duced irregularly spherical particles. 

Living cultures of G. lucidum, G. frondosa, L. edodes and P. ostreatus also formed sele-
nium nanospheres when grown on a medium with Na2SeO3 [208]. In G. lucidum, the di-
ameter of the nanospheres was 20–50 nm; the other species synthesized larger particles 
(50–320 nm). Se0 nanoparticles were also formed when L. edodes was grown with the or-
ganic selenium compound but not with Na2SeO4 [225]. 

2.8. Mycosynthesis of Tellurium Nanoparticles 
Tellurium is another metalloid that has recently attracted attention owing to its bio-

genic nanoparticles (TeNPs). Their photoconductive, thermoconductive, piezoelectric, 
non-linear optical, antioxidant, antimicrobial, anticancer, immunomodulating and cyto-
toxic properties, as well as their potential of being used in drug delivery, bioremediation 
and biorecovery, are of interest [226]. In fungi, TeNP formation is still very poorly studied 
(Table 8). 

Table 8. Mycosynthesis of tellurium nanoparticles. 

Species Source Precursor Nanoparticles References 
Aspergillus welwitschiae Cultural liquid K2TeO3 Oval to spherical (60.80 nm) [227] 
Aureobasidium pullulans Living culture Na2TeO3 Granular [205] 

Mortierella humilis Living culture Na2TeO3 Granular [205] 
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Penicillium chrysogenum Cultural liquid K2TeO3 
Spherical (average size of 

50.16 nm) [228] 

Phanerochaete chrysosporium Living culture K2TeO3 Needles (20–465 nm) [229] 
Phoma glomerata Living culture Na2TeO3 Pillars, needles [205] 
Phoma glomerata Living culture Na2TeO3 Rods (10–80 nm) [219] 

Trichoderma harzianum Living culture Na2TeO3 Pillars, needles, agglomer-
ated rods  

[205] 

Biogenic TeNPs are typically rod-like or spherical. In Phoma glomerata, Aureobasidium 
pullulans, Mortierella humilis and T. harzianum cultures, the ability to form TeNPs intra- 
and extracellularly was found [205,219]. In Phanerochaete chrysosporium, the formation of 
needle-like particles (20–465 nm) of Te0 in the fungal hyphae was shown when incubated 
with TeO32- [229]. Tellurium nanospheres were obtained using culture liquids of Aspergil-
lus welwitschiae [227] and P. chrysogenum [228]. 

3. Mechanisms of Fungi-Mediated Nanoparticle Biosynthesis 
The process of nanoparticle formation by fungi can take place intra- and extracellu-

larly under the action of enzymes and other biologically active molecules (Figure 1). 

 
Figure 1. Schematic representation of fungi-mediated nanoparticle biosynthesis. 

In recent years, more and more attention is paid to the study of the reduction mech-
anisms of various compounds by fungi, but not enough is known about particular com-
pounds of the fungal secretome involved in the formation of nanoparticles. It has been 
found that laccase [146,230–232], Mn-peroxidase [146], tyrosinase [146] and ligninase [231] 
are involved in AuNP biosynthesis by fungi. Nitrate reductase [233], laccase [234,235] and 
xylanase [48] are involved in the AgNP mycosynthesis, while PtNP synthesis is catalyzed 
by hydrogenase [159,160]. The same culture can produce several enzymes catalyzing na-
noparticle fabrication; for example, for P. chrysosporium, laccase and ligninase have been 
shown to be responsible for the extracellular and intracellular AuNP formation, respec-
tively [231]. In addition to enzymatic myconanosynthesis, fungal peptides [236], polysac-
charides [68,88,236] and phenolic compounds were found to participate in the reduction 
of various compounds and nanoparticle formation [86,141,237]. Thus, many researchers 
confirm that biological molecules such as polysaccharides, enzymes, proteins or peptides 
can be used for the synthesis and assembly of materials with nanoscale dimensions. 
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Similar methods of the rational usage of biological processes could provide a new way for 
the development of nanotechnology. 

4. Advantages of Fungi-Mediated Nanoparticle Synthesis and Prospects for  
Application of Mycogenic Nanoparticles 

Among the variety of organisms capable of forming nanoparticles, fungi attract spe-
cial attention. Owing to the unique properties of fungi, green fungal nanoparticle synthe-
sis has several important advantages over the use of bacteria, plants and other organisms 
[40,238–240]. These advantages include: 
• Active production of reducing and capping compounds; 
• High activity of enzymes involved in the bioreduction of various compounds result-

ing in nanoparticle formation; 
• Resistance to high concentrations of metals and metalloids; 
• Ability to biofabricate large quantities of nanoparticles mostly extracellularly; 
• High speed of nanoparticle formation; 
• Simplicity of cultivation, nanoparticle downstream processing and scaling up; 
• Safety for human health (when using edible and medicinal mushrooms); 
• Ability to produce nanoparticles with complex medical properties (when using me-

dicinal mushrooms). 
Mycogenic nanoparticles have a wide range of biological activities that allow their 

use in many fields of medicine, agriculture and industry. Bactericidal, antibiofilm, fungi-
cidal, antiviral, anticancer, anti-inflammatory, antioxidant, anticoagulant and thrombo-
lytic properties of the mycogenic nanoparticles of gold, silver, platinum, palladium, cop-
per, selenium and other elements allow their use in the therapy of various diseases, in-
cluding cancer, Alzheimer’s disease, diabetes and cardiovascular and infectious diseases, 
as well as in wound healing [240–242]. It has been found that fungi-derived nanoparticles 
can effectively inhibit the growth of various pathogenic microorganisms [202], including 
drug-resistant pathogens [64,123]. The use of nanoparticles in combination with other an-
timicrobial agents increases their therapeutic effect and allows reducing the risk of the 
resistance development in pathogens, as well as restoring the activity of antibiotics that 
have lost their efficiency [243]. Of great interest is the use of medicinal fungi to produce 
nanoparticles with complex medical activity, which is achieved by combining the proper-
ties of the nanoparticles themselves and of the fungal metabolites acting as capping agents 
[169]. Activity of the nanoparticles against insect larvae and pupae spreading human dis-
eases [53,216,244–246], as well as against pathogen vector mollusks [213,247], is also of 
interest in terms of the use of mycogenic AuNPs, AgNPs and SeNPs as an eco-friendly 
and cost-effective tool for disease biological control. Mycosynthesized nanoparticles have 
great potential for use as carriers in targeted drug delivery, for bioimaging and biolabel-
ing, as sensors for optical and electronic devices and in the cosmetics, textile and food 
processing industries [240,248,249]. 

In agriculture, fungi-derived nanoparticles find application as nanopesticides and 
nanofertilizers, allowing one to reduce the use of more toxic agrochemicals [250–253]. 
Fungicidal, bactericidal, larvicidal and nematicidal activity found in many mycogenic na-
noparticles [178,183,221,254–257] holds great promise for their use in the control of pests 
and phytopathogens, including pesticide-resistant ones. Another important area of appli-
cation for mycogenic nanoparticles is mycoremediation [258]. The ability of fungi to uti-
lize metal and metalloid compounds converting them into less toxic forms and accumu-
lating them in the mycelium as nanoparticles is well known [259]. Due to this, fungi can 
be successfully used for metal and metalloid removal from soil and water and for their 
further recycling [184,260]. Immobilization of fungal biomass with nanoparticles allows 
one to obtain hybrid biosorbents for toxic element disposal [261]. The ability of mycogenic 
nanoparticles to degrade industrial and agricultural pollutants is of great interest. Various 
azo, diazo and metal-complex dyes are widely used in many industries; they get into 
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water and soil in large quantities and pose a serious threat to the environment and human 
health, so recently the ability of fungi to produce nanoparticles with dye-degrading prop-
erties has been actively studied [262]. The dye-degrading activity found in mycogenic 
AuNPs [133,141], AgNPs [48], FeNPs [191] and PdNPs [170] makes them promising tools 
for eliminating industrial and municipal wastewater contamination by toxic dyes. Fur-
thermore, fungi-derived nanoparticles have shown to be effective for pesticide removal 
[263] and for the treatment of wastewaters polluted with microbial contaminants [79]. 

5. Conclusions 
The characteristics of mycogenic nanoparticles, including their shape, size, surface 

topography, homogeneity, resistance to aggregation and formation rate, can vary greatly 
for the same element. They depend on the physico-chemical parameters of the bioreduc-
tion process (chemical composition and concentration of the precursor, composition of the 
cultivation medium, pH, temperature, reaction time, presence of agitation and lighting, 
as well as additional influences such as microwave radiation and gamma radiation) and 
biological parameters (fungal species and strain, culture age, extract type and metabolites 
used). 

The ability to form nanoparticles has been found in many fungal species, predomi-
nantly belonging to the Ascomycota and Basidiomycota. Studies on the screening of various 
fungal cultures to identify the best nanoparticle producers show that different species and 
strains of the same species can vary greatly in nanosynthetic activity under the same con-
ditions. The way in which fungal cultures are used to produce nanoparticles is also very 
important—whether in the form of living cultures grown on media with precursors, as 
filtered mycelial biomass, cell-free culture liquid, purified metabolites, extracts from a 
submerged mycelium, fruit bodies or other morphological formations. A summary of na-
noparticle mycosynthesis is shown in Figure 2. 

 
Figure 2. Mycosynthesis of various nanoparticles. 

All these methods have their advantages and disadvantages. Living cultures growing 
on media with metal ions and metalloids can actively produce nanoparticles and accumu-
late them in the medium and inside their cells in very large quantities, but these particles 
require separation from the hyphae for their further use. Therefore, filtrates of culture 
liquids, extracts from undestroyed or destroyed mycelium and commercially purchased 
fruit bodies may be easier to use. Studies of nanoparticle mycosynthesis using enzymes 
and other compounds isolated from fungi can broaden the knowledge on the mechanisms 
of nanoparticle formation by fungi and are therefore of great importance for the develop-
ment of fundamental science. 
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The fungi-mediated synthesis of elementary silver, gold and, to a lesser extent, sele-
nium nanoparticles has now been studied in some detail and continues to be actively re-
searched. Yet, other elements remain little explored or almost not at all in terms of myco-
nanosynthesis. An important remaining task is the need to deepen and broaden our 
knowledge of fungi capable to biosynthesize nanoparticles of various chemical elements, 
search for new producers and optimize nanosynthesis processes for the efficient and con-
trolled fabrication of particles with the desired properties. Green fungi-mediated nano-
particle synthesis is an eco-friendly and effective method that still needs further research. 
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