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Abstract: In this paper, a pitching airfoil near flat and wavy ground is studied by numerical simula-
tions. The kinematic features of the airfoil and the flow field around it are analyzed to reveal unsteady
vorticity dynamics of the self-propelled airfoil in ground effect. The optimal pitching periods at
different initial heights above flat ground are obtained, which make the pitching airfoil achieve
the maximum lift-to-drag ratio. Compared with flat ground, at the same initial height, the optimal
pitching periods vary with the shape of ground. The structure and the strength of the wake vortices
shedding from the airfoil are adjusted by the wavelength of ground. This leads to the changes of
amplitude and occurrence times of the peak and valley of lift and drag force. The results obtained in
this study can provide some inspiration for the design of underwater vehicles in the ground effect.
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1. Introduction

The phenomenon that flying fish in gliding flight [1,2] and benthic rays [3] achieve
excellent locomotion performance by ground effect is ubiquitous in nature. Inspired by
this, the ground effect of the airfoil or wing is widely studied [4,5]. The aerodynamic
performance is altered when the airfoil or wing moves near the ground.

Current studies on the ground effect mainly focus on the fixed airfoil. Chawla et al. [6]
found that the ground effect is displayed significantly only when the height of the airfoil
from the ground is less than the average chord length. Ahmed [7] experimentally studied
the aerodynamic performance of the airfoil with various ground clearance and angles of
attack. The angle of attack has significant influence on the pressure distribution on the
lower surface of the airfoil placed in close proximity to a wall. Higher lift force is obtained
with decreasing ground clearance only when the angle of attack is in the range of 8 to
10 degrees. In Zerihan and Zhang’s work [8], it was found that when the height of the
airfoil from the ground varies from 20% of the chord length to 10%, the downforce increases
significantly. However, when the height is less than 10% of the chord length, the downforce
declines instead of increasing due to the stall. For the fixed airfoil, the ground proximity
has the most significant influence on the lift coefficients. At the same ground proximity, the
performance of the fixed airfoil is also affected by other factors such as the angle of attack
and airfoil shape.

Birds and aquatic animals can obtain thrust and lift force by flapping their airfoils.
When these animals swim or fly near the ground, the unsteady ground effect for the flapping
motion is observed unlike the fixed airfoil, because the angle of attack is constantly changing.
The physical mechanisms of unsteady ground effect have received widespread attention.
An experiment was carried out by Quinn [9] to investigate the unsteady propulsion of the
pitching airfoil near the ground. The result shows that the presence of the ground increases
the time-averaged thrust and maintains the propulsive efficiency, and the thrust is increased
by approximately 40% when the height of the pitching airfoil from the ground is located
at an equilibrium point where the mean lift is zero. Mivehchi et al. [10] experimentally
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studied the rigid flapping airfoil in ground effect and found that the time-averaged mean
force alone was not sufficient to fully explain the role of the ground. The distance from the
ground has a significant influence on the time-averaged forces and instantaneous forces
exerted on the airfoil. In addition, it showed that the strength of the ground effect can
be modulated through adjusting propulsive airfoil kinematics without sacrificing thrust.
Wu et al. [11] studied a biomimetic energy generator based on the flapping airfoil in ground
effect numerically. It was found that a smaller distance from the ground was favorable
to generate higher power extraction efficiency for a prescribed amplitude. Zhu et al. [12]
reached a similar conclusion and gave an optimum average ground clearance to ensure
the highest extraction efficiency. Moreover, the power extraction efficiency of the airfoil
can be enhanced obviously by the ground effect while simultaneously increasing the angle
of attack and the oscillation frequency of flapping airfoil. Apart from the rigid wing or
airfoil in the ground effect, the flexible one in the ground effect was conducted by Wang
and Tian [13]. They found that the rigid wall can reduce the generation of lift and drag
of the flexible flag and stabilize the flag-fluid system. However, the inertia of flag motion
makes the fluid system unstable, and the large inertia leads to chaotic vibration modes,
thus reducing the generation of lift and drag. For the flapping airfoil, the oscillation rule
and deformation of airfoil play have a significant impact on its ground effect.

The above studies on unsteady ground effects were carried out under the tethered
condition and are not sufficient to explain the unsteady ground effect on the locomotion of
living animals since those creatures swim or fly freely. During the process of self-propulsion,
the moving speed and off-wall distance of self-propelled foil are unknown before the
locomotion model of the body has been solved, different from the cases in the tethered
condition. Dai [14] and Park [15] studied the effect of self-propelled swimming of a flexible
plate near the ground, and the results show that the existence of a wall can improve the
cruise speed of self-propelled foil and a suitable flexibility can improve propulsion near the
ground. Tang et al. [16] reached a similar conclusion and identified three propulsion regimes
for the flapping plate with different heaving frequencies, classified as expensive, benefited,
and uninfluenced regimes due to the ground effect. In these studies, an oscillating motion
was forced in the leading edge of the flexible plates moving freely. However, Ogunka
et al. [17] found that anguilliform swimming near the ground with a ground clearance
larger than 0.04 L (fish length) does not improve the swimming performance in a quiescent
flow. In nature, there are a wide variety of body shapes and motion characteristics for
living animals. The studies about self-propelled locomotion of airfoil or fin in ground effect
are still lacking and need further exploration.

The seabed and the surface of the water are not smooth. Therefore, it is also meaningful
to consider the shape variations of the ground, which can investigate the locomotion
over real water or ground. The wavy ground effect was studied by Tremblay-Dionne
et al. through experiment [18,19]. This is similar to what happens on flat ground, where
greater lift is obtained as the ground clearance decreases. Meanwhile, wavy ground with
a smaller wavelength and larger amplitude causes more obvious ground effect. In the
numerical simulation study of Gao et al. [20] the oscillation frequency and amplitude of
the aerodynamic forces were determined mainly by the frequency of the wavy ground
and the average ground clearance, respectively. Hu et al. [21] studied the aerodynamic
performances of airfoil in wavy ground effect corresponding to different angles of attack.
They found that the medium angle of attack was the optimal design cruise angle of attack
for a wing-in-ground vehicle. However, these studies only considered the ground effect
of fixed airfoil on wavy ground. The explorations of bionic flapping airfoils on wavy
ground effect are very few. Therefore, it is important to study the biological locomotion
performance over actual uneven terrain.

Much effort has been made to study the steady ground effect and the flapping airfoil
under the tethered condition in ground effect. However, a study on the self-propulsion
airfoil in ground effect can give a better understanding of the physical mechanisms of birds
and benthic fishes moving near the ground, and knowledge about this topic is very limited
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so far. Therefore, the self-propelled locomotion of a pitching airfoil near flat and wavy
ground is investigated using numerical simulation in this study. The vortex dynamics
mechanisms of the self-propelled locomotion in ground effect are also analyzed to reveal
the relationship of vorticity field and the forces acting on the airfoil and its kinematics
characteristic. The systematic analysis of self-propelled airfoil under different motion
parameters could contribute to the design and control of ground-effect vehicles.

2. Problem Description and Methodology
2.1. Problem Description

In this study, the airfoil is considered separately from the initial height above flat
and wavy ground, and self-propulsion begins according to a given pitching rule. The
NACA0012 airfoil with the chord c is used as the shape of the pitching airfoil above the flat
and wavy grounds, as shown in Figure 1. Two sets of coordinates are employed in studying
the self-propulsion of the airfoil: the local coordinates (xl , yl) and the global laboratory
coordinates (x, y). The global laboratory coordinates are fixed on the ground. The origin of
the local coordinates is located at the center of mass of the airfoil. The governing equation
of pitching motion is given:

θ(t) = θ0sin(2π f t) (1)

where θ(t) is the angle of attack, θ0 is the maximum pitching amplitude angle, f is the
frequency of pitching, t is the time, h is the height of the airfoil from the ground in Figure 1.
A sinusoidal wavy ground is employed in the present study:

y = asin
(

2πx
λ

)
(2)

where a and λ are the amplitude and wavelength of wavy ground, respectively.
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Figure 1. Schematic diagram of the self-propelled airfoil with pitching motion (a) Near the flat ground
(b) Near the wavy ground.

The four sets of initial height of the airfoil from the ground h0, which are
h0 = 0.5c, 1.0c, 1.5c, 2.0c and a case without ground effect, are considered in this study.
For a certain h0, the pitching periods range from 1 s to 5 s.

The hydrodynamic force F and the moment M centered at the COM (center of mass)
ol , which exerted on the airfoil, are defined as follows [22]:

F = −
∫

∂B
(−pn + µω× n)ds (3)

M = −
∫

∂B
x× (−pn + µω× n)ds− 2µ

∫
B
ωBdV (4)

where ∂B is body surface, n is the unit outward normal vector of the body surface, ωB
is the angular velocity of the body, ω, p, µ are the fluid vorticity, pressure and dynamic
viscosity, respectively.
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The governing equation of the locomotion of the two-dimensional airfoil is
mdut

dt
= Fd

mdvt
dt

= Fl
d
dt
(
ωmΣimir2

i
)
= M

(5)

where m is the mass of the airfoil, ut and vt are the translational velocity in the x direction
and y direction, respectively. mi is the mass of the i element on the airfoil surface, ri is the
position vector of the i element (shown in Figure 1). Fd and Fl are the components of F in the
x direction and y direction, respectively. Fd is the sum of thrust force and drag force [23]. The
unknowns in Equation (5) are the components of translational velocity ut, vt and angular
velocity ωm. After solving the equations of ut, vt and ωm, the change of airfoil displacement
and attack angle of the airfoil can be obtained by solving the following equations:

dx
dt = ut
dy
dt = vt
dθm
dt = ωm

(6)

where θm is the angle caused by the external moment, so the attack angle of the airfoil at
the next moment is restated as Equation (4) from Equation (1):

θ(t) = θm + θ0 sin(2π f t) (7)

Although the motion velocity of the airfoil changes during the self-propelled process,
the motion velocity is close to the initial one. The Reynolds number based on the chord
length is Re = ρUc/µ = 150, where ρ, U and µ are the density, the magnitude of motion
velocity and dynamic viscosity of fluid, respectively. Thus, the Navier-Stokes equations is
solved directly while the Reynolds number in the present study is low. The momentum
and continuity equations are expressed as:

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p +

µ

ρ
∇2u (8)

∇ · u = 0 (9)

where u is the fluid velocity, ρ is the fluid density, p is the pressure and µ is the dynamic
viscosity, respectively.

The numerical simulation of the self-propelled locomotion of the airfoil includes two
sets of boundary conditions: the external boundaries of the computational domain and
boundary of the airfoil surface.

The external boundary conditions of the computational domain are specified as fol-
lows: inflow velocity is 0, so Dirichlet-type boundary condition is used at the inlet boundary
as ux = 0, uy = 0; at the outlet and top, Neumann-type boundary condition is applied as
∂ux/∂n = 0 and ∂uy/∂n = 0 to indicate the far field, n is the normal of the boundary; on
the bottom, the no-slip boundary condition was specified.

In the initial stage of motion, the flow in the computational domain is at rest. The
immersed boundary conditions on the airfoil surface consist of translational velocity and
linear velocity produced by rotation.

1. The translational velocity in inertial frame is defined as:

Vt = uti + vtj (10)

2. The linear velocity generated by the airfoil rotating around the COM (xol , yol) in the
local rotating frame is defined as:
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{
ur = −ωm (yl − yol)
vr = ωm (xl − xol)

(11)

where (xl , yl) is the coordinates of the point on airfoil surface, ωz can be obtained by:

ωz =
.
θ(t) = ωm + 2π f θ0cos(2π f t) (12)

Thus, the immersed boundary conditions [24] on the airfoil surface can be expressed
as follow: {

ux = ut + ur
vy = vt + vr

(13)

2.2. Numerical Method

In this study, the immersed boundary method is used to handle moving boundary
conditions. The immersed boundary method is a technique of defining moving boundary
conditions in grids. It was first developed by Peskin [25] to solve heart valve problems. It
can be used to simulate the interaction between structure (even the elastic solid) and fluid.
The immersed boundary method can deal with the changeable boundaries moving with
time on the fixed background mesh, and the mesh does not need to be regenerated with
the solid motion. Due to the existence of moving solid, the background mesh is divided
into three different types: the mesh element completely belonging to the flow field, the
solid mesh element and the immersed boundary (IB) mesh element. The motion problem is
solved by repositioning the object in the mesh.

The discrete-direct forcing approach [26,27] is adopted in this paper, which applies
the boundary conditions directly on the cells touching the immersed boundary (IB) by
modifying the discretized governing equations near the IB. Whether it is the continuous
term or the discretized term, no forcing term is introduced into the governing equation,
which is different from other indirect imposition approaches. In each time step, the value
of the dependent variable in the meshes closely adjacent to the immersed boundary is
evaluated by interpolation using the values of neighboring meshes and the boundary
condition at the corresponding immersed boundary points [28].

The polynomial interpolation is used to impose the Dirichlet immersed boundary
condition at IB cells, each IB point needs five extended meshes for interpolation in 2D
cas-es. Therefore, the interpolation equation is expressed as follows:

φP = φib + α0(xP − xib) + α1(yP − yib) + α2(xP − xib)(yP − yib)

+ α3(xP − xib)
2 + α4(yP − yib)

2 (14)

where x, y are coordinates of computational meshes, and α is unknown coefficients calcu-
lated through the weighted least squares method. Subscript P, P′ and ib represent the IB
meshes, fluid meshes and IB points, respectively (the details are shown in Figure 2).

The Neumann immersed boundary condition at IB points is imposed as Equation (15),
the interpolation is performed in local coordinate.

φP = α0 + [nib·(∇φ)ib]x
′
P + α1y′P + α2x′Py′P + α3

(
x′P
)2

+ α4
(
y′P
)2 (15)

where n is the normal vector of the interface, the x′-axis coincides with the normal to
the immersed boundary at the point ib for system x′y′, and α is the same with which in
Equation (14).
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The interpolation formula of pressure at IB is defined as follows:

∑
fib
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(

∑
f

n f ·
(

1
A

)
·H−∑

f
n f ·
(

1
A

)
f
·(∇p) f

)
(16)

where subscript fib denotes the interface between IB meshes and fluid meshes, f denotes
the interface of the fluid-fluid mesh near to IB, S is the interface area, u is the velocity on
the interface, n is the normal vector of the interface, and A and H are the coefficients matrix
which are defined in the literature [28].

For computational domains with a uniform grid around IB, u fib
is calculated by:

u fib
=

1
2
(uP + uP′) (17)

The immersed boundary method employed in the present study is implemented based
on foam-extend. The governing equations of fluid are solved by the predictor–corrector
solver pisoFOAM. The details about discrete-direct IBM approach and pisoFOAM can be
referred to the literature [26–28].

2.3. Numerical Validation
2.3.1. Immersed Boundary Method Validation

In order to verify the immersed boundary method with moving boundary, the flapping
motion of an airfoil in ground effect is simulated in this paper. The inflow velocity is
U = 1.25 m/s, and kinematic viscosity υ = 1× 10−3 m2/s , thus the Reynolds number
based on the chord length c is Re = 150. The governing equation for the airfoil motion
can be expressed as h(t) = h0 + hmcos(2π f t) and θ(t) = θ0sin(2π f t). In this subsection,
h0 = c, hm = 0.4c, θ0 = π/4, and the calculation domain is 5c× 3c. The Strouhal number is
defined as St = 2h0/(T ·U), where T is the pitching period, and the values of St are taken
as 0.1, 0.2, 0.3, 0.4, 0.5, respectively.

Figure 3 presents the lift and drag coefficients of the airfoil at different Strouhal
numbers as h0 = c. The lift and drag coefficients are defined as follows:{

CD = 2FD
ρU2c

CL = 2FL
ρU2c

(18)

where FD and FL are the drag and lift force exerted on the airfoil during pitching. When
St ≤ 0.2 the lift and drag coefficients are in good agreement with the results of J. Wu [29].
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Although some minor difference appears in the cases for high Strouhal numbers, the
changing trend is the same. Figure 4 presents the vortex shedding induced by a pitching
airfoil. The vortices are regularly detached from the trailing edge of the airfoil. In conclusion,
the immersed boundary method that we employ is suitable for this study.
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Figure 4. Instantaneous vorticity contours at h0 = c, St = 0.1 (a) pitching downward (b) pitching upward.

2.3.2. Mesh and Time Step Sensitivity Test

The mesh and time step sensitivity tests are also conducted. The size of the flow field
is set as 10c× 4c. The initial distance between the center of the airfoil and the ground is
h0 = 0.5c, the pitching period is T = 1 s, and the pitching amplitude is θ0 = π/12. Three
different meshes and time steps are shown in Table 1. To ensure the accuracy of calculation
results and the computing efficiency, the second combination is finally selected. The meshes
of full computational domain are shown in Figure 5a, and the meshes in close proximity to
the ground are densified. The meshes around the airfoil are shown in Figure 5b.

Table 1. Mesh and time step sensitivity tests.

Number of Grids ∆x/c ∆t(s) Cd C1

50,000 0.02 0.01 0.2923 0.6925
150,000 0.01 0.005 0.2224 0.3580
250,000 0.005 0.005 0.2287 0.3473
250,000 0.005 0.0025 0.2275 0.3466
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3. Results

The self-propulsion of a pitching airfoil in ground effect are systematically studied
using the immersed boundary method in the following sections. The influences of ground
clearance, pitching period and pitching amplitude on the self-propelled locomotion of the
pitching airfoil in ground effect are comparatively analyzed. The kinematics and mean
hydrodynamic force are firstly discussed; and then the corresponding physical mechanisms
are revealed by analyzing the relationship of hydrodynamic force and wake vortices and
pressure fields.

3.1. Unsteady Motion above the Flat Ground
3.1.1. Trajectory

The displacements of the self-propelled airfoil for different h0 and T are shown in
Figure 6. It can be seen that although the prescribed pitching rule is exerted on the airfoil,
the peak of the motion trajectory is constantly changing, which can only be reflected in
the self-propelled locomotion. The fluctuation cycles of the motion trajectory are mainly
determined by the pitching period of the airfoil. For a certain pitching period T, the ground
clearance has a significant effect on the displacement of the self-propelled airfoil. When
the pitching period of the airfoil is in the range of 1 s ≤ T ≤ 4 s (see Figure 6a–d, the
mean heights of the airfoil increase with decreasing h0. Especially as h0 = 0.5c, the vertical
displacement increases most, which is larger than those for other h0. On the whole, the
influence of ground effect on the motion trajectory of self-propelled airfoil decreases with
the increases of h0 and T.

Distinguished from the cases of the high pitching frequency, the displacement of the
airfoil exhibits different characteristics in low frequency. For T = 5 s, as shown in Figure 6e,
the vertical displacement of the airfoil set free from the initial height h0 = 0.5c becomes less
than that of other cases when the airfoil moves to about x = 5.5c from the starting point.
After x = 8.5c, the airfoil corresponding to h0 = 0.5c starts to move upward and enter the
rising stage earlier than that for other h0. This shows that when the airfoil moves with
a larger pitching period, the ground effect changes the fluctuation period of the motion
displacement. In addition, the airfoil with the larger pitching period can first obtain a larger
vertical displacement, then drops quickly. For the airfoil with a small pitching period, it
cannot rise rapidly, but its displacement shows steady upward tendency. Therefore, for
the creatures in nature, the combination of multiple pitching modes is more conducive
to survival.
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Figure 6. Motion displacements of the airfoil pitching with different h0. (a) T = 1 s (b) T = 2 s
(c) T = 3 s (d) T = 4 s (e) T = 5 s.

3.1.2. Hydrodynamics

From the mean lift and drag coefficients in Figure 7a,b, it can be seen that Cl is always
greater than zero, which is consistent with the displacement trend in Figure 6. Through the
comparison of the mean drag and lift coefficients for different initial height, the airfoil for
the small initial height gains a larger drag and lift. In addition, Cd decreases monotonically
with pitching period, and Cl has the same tendency when the airfoil is in close proximity to
the ground (h0 < 1.5c). For the same initial height, the mean drag coefficient is the largest
when T = 1 s.
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Figure 7. Comparison of mean drag coefficient, mean lift coefficient and lift-to-drag ratio for different
pitching periods (a) Cl (b) Cd (c) Cl/Cd.

Besides Cd and Cl, the lift-to-drag ratio is also the key to analyze the motion perfor-
mance. Therefore, the lift-to-drag ratio is shown in Figure 7c. It can be found that the
lift-to-drag ratios of the airfoil pitching at the same frequency increase with the reducing
of h0, in the pitching period range considered. When the pitching airfoil is close to the
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ground, the lift-to-drag ratio increases by 300%. At h0 = 0.5c, the lift-to-drag ratio of the
airfoil for T = 1 s is the largest, and the lift-to-drag ratios of the airfoil for T = 2 s, 3 s, 4 s
are close to each other. The airfoil obtains the largest displacement at h0 = 0.5c and T = 1 s
as shown in Figure 6. When the airfoil begins to pitch from the same initial height, it is
uncertain to improve the lift-to-drag ratio by decreasing the pitching period. It shows that
there is the corresponding optimal pitching period at different initial heights.

3.2. Unsteady Motion above the Wavy Ground
3.2.1. Trajectory

In this section, a wavy ground is exerted on the bottom of the computational domain,
where the amplitude of the ground a = 0.05c, the wavelength is λ = c, 2c, respectively,
to obtain different types of wavy ground. It can be seen from the analyses above that the
flat ground effect is obvious when h0 = 0.5c. Based on this, only the initial height of the
airfoil above the wavy ground center-line h0 = 0.5c is chosen. According to the results from
the literatures [18–20], the minimum and maximum lift generally appeared at wave valley
and peak of ground, respectively, and they become lager with increasing wave amplitude
due to the variation of the effective ground clearance. The influencing mechanism of the
wave amplitude on the wavy ground effect are basically clear. Therefore, we focus on
the influence of the wavelength and pitching period on the wavy ground effect and the
comparison of flat and wavy ground effect in the present study.

The airfoil displacement corresponding to two types of wavy ground and flat ground
are given in Figure 8. Regardless of flat or wavy ground, the pitching airfoil can obtain the
higher vertical displacement at T = 1 s. Compared with the flat ground, airfoils pitching
with appropriate periods also enhance the higher vertical displacement in wavy ground
effect, except the case of T = 1 s. For the wavy ground with wavelength λ = 2c, the
maximum final displacement can be obtained is at T = 1 s or T = 2 s; For wavy ground
with wavelength λ = c, the maximum final displacement can be obtained is at T = 1 s or
T = 3 s.
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Figure 8. Displacement of the airfoil over flat ground and wavy ground with wavelength parameter
λ = 2c and λ = c under different pitch periods (a) flat ground (b) λ = 2c (c) λ = c.

3.2.2. Hydrodynamics

In addition to the displacement of the airf oil, the hydrodynamics should also be
analyzed to reveal the displacement variation. In Figure 9, the average lift coefficient,
drag coefficient and lift-drag ratio of airfoil over two different wavy ground and the flat
ground are compared at h0 = 0.5c. Compared with the flat ground, the lift and drag of
airfoil in wavy ground effect are more sensitive to the change of pitch period. The optimal
pitching periods for different ground conditions are not identical when the initial height is
constant. At λ = 2c, the airfoil with the small pitch period obtains a larger lift. The average
lift coefficient of the airfoil pitching with T = 2 s is the largest, even higher than that of
the airfoil over the flat ground. Since the average drag coefficient varies very little with
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the pitch period, the lift-drag ratio is also the largest as T = 2 s. And it can be seen from
Figure 8 that the final vertical displacement of the airfoil with T = 2 s is the maximum.
Therefore, as the wavelength of the wave ground λ = 2c and the initial height of the airfoil
h0 = 0.5c, the optimal pitch period of the airfoil is T = 2 s.
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Figure 9. Average lift and drag coefficients and average lift drag ratio of airfoil under different
pitching periods.(a) Cl (b) Cd (c) Cl/Cd.

As λ = c, the lift and drag coefficients of airfoil fluctuate with the increase of flapping
period. The average lift coefficient of the airfoil pitching with T = 1 s is the largest. This
explains the reasons that the airfoil pitching with T = 1 s has a relatively large final vertical
displacement, as shown in Figure 8. Therefore, when the wavelength of the wave ground
λ = c and the initial height of the airfoil h = 0.5c, the optimal pitch period of the airfoil is
T = 1 s.

3.3. Mechanism of Ground Effect on the Self-Propelled Airfoil

To delve into the fluid physical mechanism of self-propelled locomotion of the pitching
airfoil in ground effect, the relationship of lift and drag coefficients of airfoil and the vorticity
dynamics for the flat ground and wavy ground are investigated in the following.

3.3.1. Vortex Structure and Its Effect Near the Flat Ground

The time histories of lift and drag coefficients of airfoil in one flapping cycle for
different initial heights above the flat ground are shown in Figure 10. In general, the lift and
the drag coefficient fluctuate around zero, and the amplitude of the peak value is greater
than that of the valley value. The lift and drag coefficients of airfoil depend on h0 and T
together. For the same pitching period, the peak value of lift and drag vary with ground
proximity. While the pitching periods are relatively larger, the ground proximity has less
effect on the lift and drag coefficients of airfoil.

Figure 10a,b shows the lift and drag coefficients as T = 1 s. The lift coefficient at
h0 = 0.5c is always significantly higher than those of h0 > 0.5c, and the drag coefficient
becomes higher only when t/T = 0.25–1.0 s. The obvious increase of the drag coefficients
is closely related to the change of mean attack angle induced by the ground effect during
the process of self-propelled locomotion. The increase of mean attack angle leads to the
expansion of the longitudinal area. For a pitching airfoil under the tethered condition, the
lift and drag coefficients repeat completely in a period, because the change of attack angle
is prescribed periodically.

With the increase of pitching period, the influence of the initial height h0 on the lift and
drag coefficients gradually weakens. In addition, in the case of the large pitching period
and the smaller initial height, the drag coefficients have two peaks in one flapping cycle.
Figure 10i,j shows the lift and drag coefficients for different initial heights as the pitching
period T = 5 s. Through the analysis of Figure 6e, it is concluded that when the pitching
period is T = 5 s, the vertical increment of displacement of the airfoil for the initial height
h0 = 0.5c is not the maximum in the whole locomotion process, which corresponds to
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the change in the lift coefficient in Figure 10i. In the first half period, the lift coefficient at
h0 = 0.5c increases fast and becomes greater than that of the case with h0 > 0.5c; in the
second half period, the lift coefficient decreases much and becomes less than other cases.

Figure 11 presents the vortex distributions around the flapping airfoil with different h0
at T = 1 s. As h0 = 0.5c, the attack angle of the airfoil is significantly greater than that for
other initial heights. The counter-rotating vortices induced by the vortices shedding from
on the surface of the airfoil appear on the ground. The closer the airfoil is to the ground,
the higher the strength of the vortices generated on the ground is.
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The positive and negative vortex core in the wake behind the airfoil form vortex
pairings (dipoles). The wake vortices are up-tilted due to the wall confinement, which
is the same as Dai’s results [14]. The ground effects are correspondingly enhanced. As
the initial height increase to h0 = 1.0c, the effect of ground on the wake vortices becomes
weaker. When the initial height becomes lager than 2.0c, the motion of the airfoil and
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vortex shedding are hardly affected by the ground, basically similar to the airfoil without
ground effect.

In order to further reveal the physical mechanism reasons that the airfoil closer to the
ground obtains a higher lift force, Figure 12 presents the pressure distribution around the
airfoil induced by the vortex shedding at the lift peak moment. It can be found that the
pressure differences between the upper and lower surfaces of the airfoil corresponding to
h0 = 0.5c are significantly greater than that of the airfoil corresponding to h0 = 1.0c. Thus,
the airfoil corresponding to h0 = 0.5c acquires higher lift forces.
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Figure 13 shows the vorticity contours for the initial heights of h0 = 0.5c and h0 = 1.0c
as the pitching period is T = 5 s. In Figure 13, VP0.5c and VP1.0c denote the vortex pairing
corresponding to h0 = 0.5c and h0 = 1.0c, respectively, 1 and 2 denote the appearance
sequence of the vortex pairing. Compared with the wake vortices for T = 1 s, the vortices
near the trailing edge become slenderer and tend to distribute along the horizontal direction,
and moreover, the transverse vortex spacing is larger. The strength of the wake vortices for
T = 5 s is less than that for T = 1 s. As a result, the lift and drag coefficients for T = 5 s are
relatively lower. Figure 13a shows that for the airfoil as the initial height h0 = 0.5c, there
is significant mutual induction of the vortex shedding form the airfoil and the secondary
vortices attached to the ground. However, for the airfoil at h0 = 1.0c as shown in Figure 13b,
the effect of ground on vortex shedding is obviously weakened, and no vortex pairing
with high strength is formed. As T = 5 s, the transverse vortex spacing increases with the
ground proximity.
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3.3.2. Evolution of the Wake Vortices and Its Effect Near the Wavy Ground

The influences of wavy ground are explained in detail by the combinatorial analysis of
the locomotion of airfoil and the evolution of the wake vortices in this subsection. Figure 14
shows the time histories of lift and drag coefficients of airfoil with different pitching periods
above the wavy ground within a period. The amplitudes of the maximum and minimum
lift and drag coefficients of airfoil pitching with T = 1 s are larger than those for other
pitching period. However, the lift coefficients of airfoil pitching with pitching with T = 1 s
are not always the highest over a pitching period, different from the flat ground. The
occurrence times of the peak and valley of lift and drag coefficients mainly depend on the
pitching period T, but are slightly adjusted by the wave length of ground. As λ = 2c, there
are a main peak and a secondary peak in the curve of lift coefficient for T = 1 s and T = 2 s,
and the drag coefficients Cd for all pitching periods have two peaks in one pitch period,
which occur at t = 0.2 T and t = 0.7 T respectively. As λ = c, the variation trend of lift and
drag coefficients is roughly the same as that of λ = 2c. For the same pitching period, the
amplitudes and the occurrence times of the peak and valley of lift and drag coefficients
change with the wave length of ground.
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The vorticity contours at four different time instant in one flapping cycle are presented
to illustrate the process of vortex shedding, as shown in Figure 15. T1 and T2 indicate
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the pitching period corresponding to T = 1 s and T = 2 s, respectively, and V1 and V2
denotes the number of wake vortex in Figure 15. When 0.5 < t/T < 0.75, the airfoil pitches
downward, and the airfoil pitch upward when 0 < t/T < 0.25 or 0.75 < t/T < 1.0. As
T = 1 s and λ = 2c, the positive vortex T1V2 is generated on the lower surface of airfoil,
and the negative vortex T1V1 is formed on the upper surface of airfoil at t/T = 0.25.
T1V2 begins to shed off from the trailing edge at t/T = 0.5. At t/T = 0.75, the vortex
T1V1 moves to the trailing edge, and the vortex T1V1 and vortex T1V2 begin to interact
significantly. The vortex T1V2 still does not shed off completely when vortex T1V1 and
vortex T1V2 interact at the trailing edge of the airfoil. Therefore, the flow near the trailing
edge is complex. When 0.5 < t/T < 0.75, the angle of attack is positive, corresponding
to the peak value of the lift coefficient. During this time, the airfoil just moves over the
peak of the ground, so that the lift coefficient is enhanced by the wavy ground, as shown
in Figure 14. The results of Lee et al. [30] show that the maximum and the minimum lift
coefficient of the fixed airfoil over the wavy ground appeared at the crest and the trough of
ground, respectively. As the analysis above, the higher lift force can be obtained but only
when the pitching airfoil with the positive angle of attack just moves the crest of the wavy
ground. At t/T = 1, the vortex T1V1 begins to shed from the upper surface of the trailing
edge and partially sheds into the wake. Then the pitching motion enters the next cycle.

Combined with the influence of wavy ground, the wake vortices for different pitching
periods exhibit different characteristics, which cause the variations of the force acting on the
airfoil. As T = 2 s, the pitching frequency is slow, so the vortices generated at the previous
time have moved away from the trailing edge. The transverse distance between the wake
vortices becomes larger with the pitching period. Thus, the influences of the wake vortices
on the hydrodynamic force exerted on the airfoil gradually weakened with the increase
of the pitching period. As the wavelength of ground is reduced to λ = c, the feature of
the vortex shedding during the self-propelled locomotion process of the airfoil and the
transverse distance between the wake vortices are similar to λ = 2c. So the variation trend
and amplitude of lift and drag coefficients are also roughly the same as those of λ = 2c.
However, for λ = c, the ground shape changes obviously along the swimming direction.
Thus, the structure of the vortex cores is correspondingly adjusted, and the strength of
the vortex cores increase slightly. This leads to the changes of the amplitudes and the
occurrence times of the peak and valley of lift and drag force.

The pressure fields induced by the wake vortices are shown in Figure 16, in order to
reveal the physical mechanism of the lift and drag coefficients in Figure 14. As λ = 2c,at
t/T = 0.5 and t/T = 0.75, the positive pressure on the lower surface of airfoil with T = 1 s
is larger than that of airfoil with T = 2 s. The pressure difference between the upper and
lower surfaces at this time causes the larger lift coefficient in Figure 14. When t/T = 1, the
greater negative pressure appears on the lower surface of the airfoil with T = 1 s, leading to
the small lift coefficient. As the wavelength of ground becomes λ = c, it can be seen that the
pressure on the lower surface of the airfoil with T = 1 s is also larger than that with T = 2 s
during t/T = 0.5 and t/T = 0.75. Therefore, regardless of the wavelength of ground,
the airfoil with T = 1 s can obtain a larger instantaneous lift, but the drag of the airfoil
is also large in this case. The pressure difference between the upper and lower surfaces
of the airfoil over smaller wavelengths of ground are relatively larger, and therefore the
amplitude of lift and drag coefficients are amplified. The occurrence time of the maximum
pressure difference between the upper and lower surfaces of the airfoil changes with the
pitching period and the ground wavelength.
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Figure 16. Pressure distribution (a) T = 1 s, λ = 2c (b) T = 2 s, λ = 2c (c) T = 1 s, λ = c (d) T = 2 s,
λ = c.

4. Conclusions

The fluid mechanisms of self-propelled locomotion of the pitching airfoil over the flat
and wavy ground are investigated by immersed boundary methods in the present study.
The influence of the initial height from the ground, pitching period and shape of the ground
on self-propelled locomotion of the pitching airfoil in ground effect and the corresponding
vorticity dynamic mechanism are obtained. The main conclusions are as follows:

1. When the airfoil pitching with a smaller period is in close proximity to the flat ground,
the airfoil can obtain a larger lift and lift-to-drag ratio due to the ground effect. Thus,
the mean vertical displacement of the pitching airfoil increases with decreasing h0.
With the increase of pitching period, the influence of the ground proximity on the lift
and drag coefficients gradually weakens. That’s because that the wake vortices near
the trailing edge of the airfoil pitching with a larger period become slenderer, and
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moreover, the transverse vortex spacing is larger. By comparing the lift-to-drag ratios
for different T and h0, it is found that there are the corresponding optimal pitching
periods for the pitching airfoil at different initial heights.

2. Regardless of the flat or wavy ground, the pitching airfoil can obtain the larger lift
and higher vertical displacement at T = 1 s and h0 = 0.5c. However, compared
with the flat ground, the airfoils pitching with other appropriate periods also achieve
the higher vertical displacement in wavy ground effect. At the same initial height,
the optimal pitching periods for different ground conditions are not identical. The
occurrence times and the amplitudes of the peak and valley of lift and drag coefficients
mainly depend on the pitching period T. But the structure of the vortex cores is
correspondingly adjusted by the wave length of ground and the strength of the vortex
cores increase slightly with decreasing the ground wavelength. This leads to the
changes of the amplitudes and the occurrence times of the peak and valley of lift and
drag force.

In general, in order to obtain the optimal locomotion performance, it is necessary to
choose the appropriate pitching parameters according to the ground proximity and the
type of the ground. The combination of multiple pitching modes inspired from swimming
near the ground is more conducive for man-made underwater vehicle.
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