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Abstract: (1) Background: Directed functional connectivity (DFC) alterations within brain networks
are described using fMRI. EEG has been scarcely used. We aimed to explore changes in DFC in the
sensory-motor network (SMN), ventral-attention network (VAN), dorsal-attention network (DAN),
and central-executive network (CEN) using an EEG-based mapping between PD patients and healthy
controls (HCs). (2) Methods: Four-minutes resting EEG was recorded from 29 PD patients and 28
HCs. Network’s hubs were defined using fMRI-based binary masks and their electrical activity was
calculated using the LORETA. DFC between each network’s hub-pairs was calculated for theta, alpha
and beta bands using temporal partial directed coherence (tPDC). (3) Results: tPDCs percent was
lower in the CEN and DAN in PD patients compared to HCs, while no differences were observed
in the SMN and VAN (group*network: F = 5.943, p < 0.001) in all bands (group*band: F = 0.914,
p = 0.401). However, in the VAN, PD patients showed greater tPDCs strength compared to HCs
(p < 0.001). (4) Conclusions: Our results demonstrated reduced connectivity in the CEN and DAN,
and increased connectivity in the VAN in PD patients. These results indicate a complex pattern of DFC
alteration within major brain networks, reflecting the co-occurrence of impairment and compensatory
mechanisms processes taking place in PD.

Keywords: resting-state networks; EEG; sLORETA; Parkinson’s disease; connectivity

1. Introduction

Patients with Parkinson’s disease (PD) manifest motor and cognitive deficits already
in the early stages of the disease that worsen gradually throughout the disease course [1–4].
The common motor symptoms in PD include resting tremor, rigidity, bradykinesia, and
postural instability [2], while cognitive impairments in PD encompass various cognitive
domains including executive functions, attention, visuospatial function, and processing
speed [3]. Both motor and cognitive resources are required for independent, self-sufficient
everyday life, and in most functional activities these resources are intertwined [5].

By relying on the blood oxygenation level dependent (BOLD) signal, resting-state
functional magnetic resonance imaging (rs-fMRI) is able to measure the spontaneous ac-
tivity of the brain in organized functional and anatomical networks [6]. The spontaneous
fluctuations of resting state BOLD signals are generally low frequency oscillations, observed
between 0.01 and 0.08 Hz that are believed to reflect brain physiology and metabolism [7,8].
Numerous neuroimaging studies demonstrated that resting-state functional connectivity
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plays an important role in cognitive and motor functions [9,10]. For example, previous
studies have shown that subjects with posttraumatic stress disorder (PTSD) exhibit abnor-
malities in resting state networks in the theta frequency band, which relates to cognitive
impairments in these subjects [11]. Accumulating evidence demonstrate that with aging
and disease, brain networks remodel their activity to adapt to the new situation [12–14].
For example, altered organization of the dorsal attention network (DAN) and unchanged
ventral attention network (VAN) connectivity in PD patients with freezing of gait was
associated with the effectiveness of specific interventions [13].

Seed-based approach is a common method to investigate the directed functional
connectivity (DFC) between predefined regions by measuring the statistical relationship
between their averaged BOLD time-course [15]. Specific alterations in DFC within sensori-
motor (SMN) and cognitive networks have been described in PD patients. Changes in the
SMN included decreased connectivity within the supplementary motor area (SMA) and
increased connectivity in primary motor cortex (M1) in PD patients compared to healthy
controls [14,16,17]. DFC changes were reported in brain networks implicated in cognitive
functioning as well [18]. Nevertheless, the low temporal resolution of the fMRI-based meth-
ods and the limited frequency band that can be examined may conceal certain underlying
neural processes.

The high temporal resolution of electroencephalography (EEG) and the use of a wide
range of frequency bands can reveal novel insights on the construction of neural network
maps related to cognitive and motor functions [19,20]. Specific changes in the power of
theta, alpha, and beta bands were reported during the performance of cognitive tasks
in PD patients [21–23]. These changes include a shift toward lower frequency bands
with increased power in theta and reduced power in alpha and beta [22]. These changes
have been associated with cognitive processes that are necessary for successful cognitive
performance. Theta oscillations were linked to cognitive processing, working memory,
and selective attention [24]. Moreover, these changes in theta power were found to be
associated with generating a coordinated response in terms of readiness. On the other hand,
alpha oscillations were viewed as a functional and communicative signal with multiple
functions. Reduction in alpha power was attributed to higher cortical activity associated
with attentional demands [25]. Beta oscillations have been suggested to reflect attentional
modulation and lower beta power has been related to cognitive response [26].

Few studies investigated EEG-derived directed connectivity patterns in patients with
PD, showing increased connectivity in the beta frequency band and decreased connectiv-
ity in the theta band [27]. However, these studies measured connectivity between EEG
electrodes representing the sum of many underlying components generated from various
brain areas (“the superposition problem”) [19,20,27]. In addition, these findings do not
fully depict the functional changes within the brains’ functional networks. Recent advances
in technology allow the implementation of more complex EEG analytical approaches to
explore FC patterns within predefined networks.

To this end, the aim of this study was to utilize EEG-based mapping to explore DFC
changes in motor and cognitive networks in PD patients in different frequency bands.
We hypothesized that PD patients will demonstrate decreased DFC within the DAN and
central executive network (CEN) mainly in the higher frequency bands (e.g., beta band),
and increased connectivity within the VAN and SMN in low frequency bands (e.g., theta
band), as compared to healthy controls (HCs).

2. Materials and Methods
2.1. Participants

Fifty-seven subjects, 28 healthy controls, and 29 PD patients, between the ages 40–90
years were included in the study. The participants were recruited from the community,
the outpatient clinics of the Movement Disorders Unit and the Memory clinic at the Tel
Aviv Sourasky Medical Center (TASMC). Inclusion criteria for PD patients were: (1) 40
to 90 years of age, (2) Established PD diagnosis according to the UK Brain Bank criteria,
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(3) Hoehn and Yahr score between 1–2, and (4) a score of ≥21 in the Mini–Mental State
Examination (MMSE). Patients were excluded if they had (1) a history of previous head
surgery, (2) clinical evidence or history of stroke, transient ischemic attacks, significant
head injury, other unexplained or recurrent loss of consciousness, (3) neurological and
neuropsychiatric disorder other than PD, (4) major depressive disorder, schizophrenia,
bipolar disorder, or other psychotic disorders, and (5) epilepsy. Inclusion criteria for the
HC group were: (1) 40 to 90 years of age and (2) living in the community or assisted living
facility. Participants were excluded in case they reported any surgical, orthopedic, and
psychiatric conditions that may prevent them from completing all aspects of the study.
The study was approved by the local ethical committee and was performed according to
the principles of the Declaration of Helsinki. All participants gave their informed written
consent prior to participation.

2.2. Study Protocol

All assessments were performed while the patients were in the ON state (about one
hour after last medication). All participants underwent a neurological evaluation that
included the Movement Disorders Society Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) and the calculation of levodopa equivalent daily dose (LEDD) to assess disease
severity [28]. In addition, all participants underwent a cognitive assessment that included
the Montreal Cognitive Assessment (MoCA) [29] and the Color Trail Test (CTT) [30]. EEG
recording of four minutes in resting state was performed with eyes closed. We used the
EGI system (GEODESIC GES 400) with 65 channels including Cz as a reference electrode at
a sampling rate of 250 Hz. Electrode position was set according to the international 10-10
standard. During the EEG recordings, the participants were instructed to limit any blinking,
jaw clenching, or facial expressions that may introduce artifacts into the EEG signal.

2.3. EEG Signal Pre-Processing

Pre-processing of the raw EEG data was performed to minimize the effects of global
and local noise using the open-source toolbox analysis EEGLAB [31].

Global and Local Noises

Recorded EEG signal was filtered using a basic finite impulse response (FIR) filter in
the range of 0.5–40 Hz. An average re-reference was used to improve signal-to-noise ratio
(SNR). The primary reference electrode (Cz) and eye component electrodes were excluded
from further processing. We did not detect noisy channels therefore, no other channels
were excluded. The data for each subject was decomposed by independent component
analysis (ICA); a method that separates the signal into additive components according to
their source of brain activity. The criteria for halting the ICA decomposition was when the
EEGLAB algorithm reached a level of 1E-10 of distinction between components. Noisy
components derived from eye blinking, heartbeat, and muscle movements were discarded
based on their activity power spectrum. This analysis was conducted using the open-source
toolbox EEGLAB. For a detailed description of the algorithm see [31]. Effects of local noises
that might be the result of momentary displacement of the electrode or sudden movement
of the subject were scrubbed from the EEG signal using MATLAB. Signals were divided
into epochs—each of 3 s (750 samples). Epochs with standard deviation (SD) higher than
five were defined as noisy and were removed from further EEG analysis.

2.4. Source Localization Analysis

Source localization of EEG was determined using sLORETA software [32–34]. Brain
activity for each subject was estimated based on standardized current density. sLORETA
was used to create a transformation matrix based on the EGI 10-10 electrode system and to
solve the inverse problem. For each subject, the localized activation volumes were extracted
in each of the 750 time points (250 Hz × 3 s averaged epoch) of their recording.
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2.5. Resting-State Functional Brain Networks Masks

High spatial resolution MRI-based binary templates were used to define the spatial dis-
tribution of resting state networks (RSNs) of interest (CEN, DAN, VAN, and SMN) [35,36].
A binary spatial map of each network of interest was parcellated into Brodmann areas
(BAs) based on the automated anatomical labeling (AAL) atlas, producing discrete masks
for the different hubs within each network (see supplementary Table S1A–D for detailed
definitions of the hubs within each network). The current density of all the voxels within
each network’s hubs (each voxel’s current density was calculated by sLORETA) were
averaged per time-point. The implementation of these stages was performed in MATLAB
using element-wise multiplication (Figure 1).
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Figure 1. The flow chart to extract the time series of activation from each network’s hubs. (A) electrical
activity of each voxel based on sLORETA, (B) MRI based binary templates of Brodmann areas maps,
(C) MRI based binary templates of network mask (e.g., CEN), (D) the network’s hubs based on the
intersect between network mask and Brodmann area masks, and (E) time series of activation in the
network’s hubs.

2.6. Temporal Partial Directed Coherence (tPDC)

Granger causality models provide causality in the time domain, allowing to assess
unmeasured latent variables and exogenous inputs in the time domain in biological time-
series in general, and specifically in brain signal analysis. In addition, examining the
different frequency bands allows a better understanding how each band is affected in PD.
To this end, temporal partial directed coherence (tPDC) method enables assessing both
frequency domain as well as time domain causality [37].

The DFC measures within each network’s hubs were calculated using tPDC. This
method enables the measurement of the directional information transfer between different
areas of the brain in both time and frequency domains. This technique is based on dual-
extended Kalman filtering and enables the calculation of a Multivariate Autoregressive
(MVAR) model parameters at each time point. The MVAR model coefficients were used to
calculate the causality between the time series of the brain areas and the directed coherence
between them. As seen in Equation (2), using the Fourier Transform of MVAR coefficients
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enabled the calculation of PDC in frequency domain. The expression for an adaptive
auto-regressive process can be given by the following expression:

x(t) = ∑r=p
r=1 ar(t)x(t− r) + η(t) (1)

where ar(t) are the time-varying MVAR coefficients, p is the model order of time series x(t)
and η(t) is the zero-mean Gaussian noise process.

The connectivity calculation of tPDC was as follows:

∣∣πi←j(w)
∣∣ = ∣∣Aij(w)

∣∣√
∑k=N

k=1

∣∣∣Akj(w)
∣∣∣2 (2)

πi←j(w) is the amplitude of the PDC at frequency w and Aij(w) is the Fourier Trans-
form of the MVAR coefficient ar(t). In the tPDC process, time dependent multivariate
coefficients were calculated and were then used to calculate the partial directed coherence
(PDC) in the frequency domain. tPDC measures were converted to time domain and were
divided into theta, alpha and beta frequency bands. For additional information about
the tPDC method, see [36]. To estimate the significance of a tPDC in a single network’s
hub—we compared between the original tPDC and the reversed tPDC [38]. Non-significant
differences between the original and reversed tPDCs indicated that the tPDC of the hub
was random and not specific and therefore was not further analyzed. The algorithm for
tPDC and the statistical analysis were implemented in MATLAB.

2.7. Statistical Analysis

The mean and standard deviation of all subjects’ clinical and demographic characteris-
tics were calculated and evaluated for normality and homogeneity using box plots, scatter
plots, and Kolmogorov-Smirnov tests. Independent t-test was used to examine differences
between groups (PD vs. HC).

Bootstrapping is commonly used to identify random brain activity. However, due to
the large number of connections in our data set, we used the time reversed method to decide
if our tPDC signal was non-random [38]. We compared the coefficients from the tPDC of
the brain activity time-series (“original tPDC”) with tPDC coefficients from the reversed
time-series of brain activity (“reversed tPDC”). The connections that showed significant
differences in the 95th percentiles after an independent t-test, followed by a False Discovery
Rate (FDR) correction for multiple comparisons—Benjamin Hochberg (BH) [39], were
considered for further analysis. The remaining connections were considered as random
brain activity and were excluded from the analysis. For further information on this method,
see [38]. For post hoc comparison results, see supplementary Table S2.

These common significant (‘real’) tPDCs were compared between the groups using
independent t-test, followed by FDR correction for multiple comparisons. In addition, we
calculated the percent of significant tPDCs within each network. Linear mixed-models
were used to determine the effects of group (HC vs. PD), network (CEN, DAN, VAN, SMN),
frequency band (theta, alpha, beta), and their interactions on the percent of significant tPDC
while controlling for age. The number of outbound and inbound tPDCs for each network’s
hub were calculated and compared between the groups using t-test and BH correction as
well. The significance level for each of the described statistical analyses was p < 0.05.

3. Results
3.1. Clinical and Demographic Characteristics of Study Participants

Demographic and clinical characteristics of both study groups are presented in Table 1.
As expected, PD patients showed significantly higher MDS-UPDRS III motor scores com-
pared to HCs (p < 0.001). No differences in age, gender, and cognitive tests were observed
between the study groups.
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Table 1. Participants’ Characteristics.

HC (n = 28) PD (n = 29) p Values

Age (years) 60.82 ± 7.47 64.36 ± 7.11 0.075
Gender
(male/female) 13/15 16/13 0.518

MoCA 27.44 ± 1.97 26.77 ± 2.1 0.104
CTT (part B) 84.85 ± 29.66 101.56 ± 57.03 0.186
MDS-UPDRS motor 1.38 ± 1.74 18.89 ± 10.05 <0.001
Disease duration
(years) na 2.8 ± 0.28 na

LEDD (mg) na 183.90 ± 249.0 na
HY score (HY1/HY2) na 10/19 na

HC = Healthy controls, PD = Parkinson’s disease, MOCA = Montreal cognitive assessment, CTT = Color trial test,
MDS-UPDRS = Unified Parkinson’s disease rating scale, LEDD = Levodopa equivalent daily doses.

3.2. Within-Network Significant Connections

Patients with PD had lower percent of significant tPDCs (the amount of connections
found significant using the time-reversed method) within the CEN and DAN compared
to HC. No differences in the percent of significant tPDCs within the VAN and SMN were
found between the groups (group × network interaction: F = 5.943, p < 0.001) (Figure 2).
No differences in the percent of significant tPDCs were found between the frequency bands:
theta, alpha and beta (group × band effect: F = 0.914, p = 0.401).
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3.3. Between Group Differences in tPDCs within Each Network

Within the DAN, PD patients demonstrated lower tPDCs in 9 out of 11 (81 %) signifi-
cant connections in the theta band; 8 out of 11 (73%) significant connections in the alpha
band; and 6 out of 6 (100%) significant connections in the beta band, p < 0.046 (Figure 3A,
Supplementary Table S3A). Within the CEN, PD patients showed lower tPDCs in 19 out of
22 (86%) significant connections in the theta band; 23 out of 24 (96%) significant connections
in the alpha band; and 12 out of 12 (100%) significant connections in the beta band, p < 0.01
(Figure 3B, Supplementary Table S3B). In contrast, within the VAN, PD patients demon-
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strated higher tPDCs in 20 out of 29 (67%) significant connections in the theta band; 35 out
of 46 (76 %) significant connections in the alpha band; and 23 out of 38 (61%) significant
connections in the beta band, p < 0.047 (Figure 3C, Supplementary Table S3C). The tPDCs
within the SMN demonstrated mixed patterns between HC and PD. In the theta band, 9
out of 17 (53 %) tPDCs were higher in the PD. In the alpha band, 10 out of 25 (40 %) tPDCs
were found to be higher in PD. In the beta band, 9 out of 17 (53 %) tPDCs were higher in
PD patients, p < 0.048 (Figure 3D, Supplementary Table S3D). No differences in the number
of outbound and inbound tPDCs for each node within each network were found between
the groups (p value DAN > 0.26, p value CEN > 0.37, p value VAN and SMN > 0.09).
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Attention Network, (B) CEN–Central Executive Network, (C) VAN–Ventral Attention Network, and
(D) SMN–Sensory Motor Network. The stronger connections in PD compared to HC are in red
arrows, the weaker connections in PD compared to HC are in blue arrows.

4. Discussion

Harnessing the high temporal resolution of EEG, we explored the DFC patterns in
major brain networks in early-stage PD. To our knowledge, this is the first study to examine
DFC based on EEG resting state networks (RSNs) in PD patients. This unique combination
allowed us to investigate directed functional connectivity at a larger range of frequencies,
as compared to the very low frequency accessible in fMRI. The obtained results revealed
lower DFC in the CEN and DAN in patients with PD compared to HC in all investigated
frequency bands. The lower connectivity was detected at two levels; one at the network
level demonstrating lower percent of significant tPDCs within the CEN and DAN, and the
second at the level of a connection between network’s hub-pairs, showing lower strength
in most of the tPDCs. In contrast, in the VAN and SMN we did not detect any differences
at the network level–percent of significant tPDCs–between patients with PD and controls.
However, we found differences at the level of a connection between network’s hub-pairs.
In the VAN, we observed greater strength in most of the tPDCs in PD patients compared to
controls. In the SMN, mixed findings were observed, in which, each group demonstrated
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greater strength in different tPDCs. These findings extend previous work by evaluating
connectivity changes in four main cognitive and motor networks in patients with PD using
a novel EEG analysis approach.

The DAN and VAN are distinct attentional brain networks implicated in voluntary
deployment of attention [40]. The DAN mediates top-down guided voluntary allocation
of attention to locations or objects, whereas the VAN is involved in detecting unexpected,
but behaviorally relevant stimuli and eliciting shifts of attention [40]. Our obtained EEG
findings revealed lower percent of significant connections and reduced strength of each
connection in the DAN in patients with PD compared to HCs. This is in line with a
previous graph-theory rs-fMRI study, which showed decreased DAN global efficiency
and no alterations in VAN connectivity measures even in patients at later stages of the
disease [13]. Our findings further extend this knowledge by providing information at
the level of a connection between two network’s hub-pairs, revealing weaker strength of
connections in the DAN and greater strength of connections in the VAN in patients with
PD compared to HCs (recall Figure 3). These findings may explain the impairments in top-
down guided voluntary allocation of attention mediated by the DAN, and the intact ability
to trigger shift of attention by presenting unexpected external stimuli mediated by the
VAN [40]. Interactions between the VAN and DAN allow the dynamic control of attention
in relation to top-down goals and bottom-up sensory stimulation [40,41]. Therefore, it is
likely that the observed higher DFC connections in the VAN in PD patients serves as a
compensatory mechanism to overcome DAN deficits.

Compared to HCs, reduced connectivity in the CEN at the network level and at
the connection level in PD patients were observed, further corroborating previous rs-
fMRI studies that showed reduced global connectivity within the CEN in patients with PD
compared to HCs [42,43]. The CEN plays an important role in working memory, integration
of sensory and memory information, and regulation of cognition and behavior [44,45].
Despite these observed changes in CEN connectivity, no indication of reduced cognitive
function based on the administered clinical assessments (MOCA and CTT; Table 1) were
observed. Therefore, one possible explanation is the lack of sensitivity in our used cognitive
tests to detect impairments in executive functions. Alternatively, the greater connectivity
observed in the VAN might compensate for the CEN reduced connectivity, reflecting
functional flexibility of these networks; i.e., once one network is impaired the other comes
into play.

The SMN integrates primary sensorimotor, premotor and supplementary motor areas
(SMA) to facilitate voluntary movements [46,47]. fMRI studies demonstrated disease-
related changes in this network in PD. However, the reported results vary across studies
mainly due to different selected patient samples [16,48,49]. Our current findings provide a
possible explanation to the discrepancies between the studies, showing on the one hand a
similar connectivity at the network level between PD patients and HCs, but on the other
hand significant differences in the strength of specific connections between these groups.
Additionally, since no differences between the groups were observed in the number of
outbound and inbound tPDCs to any of the network’s hubs, it might be indicative of
unchanged information flow at the network level in the early stages of PD. The mixed
patterns observed in the SMN might be reflective of the complex dynamic of compensatory
mechanisms taking place in the early stages of PD, at which the neural reserve capacities of
these patients are relatively preserved.

Finally, only minor differences were observed at the level of the frequency bands
within each investigated network. In most cases, these changes in connectivity were at
the whole network level, and were found to be unrelated to specific bands. However, as
depicted in Figure 3, in the CEN and the DAN there were few connections that were found
to be stronger in the PD group in theta and alpha bands. These findings might reflect the
increased activity of lower frequencies in PD patients.

The present work has several limitations. The MRI-based templates that were used are
based on the population of healthy subjects, therefore, their spatial distribution may not
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fully resemble this of the studied sample. We used the AAL atlas for parcellation, as it is the
most commonly used atlas in MRI studies. However, AAL may lead to changes in parcel
homogeneity for functional connectivity. Future studies should examine alternative atlas,
such as the Schaefer/Yeo atlas, in which each node is pre-assigned to a functional system
based on a cross-validated study. Another limitation is that the PD patients were examined
during the ON state, and therefore possible dopaminergic effects on the results cannot be
ruled out. Future studies should examine naïve patients or patients during the OFF state to
better understand the dopaminergic effects. It is also important to note that our approach
was hypothesis-driven. Future studies should also include data-driven approaches and
examine the differences between hypothesis-driven and data-driven approaches. Our
results encourage a multimodal line of research that combines MRI and EEG to elucidate
large-scale cortical dynamic functional network connectivity in PD.

In conclusion, we demonstrate the feasibility to investigate resting-state FC in brain
networks using EEG in PD. The obtained findings demonstrate a complex pattern of FC
alteration within major brain networks, reflecting the co-occurrence of impairment and
compensatory mechanisms processes taking place in the early stages of PD.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomimetics7040231/s1, Table S1 A/B/C/D: Definition of network
hubs in the CEN/DAN/VAN/SMN using anatomy and Brodmann Areas; Table S2: Post hoc analysis
for the differences in percent of significant tPDC between the four RSNs; Table S3 A/B/C/D:
Averaged tPDC values for each group in the DAN/CEN/VAN/SMN (PD > HC in red, HC > PD
in blue).
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