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Abstract: Milkfish (Chanos chanos) is an abundant fish commodity in the Philippines that generates
a large number of wastes such as skin, scales, viscera, and bones, which, upon disposal, cause
environmental pollution. The abundance of these wastes, such as fish skin, rich in bioactive natural
products such as collagen, elicits interest in their conversion into high-market-value products. The
decellularization of milkfish skin waste can extract its extracellular matrix (ECM), a potential raw
material for biomedical applications such as the repair of damaged skin tissues. In particular, this
study characterized the developed decellularized ECM with different concentrations (0.1%, 1.0%)
of the decellularizing agents (Triton X-100, SDS) and temperature (4 ◦C, room temperature) using
milkfish skin. The decellularized ECM structure was better preserved using Triton X-100, while SDS
was more effective in cell component removal, especially at 1% concentration and 4 ◦C temperature.
There were significant effects of varying the temperatures and concentrations on the physical and
mechanical properties of the decellularized ECM. Future studies could explore more variables to
further establish protocols and more analyses to better characterize the decellularized milkfish skin.

Keywords: milkfish; fish skin; decellularization; wound healing; extracellular matrix; collagen; fish
processing wastes; acellular dermal matrix

1. Introduction

Milkfish (Chanos chanos) is a saltwater fish characterized by silver color cultured
in shallow coastal water areas and is capable of living in low-salinity water [1]. Being
labeled as the leading cultured fish in the Philippines [2], a large number of wastes are
being generated, such as skin, scales, and bones, that cause environmental pollution when
disposed of. The annual increase in milkfish production, according to the Philippines’
Department of Agriculture, has increased to 3.74% in 2019 alone [3]. This elicits interest
in converting these wastes into high-market-value products, especially milkfish skin as a
significant protein source [4].

The milkfish skin is rich in bioactive natural products and is approximately 50%
collagen [5]. This can be used as a raw material for biomedical applications such as the
repair of damaged skin tissues caused by burns. A promising treatment for these injuries
is the use of acellular dermal matrix (ADM) derived from the collagen-rich extracellular
matrix (ECM) of milkfish skin. This would provide a structural matrix that would allow
for dermal and epidermal regeneration [6]. Additionally, the absence of prions or viruses
that can be transmitted to humans and high antimicrobial properties [7] also make the fish
skin advantageous for this type of biomedical application. Correspondingly, to achieve a
functional ECM from milkfish skin, the process called decellularization is used.

Decellularization is the process of removing the cellular compartment of living tissues,
creating an acellular ECM scaffold that can subsequently be used for varying purposes [8].
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The removal of cellular compartments such as allogeneic or xenogeneic cellular antigens
would prevent immune response and leave only an intact ECM [9]. Decellularized ECM
is obtained by a defined sequence of physical, chemical, and enzymatic treatments [10].
However, there is a challenge in how maintaining the structure and function of the complex
mixture of proteins that make up the ECM [7,11]. Several studies have already been
published on the use of the detergents Triton X-100 (TX100) and sodium dodecyl sulfate
(SDS) in the production of decellularized ECM [10]. A previous study reported that among
the decellularization agents used in their study, TX100 produced the best ECM in terms
of structure, toxicity, cell adhesion, and mechanical and physical properties [7]. On the
other hand, SDS is already known to be an essential reagent for the decellularization of
numerous organs [12].

Although detergents are effective in removing cellular components, it is also known
that they have a cytotoxic effect on the cell [13,14]. Aside from the removal of lysed cellular
material, the effectivity of decellularized extracellular matrix also depends on the removal
of cytotoxic detergents after decellularization, especially SDS, which is known to be difficult
to remove [14,15].

The goal of this research is to determine how varying the temperature and concentra-
tion of decellularizing agents will affect the removal of cellular components from milkfish
skin while preserving the ECM. The physical, mechanical, and thermal characteristics of
the developed decellularized ECM and residual detergent after decellularization were
also examined.

2. Materials and Methods

The sample preparation and decellularization were carried out by modifying the
methods used by White et al. [16] and Oliveira et al. [17].

2.1. Preparation and Decellularization of Milkfish Skin

Milkfish that were around 300–500 g were obtained from a local fish market. The skin
was obtained after the descaling of the fish. The skin was washed with distilled water and
then cut into 1 × 1 in2 and 1 × 3 in2 sections. The skin sections were pre-washed with
phosphate-buffered saline (PBS) solution for 15 min to remove any impurities and preserve
the samples.

PBS-washed skin sections were decellularized using TX100 (Loba Chemie, Mumbai,
India) and SDS (Loba Chemie, Mumbai, India). To determine the effects of varying the
concentration of decellularizing agents and temperature, eight protocols were performed
to produce the decellularized ECM, as shown in Table 1 below.

Table 1. Overview of the decellularization conditions.

Prewashing Decellularization Post washing

Agent PBS 0.1% TX100, 1.0% TX100
0.1% SDS, 1.0% SDS PBS

Temperature Room temperature 4 ◦C,
Room temperature Room temperature

Contact Time 15 min 48 h 15 min × 3

The skin sections were soaked in different decellularizing agents of varying concen-
trations for 24 h with agitation using magnetic stirrers. The decellularization was carried
out at 25 ◦C at room temperature while the rest of the samples were carried out inside
4 ◦C refrigerators.

After 24 h, the samples were immediately washed thrice with PBS for 15 min at
constant agitation. The decellularization was continued for another 24 h using freshly
prepared agents, then rewashed again thrice with PBS. All agitations were performed using
magnetic stirrer at 300 rpm.
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The decellularized skin was stored at −80 ◦C in an ultralow-temperature refrigerator
(Haier, Qiangdao, China) for at least 24 h prior to lyophilization using a freeze dryer
(Gyrozen, Gimpo, Republic of Korea) at −55 ◦C for another 24 h.

2.2. Histological Staining

Around 4 × 4 mm2 of the samples were fixed using buffered 10% formaldehyde for
36 h. The fixed samples were then embedded and blocked using paraffin wax [7]. The
paraffin blocks were cut using a microtome to obtain 4 µm-thick ribbons [18]. The samples
were then mounted on glass slides and stained with hematoxylin and eosin (H&E) solution.
Hematoxylin stains the acid structures, such as DNA and nuclei, in blue-purple, while
eosin stains the basic cell components, such as proteins, in pink. The stained samples were
studied under a CX22 laboratory microscope (Olympus, Tokyo, Japan) to examine the
decellularized tissues.

2.3. DNA Extraction and Quantification

DNA extraction was performed using DNeasy Blood & Tissue Kit (Qiagen®, Valencia,
CA, USA), while the quantification of DNA presence was conducted using Qubit™ 1X
dsDNA HS Assay Kits (Thermo Fisher Scientific, Waltham, MA, USA). The tests were
conducted in accordance with the manufacturer’s user manuals.

2.4. Composition Analysis Using Attenuated Total Reflectance—Fourier Transform Infrared
(ATR–FTIR) Spectroscopy

The sample was placed on the spectrum plate of the QATR-10 single reflection FTIR
(Shimadzu, Kyoto, Japan). Infrared rays with a wavelength range from 400 to 4000 cm−1

were allowed to pass through the spectrum plate. The amount of absorption of wavelength
is determined by the automated software and visualized through the ATR–FTIR spectrum
as a percentage of infrared wavelength transmittance. If preserved, the bonds associated
with collagen in the decellularized ECM were detected on the ATR–FTIR spectra.

2.5. Physical and Mechanical Properties
2.5.1. Tensile Strength

The mechanical strength was determined by uniaxial tensile testing following ASTM
D882 with modifications. The decellularized 1 × 3 in2 skin sections were cut into dumbbell-
shaped stencils using a die cutter (L = 50.81, W = 2.25 mm) and then secured into the
Autograph AGS-X Universal Tester (Shimadzu, Kyoto, Japan). The testing was performed
using a 500N load cell and an extension rate of 10 mm/min. The maximum tensile stress
was determined from the software Trapezium X of the universal tester.

2.5.2. Hydrophilicity

The surface hydrophilicity, or the ability of a material to attract water [19], was deter-
mined by measuring the contact angle formed by a drop of water on the sample’s surface.
The sample on a glass slide was placed on the stage of Theta Lite Optical Tensiometer
(Biolin Scientific, Stockholm, Sweden) then a drop of water (approximately 1–2 µL) was
introduced on the sample’s surface. The sample was considered hydrophilic when the
water contact angle was <90◦; otherwise, it was hydrophobic when the angle was >90◦ [20].
Both sides of the skin sample were tested for hydrophilicity.

2.5.3. Water Absorption

Water absorption, or water uptake capacity of the samples, was performed by slightly
modifying the procedures in ASTM D570-98 and ASTM C20-00. The samples were dried
in an oven for 2 h at 50 ◦C and then weighed after cooling in a desiccator. The dried
samples were soaked in a 23 ◦C distilled water for 2 h and then blotted using a cotton
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cloth to remove the drops of water from the surface before weighing. The water absorption
expressed in percentage was calculated as follows:

% Water Absorption = [(Wet Weight − Dry Weight)/Dry Weight] × 100. (1)

2.6. Thermal Degradation and Denaturation Profile
2.6.1. Thermogravimetric Analysis (TGA)

The thermal degradation of the samples was analyzed through the thermogravimetric
method using DTG-60H (Shimadzu, Kyoto, Japan). An initial sample weight of approx-
imately 30 mg was analyzed and subjected to temperatures from 30 ◦C to 700 ◦C with a
heating rate of 10 ◦C/min [21]. The sample weight change and the temperature of the oven
were recorded.

2.6.2. Differential Scanning Calorimetry (DSC)

The denaturation temperature was determined by analyzing small cuts of the sample
weighing approximately 5 mg on a DSC 4000 (Perkin Elmer, Waltham, MA, USA). The
heating rate was set to 10 ◦C/min, and the temperature range of 30 ◦C to 300 ◦C.

2.7. Residual Detergents Determination

The methods to determine the concentration of residual detergents in the decellular-
ized ECM were performed using UV-VIS Spectrophotometry. For residual Triton X-100, the
method performed by Pavlović et al. was followed with modifications on the concentration
of standards used [22]. For residual SDS, the methylene blue (MB) examination performed
by Alizadeh et al. was followed [14].

2.8. Statistical Analysis

The quantitative data presented were all reported as mean ± standard deviation of the
mean and were analyzed using a one-way analysis of variance (ANOVA) test, followed by
Tukey’s multiple comparison test. There were statistically significant differences between
the reported means when p < 0.05.

3. Results
3.1. Visual Assessment

The samples appeared to increase transparency because of the loss of pigments after
decellularization, as shown in Figure 1A–I. The observation was evident, especially for
samples that used decellularizing agents of higher concentrations. Moreover, samples
that were decellularized at 4 ◦C appeared to be whiter than the samples carried out at
room temperature. In addition, SDS appeared to be visually better at pigment removal
than TX100.
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Figure 1. Images of the native and decellularized milkfish skin: (A–I) visual comparison for pigment
removal (1× magnification), scale bar = 1 cm; (J–R) microscope images of hematoxylin and eosin-
stained samples (10× magnification), scale bar = 100 µm.

3.2. Histological Staining

The hematoxylin and eosin (H&E) staining of the native and decellularized ECM is
also shown in Figure 1J–R. The reduction in the blue-purple stains on the decellularized
samples (Figure 1K–R) suggests the varying extent of cell component removal depending
on the condition. Specifically, decellularization that was conducted at 4 ◦C showed higher
cell component removal (Figure 1L,N,P,R). Structurally, decellularization using TX100
(Figure 1K–N) resulted in decellularized ECM that was more similar to the native sample
regardless of the temperature. Contrarily, the use of SDS led to clear structural damage to
the collagen fibers despite being more effective in cell component removal, especially at the
higher concentration (Figure 1R).

3.3. DNA Extraction and Quantification

The extent of cell removal after the decellularization was confirmed on the residual
DNA of the ECM, as shown in Figure 2. Most of the protocols that were performed
at 4 ◦C and used 1% concentration had significant DNA removal compared with the
samples decellularized using 0.1% concentration at room temperature. Decellularized ECM
developed using 1% SDS and decellularized at 4 ◦C has the lowest residual DNA of only
3.9 ± 0.65 ng/mg. Except only for 0.1% SDS at room temperature, all the residual DNA
content of the decellularized ECM was less than 50 ng/mg, which is the level that can no
longer cause immune stimulation and inflammation.
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Figure 2. Comparative DNA quantification (ng/mg of the dry sample) of native milkfish skin and
decellularized ECM developed from the different conditions. Bars represent standard deviation
(n = 3). * p < 0.05.

3.4. Composition Analysis Using Attenuated Total Reflectance—Fourier Transform Infrared
(ATR–FTIR) Spectroscopy

One of the most significant criteria of decellularization is the preservation of crucial
ECM components and the intactness of structure. The ATR–FTIR spectra for the native and
decellularized samples in Figure 3 showed relatively similar peaks and bands for different
functional groups. This indicates that the decellularization process did preserve the main
ECM component, collagen. The typical amide bands observed were the amide A band
in the 3272–3240 cm−1 region, amide B in the 2940–3080 cm−1 region, amide I between
1700 and 1600 cm−1, amide II around 1532–1555 cm−1, and amide III around 1240 cm−1.
The described bands agree with the literature [23], confirming that the decellularization
process did not alter the composition of the ECM. The detected amides I, II, and III bands
related to collagen components suggest that the ECM was preserved regardless of the
conditions used in the study.

Figure 3. ATR-FTIR spectra of the native and decellularized milkfish skin show that amide bands
were preserved after decellularization.
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3.5. Physical and Mechanical Properties
3.5.1. Tensile Strength

The analysis using UTM, as shown in Figure 4a, has revealed that decellularization
has negatively affected the tensile strength of the skin, as the removal of ECM components
resulted in the deterioration of the mechanical properties of the tissue. The tensile strength
of the decellularized ECM produced at 4 ◦C was higher compared with their room tempera-
ture counterparts. Decellularized ECM using 0.1% TX100 at 4 ◦C (118.14 ± 10.27 MPa) and
1% SDS at room temperature (67.22 ± 12.47) have the highest and lowest value for tensile
strength, respectively. Samples treated with TX100, which can sufficiently preserve ECM,
have higher tensile strength properties compared to that of SDS, which can disrupt collagen
networks. Increased concentration resulted in coarser cell removal, which consequently
decreased the tensile strength of the samples. Furthermore, statistical analysis indicated
that temperature, decellularizing agent, and concentration have a significant effect on the
tensile strength of the samples (p < 0.05).

Figure 4. Physical and mechanical tests of native and decellularized milkfish skin: (a) tensile strength;
(b) water absorption test; (c) hydrophilicity test measured using water contact angle. Bars represent
standard deviation (n = 3). * p < 0.05.

3.5.2. Hydrophilicity

The results of the contact angle test (Figure 4c) have shown that native skin has a
hydrophilic property, and this property was enhanced in the decellularized ECM. Moreover,
the decellularization process that consequently changes the surface condition resulted in
a lower contact angle or increased hydrophilicity of the samples. The decellularized
ECM developed using SDS had shown the highest hydrophilicity, especially when the
concentration was 1.0%. This is an ideal property for ADM since more cells adhere to a
hydrophilic material to facilitate cell attachment. Both sides of the skin were tested for
hydrophilicity, and the results showed no significant difference (p = 0.51) in the contact
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angle. The increase in concentration resulted in a decrease in contact angle. However,
there were significant effects on the contact angle in varying the concentration of the
decellularizing agents and temperature (p < 0.05).

3.5.3. Water Absorption

The decellularized samples have an increased ability to absorb water compared with
the native sample, as shown in Figure 4b. Among the samples, the highest average swelling
ratio was exhibited by the decellularized ECM using 0.1% SDS at 4 ◦C (134.66 ± 4.47%).
Apparently, the decellularizations performed at 4 ◦C have higher water absorptivity com-
pared with those protocols performed at room temperature. The lower concentration
protocols also have higher water absorptivity. Furthermore, statistical analysis indicated
that temperature and concentration do have a significant effect on the samples (p < 0.05).
However, no significant difference was observed between the two decellularizing agents
(p = 0.15). An ideal skin scaffold should absorb wound exudate and maintain the wound
moist for a faster and more effective healing process.

3.6. Thermal Degradation and Denaturation Profile
3.6.1. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis (TGA) is useful for determining the thermal stability of
the decellularized ECM. The thermal curves in Figure 5 show the characteristic tempera-
tures and the mass-loss steps of the native and decellularized ECM. It was observed that
there were two-step weight loss peaks on the curve for all the samples. Specifically, the
decellularized ECM samples have shown that the first step or the initial degradation started
from 30 ◦C to 205 ◦C. The second degradation step occurred at the temperature range from
190 ◦C to 490 ◦C. The samples that were decellularized at 4 ◦C had higher weight loss on
the second degradation step compared with those samples treated at room temperature.
In addition, the use of decellularizing agents with higher concentrations resulted in lower
weight loss on the second degradation step compared with samples treated with lower
concentrations.

Figure 5. Thermal gravimetric curves for native and decellularized ECM: (a) %weight loss; (b) deriva-
tive of the %weight loss.

3.6.2. Differential Scanning Calorimetry (DSC)

The DSC analysis of all the samples revealed a single endothermal peak in the tempera-
ture range from 0 to 100 ◦C, as shown in Figure 6. This endothermal peak is associated with
the thermal denaturation temperature of collagen and the release of free and bound mois-



Biomimetics 2022, 7, 213 9 of 13

ture. Technically, the decellularization treatment has increased the thermal denaturation of
the samples as compared to the native sample. It was also observed that the decellularized
ECM developed at 4 ◦C have higher thermal denaturation temperature compared with
those at room temperature. In addition, the higher concentration and the use of TX100 also
resulted in higher thermal denaturation temperatures.

Figure 6. Differential Scanning Calorimetry (DSC) analysis of the native and decellularized ECM
from milkfish skin.

The second endothermal peaks were observed at around 213 to 223 ◦C. These peaks
were related to the release of structural moisture, which is responsible for the stability of
the triple helix structure of collagen. In general, the measured denaturation temperatures
suggested that the decellularized ECM could withstand body temperature experiencing
inflammation which is at about 42 ◦C.

3.7. Residual Detergent Determination

A higher concentration of residual detergent in the decellularized ECM was observed
for both 1.0% TX100 and 1.0% SDS (p < 0.05) since more detergent must be removed during
washing. The results also showed that there were lesser residual detergents when the
decellularization was conducted at room temperature than at 4C (p < 0.05). In addition,
protocols treated with SDS have higher residual detergent compared with using TX100
(p < 0.05). This is aligned with the findings of several previous studies on the difficulty of
removing SDS compared with other anionic detergents such as TX100 [13,14].

There were no significant effects on the residual concentration of the detergent in the
tissue between the interaction of the three variables (p = 0.086). The results of the residual
detergent test of the decellularized ECM are shown in Figure 7.
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Figure 7. Residual detergent test for Triton X-100 and SDS in the decellularized extracellular matrix
of milkfish skin. Bars represent standard deviation (n = 3). * p < 0.05.

4. Discussion

The conversion of fish wastes, such as milkfish skin, into high-value products, has
environmental and economic advantages. Milkfish skin, rich in collagen [5], is a very viable
material for skin tissue regeneration treatments. This is because fish skin exhibits similar
properties to human skin in structural and mechanical tests of regenerative cell compat-
ibility [7]. Unfortunately, there were no studies established yet for the decellularization
specific to milkfish skin.

This paper illustrated the decellularization of milkfish skin using different decel-
lularizing agents with varying concentrations and processed at different temperatures.
Specifically, the process used sodium dodecyl sulfate (SDS) and Triton X-100 (TX100) as
decellularizing agents and varied the concentration to 0.1% and 1.0%. The condition of the
decellularization was also varied by conducting the treatment at 4 ◦C and room tempera-
ture. Hematoxylin and eosin staining revealed that TX100 at lower concentration tends to
preserve the collagen fiber and the structural integrity of the ECM regardless of treatment
temperature. On the other hand, SDS has a higher structural damaging effect which is
magnified at higher concentrations but is more effective in cell component removal. These
observations are consistent with other published studies [17,24–26].

Cell removal, which is evident in the absence of blue stains, was achieved more with
decellularization using higher concentration and carried out at 4 ◦C. This was confirmed
with the DNA quantification with maximum cell removal of 94.13% for TX100 and 98.21%
for SDS, both at 1% concentration and temperature of 4 ◦C. The decellularized ECM was
able to achieve the minimum residual DNA criteria of 50 ng DNA/mg sample to avoid
adverse cell and host responses [7,24].

According to the ATR–FTIR spectra, it appears that more intense bands were seen at
4 ◦C compared with RT conditions. This finding might point to an unfavorable effect, such
as the denaturation of ECM proteins. On the other hand, the tensile strength of the samples
was negatively affected by decellularization. The decrease in tensile strength of the samples
after decellularization was due to the removal of ECM components that deteriorates the
mechanical properties of the tissues [27]. The structure-damaging effect of SDS, especially
at higher concentrations, yielded the lowest tensile strength compared with TX100 treated
samples. The use of SDS compromised the mechanical strength by seriously disturbing and
disrupting collagen network structure [28,29]. On the other hand, TX100-treated tissues
sufficiently maintained key ECM proteins and mechanical properties [26].

The decellularization has generally increased the hydrophilicity and water absorption
ability of milkfish skin. The 1% SDS decellularized ECM at 4 ◦C was the most hydrophilic.



Biomimetics 2022, 7, 213 11 of 13

However, the ideal hydrophilic level of surfaces that ensures the greatest cell adhesion
is only to have a contact angle of between 60◦–80◦ [30]. The water absorption ability, on
the other hand, has the maximum increase for decellularized ECM with TX100 using the
0.1% concentration and at 4 ◦C. Apparently, the decellularization increased the capacity of
the ECM to absorb water due to larger gaps between collagen fibrils [29]. ECM that are
hydrophilic and with higher water absorption values are vital in medical, cosmetics, and
therapeutic applications.

It was observed in the thermal analysis of decellularized ECM that the use of 1.0%
concentration and 4 ◦C in the decellularization resulted in an increase in the weight loss
of the samples, especially at the second degradation step. In addition, the resulting de-
naturation temperature measurement of the samples was relatively high compared with
the denaturation temperature of human skin of 54.8 ◦C. Consequently, the developed
decellularized ECM could also withstand human temperature experiencing inflammation
at around 42 ◦C [7].

TX100 and SDS are known to be very effective in cell removal and the debris in the
decellularized tissue. However, ineffective removal of these detergents in the decellularized
ECM poses some undesirable effects on metabolic activity and cytotoxicity that hamper
the recellularization process [14,16,24]. The washing method applied in the study was more
effective in removing TX100 than SDS. Nevertheless, the washing was still able to reduce the
SDS concentrations in decellularized ECM, but the additional investigation must be conducted
to determine the metabolic and cytotoxicity effect of these residual concentrations.

5. Conclusions

The conversion of milkfish skin to decellularized ECM is a promising endeavor. How-
ever, there are still no studies focused on the decellularization of this specific raw material.
In the present study, decellularized ECM was developed from milkfish skin using SDS and
TX100 as the decellularizing agents. Moreover, the temperature and concentration of the
agents were varied, and the developed ECM was characterized. From the results obtained,
the decellularization protocols were able to preserve the ECM structure and physical and
thermal properties of milkfish skin regardless of the concentration and temperature. Addi-
tionally, it was 0.1% sodium dodecyl sulfate (SDS) when used at 4 ◦C that yielded the most
promising results among the different conditions, as shown in Table 2 below.

Table 2. Summary indicating the best decellularization conditions for the specific tests performed.

Conditions
H&E

Staining
DNA Quan-

tification FTIR
Tensile

Strength
Hydrophilicity Water

Absorption DSC TGA
Residual

Detergent(Inner) (Outer)

Agent SDS SDS ALL TX100 SDS SDS SDS TX100 SDS TX100
Conc 0.1% 1.0% ALL 0.1% 1.0% 1.0% 0.1% 1.0% 0.1% 0.1%
Temp 4 ◦C 4 ◦C ALL RT 4 ◦C RT 4 ◦C 4 ◦C 4 ◦C RT

Future studies could explore more variables to further establish optimized protocols
to effectively decellularize milkfish skin while preserving the ECM structure, mechanical,
physical, and thermal properties, and biological compatibility and functionality. Additional
tests such as GAG quantification, SEM evaluation, and other histological characterizations
in supplement with the ones conducted will be vital for future and confirmatory studies.
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