
Citation: Zuo, G.; Li, M.; Yu, J.; Wu,

C.; Huang, G. An Efficient Motion

Planning Method with a Lazy

Demonstration Graph for Repetitive

Pick-and-Place. Biomimetics 2022, 7,

210. https://doi.org/10.3390/

biomimetics7040210

Academic Editors: Shuai Li and

Jinyou Shao

Received: 4 October 2022

Accepted: 16 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

An Efficient Motion Planning Method with a Lazy
Demonstration Graph for Repetitive Pick-and-Place
Guoyu Zuo 1,2 , Mi Li 1,2, Jianjun Yu 1,2, Chun Wu 1,2 and Gao Huang 1,2,3,*

1 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
2 Beijing Key Laboratory of Computing Intelligence and Intelligent Systems, Beijing 100124, China
3 Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology,

Beijing 100081, China
* Correspondence: huanggao@bjut.edu.cn

Abstract: Robotic systems frequently need to plan consecutive similar manipulation in some scenarios
(e.g., pick-and-place tasks), leading to similar motion plans. Moreover, the workspace of a robot
changes with the difference in operation actions, which affects subsequent tasks. Therefore, it is
significant to reuse information from previous solutions for new motion planning instances to adapt
to workplace changes. This paper proposes the Lazy Demonstration Graph (LDG) planner, a novel
motion planner that exploits successful and high-quality planning cases as prior knowledge. In
addition, a Gaussian Mixture Model (GMM) is established by learning the distribution of samples
in the planning cases. Through the trained GMM, more samples are placed in a promising location
related to the planning tasks for achieving the purpose of adaptive sampling. This adaptive sampling
strategy is combined with the Lazy Probabilistic Roadmap (LazyPRM) algorithm; in the subsequent
planning tasks, this paper uses the multi-query property of a road map to solve motion planning
problems without planning from scratch. The lazy collision detection of the LazyPRM algorithm
helps overcome changes in the workplace by searching candidate paths. Our method also improves
the quality and success rate of the path planning of LazyPRM. Compared with other state-of-the-art
motion planning algorithms, our method achieved better performance in the planning time and
path quality. In the repetitive motion planning experiment of the manipulator for pick-and-place
tasks, we designed two different experimental scenarios in the simulation environment. The physical
experiments are also carried out in AUBO−i5 robot arm. Accordingly, the experimental results
verified our method’s validity and robustness.

Keywords: manipulation planning; motion and path planning; learning sampling distribution;
autonomous robot

1. Introduction

Robot manipulators are widely used for performing continuous manipulation tasks
such as parts assembly and material sorting in fields such as manufacturing [1]. In struc-
tured scenarios, robotic arms often only need to repeat the demonstration trajectory to
perform repetitive tasks. However, in a semi-structured scene, the appearance of new
obstacles will change the workspace, so that the denomination trajectory may collide with
obstacles and affect the execution of operation tasks [2,3]. Furthermore, in some scenarios,
the robotic arm often needs to perform multiple picking and placing tasks, the nature of
repetitive pick-and-place tasks suggests that the solutions for all motion planning instances
are similar to some extent [4]. In this case, we can collect successful planning cases during
the offline phase, followed by reusing the knowledge online [5]. Importantly, two aspects
should be considered in this case: (1) how to characterize and generalize the prior knowl-
edge and use it to solve new motion planning problems; (2) how to ensure the stability of
the motion planning process when the prior knowledge becomes invalid with changes of
the environment.

Biomimetics 2022, 7, 210. https://doi.org/10.3390/biomimetics7040210 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics7040210
https://doi.org/10.3390/biomimetics7040210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0002-7624-4728
https://orcid.org/0000-0002-0003-0184
https://doi.org/10.3390/biomimetics7040210
https://www.mdpi.com/journal/biomimetics
http://www.mdpi.com/2313-7673/7/4/210?type=check_update&version=3

Biomimetics 2022, 7, 210 2 of 18

In the past few decades, several methods have been proposed to solve motion planning
problems. Among them, intelligent optimization algorithms, which iteratively solve trajec-
tories that satisfy the task requirements, are popular. Tan et al. proposed a path planning
method based on an improved ant colony algorithm [6], which improved the efficiency
of planning by imperatively selecting the initial parameters of the ant colony algorithm
through a particle swarm optimization algorithm. Evolutionary algorithms are used in
robot trajectory planning to obtain a safe path that satisfies the kinematic constraints by iter-
atively optimizing the travel time and actuator effort [7]. However, intelligent optimization
algorithms tend to fall into local extremes easily and converge slowly, which is determined
by the nature of the optimization algorithm itself, while our method samples directly in the
joint space, which is faster for planning and less likely to fall into local solutions.

Sampling-based motion planning (SBMP) algorithms can effectively solve motion plan-
ning problems without modeling the environment [8]; this type of method has improved
robustness, therefore gradually becoming mainstream in this field. The Rapidly-exploring
Random Tree (RRT) [9] uses a tree data structure to obtain connectivity information in
the configuration space (C-space) of the robotic arm by random sampling. The Proba-
bilistic Roadmap (PRM) [10] builds a roadmap for multi-query planning in C-space, so
the roadmap can be reused for subsequent planning. However, in a semi-structured envi-
ronment, before the roadmap is reused, it is necessary to perform collision detection on
the nodes and edges of the roadmap again, otherwise the planned path may collide with
obstacles. Some asymptotically optimal planning algorithms aim to minimize the cost
function, such as RRT* and PRM* [11]. The path converges to the optimum with a sufficient
number of samples. However, such algorithms often take a long time to converge because
of the random sampling nature. Xu et al. proposed an RRTConnect algorithm based on a
sparse expansion strategy and dead point saved strategy [12], which can effectively reduce
the number of collision detections and accelerate the convergence speed. In contrast, our
approach leverages past planning experience and can further reduce the likelihood of
redundant sampling.

In light of the above, how to use past experience to speed up the solution of motion
planning problems has attracted a lot of attention in the robot motion planning community.
Roadmap-based approaches construct a graph data structure in configuration space to
store connectivity information that has been collected in previous planning queries, while
in the repetitive manipulation tasks of the robot arm, the position of the obstacle changes
in workspace. An improved version of the original PRM algorithm, LazyPRM [13], was
proposed to adapt to the changing environment by delaying collision detection. Rosell
et al. collected demonstration data as a priori knowledge and used Principal Component
Analysis (PCA) to learn the demonstration data to improve the path planning efficiency of
the robotic arm during the grasping operation [14]. Similarly, PCA is used to learn demon-
stration data and combined with the RRT algorithm to achieve fast biased sampling [15],
but this paper has only validated this in a 2D environment. Roveda et al. proposed an
algorithm called HMM that is able to select reliable task trajectories from demonstration
data [16], but when the workspace changes, some of the trajectories might conflict with
the environment and thus planning fails. The road map constructed by GMM mixture
distribution can quickly plan the path of grasping objects in a narrow passage [17]. Further-
more, the adaptive sampling method is combined with LazyPRM to solve the continuous
operation motion planning of the manipulator. The past trajectories can be stored in the
path library, which invoke a suitable path to solve the new motion planning queries. In
the Lightning framework [18], the authors selected previous paths in a probabilistic way
and the RRTConnect algorithm to modulate it. Similarly, the authors of [19] used previous
experience to create a sparse roadmap, and then found valid path by A* [20], a shortest
path search algorithm. On this basis, this method adopts a guaranteed mechanism so that
when the A* search algorithm cannot find a feasible path, the RRTConnect algorithm can
be used to repair from the disconnected states. However, these path library-based methods

Biomimetics 2022, 7, 210 3 of 18

occupy a large amount of storage space, and in a semi-structured environment, some of the
stored paths will fail due to changes.

Learning-based approaches are often used to analyze the potential characteristics of
a task from a set of task-related expert demonstration trajectories by deep reinforcement
learning [21], which are used to guide the generation of task-related motion plans. The con-
ditional variational auto-encoder, a generative model, allows for coding the environmental
features and sampling from the latent space in complex environments [22]. Motion plan-
ning networks [23,24] are a novel class of planners that attempt to solve motion planning
problems by deep learning. These methods first encode the environmental point cloud
data and then exploit neural networks to fit the expert’s demonstration trajectories, but
these methods depend on the quality of the dataset and are subject to error accumulation
when the neural networks are forward-propagated to generate samples. Reinforcement
learning approaches treat the motion planning problem as a Markov process [25], where
the intelligence learns the planning strategy through continuous trial and error, yet the
manipulation skills learned by the robot in the simulation environment are difficult to
deploy on real robots. Deep reinforcement learning-based planning algorithms have lots of
model parameters and it is difficult to deploy on robotic arms.

This paper proposes a new motion planning algorithm, the lazy demonstration graph
(LDG), which solves the repetitive motion planning of a manipulator. First, the high-
quality trajectory solved by the expert planner is used as a priori knowledge to train
the GMM, a generative model in machine learning, and the trained distribution is used
to realize adaptive sampling so as to sample in the specific area containing the optimal
paths, planning speed, and path quality. Second, this sampling method is combined with
the LazyPRM algorithm. The introduction of lazy collision detection does not need to
evaluate the overall validity of the graph to accelerate the construction of a roadmap. More
importantly, it can adapt to environmental changes by querying candidate paths. Finally,
we analyzed and modeled the continuous operation task of the manipulator, designed two
different manipulator operation scenarios in the simulation environment, and achieved the
continuous motion planning of the manipulator for the pick-and-place tasks by reusing the
constructed LDG, without planning from scratch. In summary, the contributions of this
paper are as follows:

1. In this paper, we propose an experience guided sampling method. The advantage
of this method is that the distribution of demonstration data is learned via GMM, which
are used to generate samples at the task-related location, so as to improve the sampling
efficiency.

2. A new algorithm called Lazy Demonstration Graph (LDG), combined the above-
mentioned sampling method with LazyPRM algorithm is proposed. The advantages of
new algorithm are: First, the multi query property of graph is used to solve the continuous
motion planning problem of the manipulator. Second, the introduction of lazy collision
detection can improve planning efficiency and allows for adaptation to changes in the
workspace to some extent.

3. The repetitive pick-and-place tasks are modeled, and the continuous planning
problem of the robotic arm can be solved effectively by the proposed method and have
been verified in the simulation experiments, at the same time, a physical experiment was
designed to verify the effectiveness of our method.

The rest of this paper is organized as follows. Section 2 introduces the design process
of our method in detail. Section 3 shows the results of the experiment. Section 4 provides a
summary and future research plans.

2. Materials and Methods
2.1. Problem Definition

In this section, we focus on the definition of repetitive motion planning problems
for robotic arms in semi-structured scenarios. Consider a d Degrees Of Freedom (DOF)
robot, where the configuration space (C-space) is the d-dimensional space consisting of all

Biomimetics 2022, 7, 210 4 of 18

possible configurations of the robot, and each possible configuration is a point in C-space,
which represents the d joint angles of the robot.

Let X ⊆ Rd be the C-space. We assume that Xobs is the region occupied by obstacles
in C-space; therefore, X f ree = X\Xobs represents the collision-free region. Let xstart denote
the initial configuration in the collision-free C-space, and xgoal is the target configura-
tion. A query for motion planning is to find a continuous trajectory τ : [0, 1] → X f ree
for a given xstart, xgoal such that each point of the trajectory lies in the collision-free
region, where τ(0) = xstart, τ(1) = xgoal and they represent the start and end of the
trajectory, respectively.

Robotic arms are usually required to move objects to specific locations in the workspace,
for example, shelf stacking (see Figure 1). We assume that an instance of the robotic arm
manipulation task T is represented by a set T = {t1, t2, . . ., ti}, where ti(oi, pstart, pgoal) is
one of the subtasks, which consists of the manipulated object oi, start pose of the robot arm
end-effector pstart and target pose pgoal . Let function fx denote the mapping relationship
from the pose of robot arm end-effector to a joint configuration of the robotic arm such that

fx(pstart) = xstart

fx(pgoal) = xgoal
(1)

where fx can be derived from the inverse kinematics of the robot. On this basis, each subtask
ti(oi, xstart, pgoal) corresponds to a new motion planning query that leads to changes in the
objects’ position and in the underlying C-space of the robot indirectly. Furthermore, the
repetitive manipulation task T is equivalent to multiple queries of motion planning for a
finite time in semi-structured scenarios.

UBO

Figure 1. Our planner can generalize and leverage the high-quality paths solved by the expert planner
to solve new task instances. The expert planner plans the paths by searching the manipulation tasks
and collecting and using these paths as priori knowledge to solve new motion planning problems
quickly and consistently to grab all the cylinders on the left and place them on the right side of the
shelf, thus avoiding collisions.

2.2. Learning Sampling Distribution

One of the main ideas of the LDG is to introduce the previously solved path infor-
mation into the sampling distribution to effectively solve similar task instances. This
distribution focuses on placing samples in parts of the configuration space that are more
relevant to the task to reduce useless search. Limiting the sampling space not only improves
the planning efficiency of the planner but also overcomes the problem that it is difficult to
place samples in a complex environment.

Owing to the complex configuration space topology of the robotic arm, we use a
Gaussian Mixture Model (GMM) to model the distribution of collision-free trajectories
in the robot C-space, using a probabilistic approach to extract the key configurations of
the demonstration trajectories. We iteratively estimate the parameters of the GMM by
an expectation maximization (EM) algorithm [26] that maximizes the likelihood that past
solution configurations are sampled from this distribution [27]. To speed up the training

Biomimetics 2022, 7, 210 5 of 18

process as well as avoid local optimization, we initialize the parameters of the EM algorithm
using the bisecting K-Means [28] clustering algorithm, while the k values are selected by
the Bayesian Information Criterion (BIC) [29]. Sampling from the trained distribution can
then create samples at task-relevant locations.

We use expert’s demonstration trajectories as priori experience. These high-quality
solutions can be obtained by asymptotically optimal motion planners for specific operation
tasks. We discretize these trajectories to obtain the key configurations, which contain most
of the information of the previous solutions, and these key configurations constitute the
training set q:

q = [q1 . . . qi . . . qn]
T (2)

where qi represents the path points contained in the ith demonstration path. We use this dataset
to train a GMM, which can be considered as a superposition of multiple Gaussian models:

p(q) =
K

∑
k=1

πk N(q; µk, σk) (3)

where p(q) represents the probability density function, K is the number of Gaussian com-
ponents, and each Gaussian distribution N is composed of the mean µk and covariance
matrix σk, and πk is the weight of the Gaussian distribution.

Parameter estimation for the Gaussian mixture distribution is more complex than that
for the Gaussian distribution. Thus, we employ the expectation and maximization steps to
make the distribution fit the data in the dataset. In the expectation step, we introduce the
hidden variable γi,k, which represents the probability that the ith data come from the kth
Gaussian component.

γi,k =
πk N(qi; µk, σk)

∑K
k=1 πk N(qi; µk, σk)

(4)

In the maximization step, we use the updated probability value γi,k to update the
parameters of the GMM. First, we calculate the new mean of each Gaussian component:

µk =
∑N

i=1 γi,kqi

∑N
i=1 γi,k

(5)

With the updated means, we can update the covariance matrix for each component:

σk =
∑N

i=1 γi,k(qi − µk)(qi − µk)
T

∑N
i=1 γi,k

(6)

Finally, new weights can be calculated for each component:

πk =
∑N

i=1 γi,k

N
(7)

We terminate the iteration when the log-likelihood function reaches a local optimum:

ln p(Q) = ∑N
i=1 ln(

K

∑
k=1

γi,k Nk(qi; ηk, σk)) (8)

Once the model converges, we can use the distribution to generate samples, and the
complete process is shown in Figure 2.

Biomimetics 2022, 7, 210 6 of 18

(a) (b)

(c) (d)

Figure 2. Overall process of the learning sample distribution. Collecting successful and high-quality
planning cases (a), discretizing the trajectory, and constructing the training set (b), training the GMM
with the collected data until the model converges (c), using the trained model for generating samples
in task-related locations (d).

2.3. Lazy Demonstration Graph

In the previous section, we characterized the prior knowledge obtained by expert
demonstrations with a GMM, and in this section, we generate sampling points and construct
a probabilistic roadmap by Gaussian mixture distributions; that is, we apply previous
solutions to solve specific motion planning problems. We first describe how the sampling-
based motion planning algorithm constructs the roadmap, taking LazyPRM as an example,
which is a classical roadmap-based motion planning algorithm on which our method
is based.

As shown in Algorithm 1, the LazyPRM algorithm can be divided into two phases: con-
structing graph G = (V, E) ⊆ X and querying. In the graph construction phase, LazyPRM
iteratively samples a random configuration xrand without checking its validity by collision
detection. This random configuration is added directly to the set of vertices V (line 4 and 5).
For each sample xrand, a nearest neighbor search is performed (line 6–10); in this step, we
usually have to set the value γ for distance constraint between two configurations. If the
configuration x in the set of vertices V and random configuration xrand meet the distance
constraint (||x− xrand|| < γ), then the configuration x is considered as the nearest neighbor
xnear of the random configuration xrand. The random configuration xrand is also directly
connected to its nearest neighbor xnear as edge in the graph without collision detection, and
this step often called local planning (line 9). When the graph is constructed, the shortest
path can be found by the graph-search-based algorithm A* or Dijkstra’s algorithm (line 13).
Because the lazy data structure allows for invalid edges, the path obtained by the search
algorithm may collide with obstacles; therefore, collision detection is needed for the solved
path. If a collision occurs, the candidate path is searched until a collision-free effective path
is obtained (line 14).

Biomimetics 2022, 7, 210 7 of 18

Algorithm 1: Lazy PRM
Input: xinit, xgoal
Output: SolutionPath τ∗i

1 V ← {xinit, xgoal}
2 E← ∅
3 while n < N do
4 xrand ← Sample()
5 V ← xrand
6 foreach x ∈ V do
7 if ||x− xrand|| < γ then
8 xnear ← x
9 E← (xnear, xrand)

10 end
11 end
12 end
13 τ ←SearchPath(G,xinit, xgoal)
14 τ∗i ←CheckValid(τi) // Collision Detection

15 return SolutionPath τ∗i

In the offline phase, we first collect the high-quality trajectories related to the operation
task, then discrete the trajectories to form the training set, and train the GMM until con-
vergence, thus the distribution GMM_Sample() can be used for sampling in task-related
areas. The overall flow of the LDG is shown in Algorithm 2. The algorithm is divided into
two phases, as in most roadmap-based algorithms. First, we construct an undirected graph
structure through cyclic sampling, and then use it to query collision-free paths. The specific
operation task T, the number of initial samples N and the distribution GMM_Sample()
are used as inputs to the algorithm. We first initialize the node set V and edge set E of
the graph G. Consistent with what was performed in these papers, in order to balance
exploration with exploitation, we set a threshold value t (line 3) to choose whether to use a
Gaussian mixture distribution or uniform distribution to generate samples in a probabilistic
way. Lines 4–10 represent the cyclic sampling phase, and when the random number k lies
between 0 and t, we use the trained Gaussian mixture distribution to generate a sample
by first selecting a Gaussian component and then drawing samples from this Gaussian
distribution, with each Gaussian component being selected with a probability proportional
to its probability of being in the mixture distribution. Accordingly, the samples are placed
in a promising location, reducing useless exploration; otherwise, the sample is generated
through a uniform distribution to achieve the purpose of exploring the C-space. Because
we introduce the lazy collision detection strategy, we do not make a judgment here on
whether the sample xrand collides with the environment, but add it directly to the node set
V (line 11). As in Algorithm 1, we use nearest the neighbor search to obtain the nearest
neighbor node xnear of xrand and construct connections between (xnear, xrand) via a local
planner, which can connect two nodes in a straight line to form an edge in the graph in
lines 12–17.

Once the undirected graph data structure G is constructed, multiple queries can be
performed by the persistent graph structure to solve continuous motion planning problems,
as shown in Figure 3. The received task is processed in lines 20–24, and each subtask ti
corresponds to a request of motion planning. The function SearchPath(·) is used to process
each planning request, and it contains three parameters. Here, pstart is the current pose
of the end effort, pgoal is the target pose of the end effort, and function fx(·) represents
the mapping relationship from the end effort of robotic arm to the joint configuration,
which is used to determine the joint configuration of the arm for object manipulation,
the function fx(·) can in turn be deduced according to the inverse kinematics of the
manipulator. In this way, the path search function takes a pair of robotic arm configurations

Biomimetics 2022, 7, 210 8 of 18

as its input and searches for the shortest collision-free path by the graph G, with the help
of priori knowledge. The graph search algorithm we use is the A* algorithm based on
depth-first search.

Algorithm 2: Lazy Demonstration Graph

// Tasks, Maximum number of samples, Gaussian mixed model sampler

Input: T, N, GMM_Sample()
Output: SolutionPath τ∗i

1 V ← ∅
2 E← ∅
// Balance exploration and exploitation

3 t← ThresholdValue(0, 1)
4 while n < N do
5 k← RandomValue(0, 1)
6 if 0 ≤ k ≤ t then
7 xrand ← GMM_Sample()
8 else
9 xrand ← Uniform_Sample()

10 end
11 V ← xrand
12 foreach x ∈ V do
13 if ||x− xrand|| < γ then
14 xnear ← x
15 E← (xnear, xrand)

16 end
17 end
18 end
19 G ← (V, E) // Lazy Demnostration Graph

20 foreach Subtask ti ∈ T do
21 τi ←SearchPath(G, fx(pstart), fx(pgoal))
22 τ∗i ←CheckValid(τi) // Collision Detection

23 Rewire(σ∗i) // Path Smooth

24 return τ∗i
25 end

iT t t t i i goal startt o p p

x start startf p x

x goal goalf p x

start goalx x

Figure 3. Overall process of solving the repetitive motion planning problem of robotic arm for
manipulation tasks using LDG. The manipulation task T contains multiple pick-and-place subtasks
and for each subtask ti, the robotic arm is required to move the object from one position to another.
the starting and target configurations of the arm can be obtained by inverse kinematics (IK) and then
the shortest path is searched using the constructed LDG. the lazy data structure of LDG is kept in
each task, which allows invalidating edges, it helps to improve the composition speed on the one
hand and adapt the changes of the environment. In this figure, the green ellipse represents Gaussian
mixture distribution obtained from prior knowledge training, which is used to place the samples in
more promising locations.

Biomimetics 2022, 7, 210 9 of 18

Some valid nodes and edges of the graph constructed in C-space are invalidated
because the manipulated object is attached to the manipulator. This results in the possibility
of a collision between the manipulator and the environment increasing, as well as the
position of object changing due to the operation of the robot. Therefore, in the construction
phase of the graph, judging the validity of the nodes and edges of the graph is unnecessary,
but collision detection on the searched paths must be performed σi through the function
CheckValid(·) (line 21). The collision detection function is implemented by the Flexible
Collision Library (FCL); FCL is an open source project that includes various techniques for
efficient collision detection and proximity computation [30]. If there is a collision on the
path, the colliding nodes and edges are moved out of consideration, and then the candidate
path σ∗i is obtained by graph search. In this way, a lot of computation time can be saved
without evaluating the overall effectiveness of nodes and edges in the graph, and we can
also ensure the normal progress of subsequent tasks. Because the local planner connects
the two nodes in a straight line, it leads to the redundancy of path points. Thus, a function
Rewire(·)—is introduced to remove redundant nodes in the path by evaluating whether
the linear trajectories of two discontinuous nodes in the connection path have no collision
(line 22). Similar to the reselection parent node algorithm used in RRT*, the lightweight
implementation of this algorithm has little processing overhead, so it can be used without
significantly increasing the path generation time, as shown in Figure 4.

(a) (b) (c) (d)

Figure 4. Given the start and goal points (shown in green and red dot), a path can be found through
the graph search algorithm in a two-dimensional (2D) environment (a). When a new obstacle (blue
ellipse) appears in the environment, the nodes and edges of the constructed graph structure will
partially invalid (shown in yellow) (b). The planning problem is completed by searching the candidate
path (ignoring the invalid nodes and edges when querying and searching path using other nodes
and edges in the graph) (c). The path is further optimized by removing redundant states from the
path (shown in red line) (d).

3. Experiments

To evaluate the effectiveness of our method, we designed a three-part experiment.
First, a path planning test was conducted on a 2D grid map with a translational-only point
robot, which illustrates the creation and uses of the LDG in a more visual way. Subsequent
experiments were deployed on the ROS and MoveIt! In the simulation environment, two
scenes of shelf stacking and picking from bin were built. Continuous pick-and-place
manipulation experiments with a 6 DOF AUBO−i5 robotic arm showed that our method
had a certain degree of efficiency and robustness. Finally, we use MoveIt! in ROS to plan
the path of the physical manipulator, so as to realize the task of picking and placing. All
tests were carried out on an Intel Core i5 with 2.40-GHz cores and 16 GB of RAM running
Ubuntu 16.04.

3.1. 2D Gridworld

In this part of the experiment, we compared our method with the LazyPRM, RRT*,
RRTConnect [31], and BiRRT* [32] algorithms. The LazyPRM algorithm constructs the road
map with uniform sampling. The RRTConnect algorithm is the greedy variant of RRT,

Biomimetics 2022, 7, 210 10 of 18

which is rapidly extended by two trees, and has great speed advantage in solving motion
planning problems. BiRRT* is the state-of-the-art single-query algorithm, which inherits
the asymptotic optimization property of the RRT* algorithm and has a faster expansion
speed. Our method sets the same maximum number of samples to 470 as in LazyPRM, and
the connection distance of the nearest neighbor node is set to 45. We used BiRRT* as our
expert tutorial planner to tutorialize the planning tasks and used the discrete path points
as training data for the GMM. The number of iterations of the EM algorithm is set to 100,
and the optimal number of components of the GMM is 12 according to the BIC criterion.
probability of generating samples using GMM was set to 0.3. All code of this part of the
experiment was implemented in matlab2017.

Figure 5 shows the planning visualization of our proposed method compared with
three representative methods, i.e., LazyPRM, RRTConnect, and BiRRT*, in two different 2D
scenes. Each 2D scene has a length and width of 500, and consists of several gray squares
for obstacles. The planner needs to find collision-free paths given the start and end points
within the limit time.

(a)

(b)

Figure 5. (a,b) are two different environments used in the 2D Gridworld experiments. From left to
right, the planning results of LazyPRM, RRTConnect, BiRRT*, and LDG are shown. The green and
red five-pointed stars represent the start and the goal, respectively; the blue line is the valid path
generated by the planner; and the red line is the path of the LDG smoothed by the Rewire function,
which can reduce the redundant state of the path.

We evaluated the performance of the algorithms from the three aspects of planning
time, path cost, and success rate. Planning time measures the time spent by the planner to
generate a path from the starting point to the goal point. Path cost reflects the ability of the
planner to approach the optimal path. When all the states in the path are located outside
the obstacles and the planner is not timed out, then the path is considered successful. Then,
30 tests were run in two scenes, and the experimental results were averaged; all the results
of the four algorithms are shown in Tables 1 and 2.

As can be seen in Tables 1 and 2, LDG undergoes a greater improvement in the quality
of the paths and success rate of planning compared to the LazyPRM algorithm, in the
two scenarios, the length of the path decreases by 12.53% and 9.8%, respectively, and the
planning success rate improved by 36.67% and 53.34%, so the efficiency has been improved.
Quantitatively, the planning time of RRTConnect algorithm is slightly better than that of the
LDG, but the path quality of our algorithm is improved by 28.9% and 36.9%, respectively,
compared to RRTConnect. Compared with the BiRRT* algorithms, the LDG is slightly
better than these two algorithms in terms of path quality, and has a significant advantage

Biomimetics 2022, 7, 210 11 of 18

in planning time, the planning time in each of the two scenarios was reduced by 85.3% and
88.7%. The above three evaluation indicators are better than RRT*. We also introduce the
path smoothing strategy, which enables the quality of the path to be further improved and
also guarantees that the quality of the path is good even with less prior knowledge.

Table 1. Speed, path cost and success rate of LDG benchmarked against other algorithms in scene 1.

Algorithms Planning Time Path Cost Success Rate

LazyPRM 0.376 975.63 63.33
RRT-Connect 0.229 1200.25 100

RRT* 3.716 890.27 83.33
BiRRT* 2.637 869.33 100

LDG 0.387 853.41 100

Table 2. Speed, path cost and success rate of LDG benchmarked against other algorithms in scene 2.

Algorithms Planning Time Path Cost Success Rate

LazyPRM 0.295 726.21 46.66
RRT-Connect 0.286 904.81 100

RRT* 4.841 678.47 76.66
BiRRT* 2.811 663.39 100

LDG 0.319 654.88 100

Overall, the performance of our algorithm is the best compared to the other four. In
contrast, the LDG, such as the LazyPRM algorithm, delays the collision detection to the
search phase of the path, which not only improves the speed of graph construction but also
lets the LDG adapt to changes in the workspace to some degree. When the environment
has partially changed, the LDG can also search the candidate path through the constructed
graph. More importantly, for new planning problems, the tree-based method needs to
explore the robotic arm configuration space again each time. The LDG algorithm, as
a raodmap-based method, can save a large amount of information in the robotic arm
configuration space in advance. In subsequent planning tasks, only directly calling the
graph structure and performing the search for paths is needed. This approach also improves
the planning efficiency. In the subsequent experiments, we used the multi-query nature of
the LDG algorithm for continuous path planning for operation-oriented tasks.

3.2. Continuous Pick-and-Place of Manipulator

In this section, we design a robotic arm continuous motion planning experiment for
an operational task in the Robot Operating System (ROS) environment. We first describe
the experimental environment and experimental setup, and then compare the LDG with
other robust planners in the same environment. The simulation environments included
shelf stacking and picking from a deep bin, which are shown in Figure 6a,b separately.
The robotic arm used is the AUBO−i5 with an attached Robotiq gripper. Taking the shelf
stacking task as an example, this task required the robot arm to pick up all cylinders on
the left side of the shelf and place them on its right side while avoiding obstacles in the
workspace during the robot arm planning process. The operation task consists of four
grasping and placing subtasks, for a total of eight motion paths.

Biomimetics 2022, 7, 210 12 of 18

(a) (b)

Figure 6. AUBO−i5 performs continuous pick-and-place tasks, shelf stacking (a), picking from deep
bin (b).

We tested the LDG with the RRTConnect and BiRRT* algorithms in the same scenario
and performed 10 iterations of the experiment for the shelf stacking task, with a total of
80 paths (picking and placing 40 times). As in the previous 2D experiments, we first used
the BiRRT* algorithm to teach the operational task, and then used these demonstration
paths as training data to train the GMM until convergence, the number of iterations of the
EM algorithm is set to 100, the number of Gaussian components is 14 according to the BIC
criterion, this step was performed offline. In practice, we do not teach all the picking and
placing tasks by BiRRT*, because the paths planned in the same environment tend to have
similar characteristics, a small number of paths are already representative. We also provide
a certain percentage of uniform samples, which further improves the generalization ability
of the planner. With the help of a trained Gaussian mixture distribution, the LDG can place
more samples at task-relevant locations. The trajectory smoothing strategy was deployed
for each planner, which could effectively improve the quality of the paths. All algorithms
in this part of the experiment were implemented by C++ codes.

The experimental results are shown in Tables 3 and 4. Each subtask contained one
picking and placing manipulation, and we measured the performance of the planner
planning mainly from the two metrics of path cost and planning time. In the shelf stacking
task and picking from a deep bin task, the initial number of nodes of the LDG was set to
3000 and 4500, and the ratio of Gaussian mixed sampling to uniform sampling was 1:2.
We show the experimental data for the first two subtasks in the table, which shows the
effectiveness of our proposed method, and the overall performance of the three planners in
the four subtasks is compared more visually in box plots.

Table 3. Numerical results of AUBO−i5 repetitive motion planning in shelf stacking task.

Algorithms Tasks Sequence Planning Time Path Cost

LDG
pick 1st 1.86 5.16

2nd 0.95 4.26

place 1st 1.19 5.34
2nd 0.93 4.32

RRT-Connect
pick 1st 1.76 10.14

2nd 1.63 9.49

place 1st 2.43 10.73
2nd 2.27 10.01

BiRRT*
pick 1st 6.67 5.98

2nd 5.04 5.73

place 1st 7.28 6.6
2nd 5.66 5.82

Biomimetics 2022, 7, 210 13 of 18

Table 4. Numerical results of AUBO−i5 repetitive motion planning in picking from bin task.

Algorithms Tasks Sequence Planning Time Path Cost

LDG
pick 1st 4.54 6.47

2nd 2.14 6.76

place 1st 2.07 6.69
2nd 2.3 7.04

RRT-Connect
pick 1st 3.16 9.24

2nd 3.82 10.66

place 1st 4.06 11.31
2nd 5.91 12.66

BiRRT*
pick 1st 9.96 7.57

2nd 10.49 7.98

place 1st 12.51 8.66
2nd 14.69 7.69

As can be seen from the data in Tables 3 and 4, the LDG has a higher time cost
than RRTConnect for the first picking operation, as the roadmap-based motion planning
algorithm needs to construct a graph and save it. However, in the subsequent planning
process, the LDG can reuse the saved graph structure in subsequent subtasks to achieve
the effect of increasing the solution speed. Because RRTConnect and BiRRT* are tree-based
motion planning algorithms, each query requires expanding the entire tree from scratch,
which does not save computation time. Furthermore, because of the introduction of prior
knowledge, the LDG can generate a large number of samples directly at these narrow
passages in the workspace, so the average planning time of the LDG is smaller than the
other two algorithms. In summary, when performing two picking and placing tasks, our
method reduces the planning time by 39.1% and 34.1% compared to the RRTConnect
algorithm in the two experimental scenarios, and the length of the path is reduced by
53.2% and 38.5%, respectively. Compared to the BiRRT* algorithm, our method reduces the
planning time by 80% and 76.8% in the two experimental scenarios, and the length of the
path is reduced by 20.9% and 15.5%, respectively.

Figure 7 visually shows the performance comparison of the three planning algorithms
used by the AUBO−i5 manipulator to perform shelf stacking tasks in the form of box
plots. The top plot corresponds to the planning time, and the bottom plot corresponds
to the length of the path. Task 1 and Task 4 are shown from left to right, and each task
contains a pick-and-place operation, represented by blue and orange boxes, respectively.
It can be seen from the box plot that the LDG has the best performance in general, except
the time spent in the pick operation of task 1 is higher than that of RRTConnect. Second,
the algorithm has fewer outliers, which also reflects that the LDG algorithm has better
robustness. These experimental results show that the LDG constructs a lazy probabilistic
road map by introducing prior knowledge, which is suitable for repetitive operation motion
planning in similar environments.

Figure 8 shows composite pictures of AUBO−i5 performing a shelf stacking task. As
can be seen from task 1, the trajectory generated by the LDG algorithm is close to the
optimal trajectory. When the pick-and-place manipulation has completed, we added a new
obstacle, which invalidated some edges in the constructed roadmap, and the LDG was able
to complete subsequent manipulation by querying candidate paths. This approach ensured
the stability of the motion planning process, which benefits from the lazy data structure of
the LDG in each task.

Biomimetics 2022, 7, 210 14 of 18

LDG

RRTConnect

BiRRT*

Planning time

LDG

RRTConnect

BiRRT*

Task1 Task2 Task3 Task4
Path cost

Figure 7. Experimental data obtained from the AUBO−i5 shelf stack tasks, which includes 4 times
pick-and-place subtasks. Blue boxes and orange boxes are for pick-and-place tasks, respectively. To
complete the manipulation task, each planner must plan a collision-free path to pick up the object
and place it at the target location. The top boxplots represent the planning time, and the bottom
boxplots represent the length of the planned path.

Task1 pick and place Environment changes Task2 pick and place

Pick 1st Place 1st Pick 2th place 2th

Figure 8. The composite images of the AUBO−i5 in shelf stacking task. These pictures show the
robot executing a series of joint commands generated by LDG, picking up objects from the shelf and
placing them on the other side. Although the roadmap in LDG algorithm is built for specific scenes,
when the environment changes (the position of the operated object changes or new obstacles appear),
the algorithm can still ensure the completion of subsequent tasks by querying candidate paths.

3.3. Physical Robot Arm Planning Experiment

In order to further verify the effectiveness of the method proposed in this paper, we
use the AUBO−i5 physical manipulator to build a scene for picking and placing tasks, and
use MoveIt! in ROS, the software platform builds a corresponding simulation environment
according to the real-world scene, as is shown in Figure 9a,b.

In this section, we use ROS as the host computer to control the physical manipulator, so
that the AUBO−i5 manipulator can pick objects from box1 and place them into box2, while
avoiding obstacles in the workspace. We first used the BiRRT* algorithm to demonstrate the
first pick-and-place task, and used the demonstration data as prior knowledge to construct
an adaptive sampler by GMM. Then perform the second picking and placing operation, and
use the current position as the starting point for the motion planning problem Figure 10,
we use the proposed method to plan the path of the robotic arm, so that its gripper moves
to box1 to grasp the object; the path sequence is shown in Figure 11.

Biomimetics 2022, 7, 210 15 of 18

(a)

AUBO-i5

Box2

Box1

(b)

Figure 9. The scene for pick-and-place tasks in MoveIt! (a), AUBO−i5 physical manipulator (b).

Figure 10. The starting position of AUBO−i5 when it is about to perform picking task.

Figure 11. The path sequence of AUBO−i5 when executing the picking task.

Similarly, we use the current position as the starting point for the placement task
Figure 12, and to verify that our method can cope with changes in the workspace, we added
a new obstacle between the two boxes, it can be seen that AUBO−i5 can still plan to the
target position while avoiding obstacles in the workspace, realizing the placement of object;
the path sequence is shown in Figure 13.

It can be seen from the experiments that our algorithm can be transferred from the
simulation environment to the physical manipulator, and can better complete the motion
planning for grasping and placing tasks, and at the same time, it can cope with changes in
the workspace to a certain extent. The joint position change curve is shown in the following
Figures 14 and 15.

Biomimetics 2022, 7, 210 16 of 18

Figure 12. The starting position of AUBO−i5 when it is about to perform picking task.

Figure 13. The path sequence of AUBO−i5 when it is about to perform placing task.

Figure 14. The joint position change curve of the AUBO−i5 when performing the picking task.

Figure 15. The joint position change curve of the AUBO−i5 when performing the placement task.

Biomimetics 2022, 7, 210 17 of 18

4. Conclusions

In this paper, we proposed LDG, a new motion planner for the pick-and-place tasks
of a robotic arm. This method is a roadmap-based motion planning algorithm that uses
the solutions of previous problems to speed up the solution of similar problems. We
first analyzed and modeled the operation task-oriented planning problem of robotic arm,
and then collected the high-quality trajectories planned by the expert planner as a priori
knowledge. Notably, GMM fit an arbitrary distribution, therefore being able to learn the
distribution of collected trajectory samples and build an adaptive sampler. Thus, GMM
achieved sampling in specific regions of the optimal path solution to improve the speed
and quality of motion planning. At the same time, we integrated this adaptive sampler
into the LazyPRM algorithm, which enabled LDG to adapt to environmental changes
as in a tree-based planning algorithm by delaying collision detection and guaranteeing
the valid execution of subsequent tasks. For the new planning problem, the tree-based
motion planning algorithm needed to plan from scratch, while we took advantage of the
multi-query nature of the graph by saving the constructed road map at the end of the
first planning task. In the follow-up planning problem, the persistent graph structure was
called directly for the subsequent problem, thus further improving the speed of planning.
We applied the proposed method to the continuous pick-and-place task of the AUBO-i5
manipulator, and both the simulation experiment and the physical experiment verified
the effectiveness of our method. In the future, we will explore the combination of task
planning with our proposed motion planning algorithm to solve complex long-term robot
planning problems.

Author Contributions: Conceptualization, G.Z.; methodology, G.Z.; software, G.Z. and M.L.; val-
idation, G.Z., M.L. and G.H.; formal analysis, G.Z.; investigation, G.Z. and M.L.; resources, G.Z.
and M.L.; data curation, G.Z., M.L., J.Y., C.W. and G.H.; writing—original draft preparation, G.Z.;
writing—review and editing, G.Z. and M.L.; visualization, M.L.; supervision, G.H.; project adminis-
tration, G.Z.; funding acquisition, G.Z. and G.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Nature Science Foundation of China grant
number: 61873008 and 62103053, in part by the National Key Research and Development Program of
China grant number: 2018YFB1307004.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the biomimetics reviewers for their critical comments
and suggestions for improving the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Thakar, S.; Rajendran, P.; Kabir, A.M.; Gupta, S.K. Manipulator motion planning for part pickup and transport operations from a

moving base. IEEE Trans. Autom. Sci. Eng. 2020, 19, 191–206. [CrossRef]
2. Lai, T.; Ramos, F. Rapid replanning in consecutive pick-and-place tasks with lazy experience graph. arXiv 2021, arXiv:2109.10209.
3. Farajtabar, M.; Daniali, H.M.; Varedi, S.M. Pick and place trajectory planning of planar 3-RRR parallel manipulator in the presence

of joint clearance. Robotica 2017, 35, 241–253. [CrossRef]
4. Pairet, È.; Chamzas, C.; Petillot, Y.; Kavraki, L.E. Path planning for manipulation using experience-driven random trees.

IEEE Robot. Autom. Lett. 2021, 6, 3295–3302. [CrossRef]
5. Fisher, R.; Rosman, B.; Ivan, V. Real-time motion planning in changing environments using topology-based encoding of past

knowledge. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018.
6. Tan, Y.; Ouyang, J.; Zhang, Z.; Lao, Y.; Wen, P. Path planning for spot welding robots based on improved ant colony algorithm.

Robotica 2022, 1–13. [CrossRef]
7. Sathiya, V.; Chinnadurai, M. Evolutionary algorithms-based multi-objective optimal mobile robot trajectory planning. Robotica

2019, 37, 1363–1382. [CrossRef]
8. LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006.

http://doi.org/10.1109/TASE.2020.3020050
http://dx.doi.org/10.1017/S0263574714002768
http://dx.doi.org/10.1109/LRA.2021.3063063
http://dx.doi.org/10.1017/S026357472200114X
http://dx.doi.org/10.1017/S026357471800156X

Biomimetics 2022, 7, 210 18 of 18

9. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Technical Report; Computer Science Department, Iowa
State University: Ames, IA, USA, October 1998.

10. Kavraki, L.E.; Kolountzakis, M.N.; Latombe, J.C. Analysis of probabilistic roadmaps for path planning. IEEE Trans. Robot. Autom.
1998, 14, 166–171. [CrossRef]

11. Bekris, K.E.; Shome, R. Asymptotically optimal sampling-based planners. arXiv 2019, arXiv:1911.04044.
12. Xu, J.; Wang, J. Effective motion planning of manipulator based on SDPS-RRTConnect. Robotica 2022, 40, 1855–1867. [CrossRef]
13. Bohlin, R.; Kavraki, L.E. Path planning using lazy PRM. In Proceedings of the IEEE International Conference on Robotics and

Automation, San Francisco, CA, USA, 24–28 April 2000.
14. Rosell, J.; Suárez, R.; Pérez, A. Path planning for grasping operations using an adaptive PCA-based sampling method. Auton.

Robot. 2013, 35, 27–36. [CrossRef]
15. García, N.; Rosell, J.; Suárez, R. Motion planning using first-order synergies. In Proceedings of the 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015; pp. 2058–2063.
16. Roveda, L.; Magni, M.; Cantoni, M.; Piga, D.; Bucca, G. Human-Robot Collaboration in Sensorless Assembly Task Learning

Enhanced by Uncertainties Adaptation via Bayesian Optimization. Robot. Auton. Syst. 2020, 136, 103711. [CrossRef]
17. Qiu, Q.; Cao, Q. Motion planning in semistructured environments with teaching roadmaps. Intell. Serv. Robot. 2020, 13, 1855–1867.

[CrossRef]
18. Berenson, D.; Abbeel, P.; Goldberg, K. Experience-based planning with sparse roadmap spanners. In Proceedings of the IEEE

International Conference on Robotics and Automation, Brisbane, Australia, 26–30 May 2012.
19. Coleman, D.; Şucan, I.A.; Moll, M.; Okada, K.; Correll, N. Experience-based planning with sparse roadmap spanners.

In Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA, USA, 25–30 May 2015.
20. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Man

Cybern. Syst. 1968, 4, 100–107. [CrossRef]
21. Tsukamoto, H.; Chung, S.J. Learning-based robust motion planning with guaranteed stability: A contraction theory approach.

IEEE Robot. Autom. Lett. 2021, 6, 6164–6171 [CrossRef]
22. Ichter, B.; Pavone, M. Robot motion planning in learned latent spaces. IEEE Robot. Autom. Lett. 2019, 4, 2407–2414. [CrossRef]
23. Qureshi, A.H.; Simeonov, A.; Bency, M.J.; Yip, M.C. Motion planning networks. In Proceedings of the IEEE International

Conference on Robotics and Automation, Montreal, QC, Canada, 20–22 May 2019.
24. Qureshi, A.H.; Miao, Y.; Simeonov, A.; Yip, M.C. Motion planning networks: Bridging the gap between learning-based and

classical motion planners. IEEE Trans. Robot. 2020, 37, 48–66. [CrossRef]
25. Strudel, R.; Garcia, R.; Carpentier, J.; Laumond, J.P.; Laptev, I.; Schmid, C. Learning obstacle representations for neural motion

planning. arXiv 2020, arXiv:2008.11174.
26. Biernacki, C.; Celeux, G.; Govaert, G. Choosing starting values for the EM algorithm for getting the highest likelihood in

multivariate Gaussian mixture models. Comput. Stat. Data Anal. 2003, 41, 561–575. [CrossRef]
27. Fujimoto, Y.; Murata, N. A modified EM algorithm for mixture models based on Bregman divergence. Ann. Inst. Stat. Math.

2007, 59, 3–25. [CrossRef]
28. Kashef, R.; Kamel, M.S. Enhanced bisecting k-means clustering using intermediate cooperation. Pattern Recognit. 2009, 42, 2557–2569.

[CrossRef]
29. Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res.

2004, 33, 261–304. [CrossRef]
30. Pan, J.; Chitta, S.; Manocha, D. FCL: A general purpose library for collision and proximity queries. In Proceedings of the IEEE

International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2012.
31. Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the IEEE

International Conference on Robotics and Automation, San Francisco, CA, USA, 24–28 April 2000.
32. Klemm, S.; Oberländer, J.; Hermann, A.; Roennau, A.; Schamm, T.; Zollner, J.M.; Dillmann, R. Rrt-connect: Faster, asymptotically

optimal motion planning. In Proceedings of the IEEE international conference on robotics and biomimetics, Zhuhai, China,
6–9 December 2015.

http://dx.doi.org/10.1109/70.660866
http://dx.doi.org/10.1017/S0263574721001417
http://dx.doi.org/10.1007/s10514-013-9332-5
http://dx.doi.org/10.1016/j.robot.2020.103711
http://dx.doi.org/10.1007/s11370-020-00316-9
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/LRA.2021.3091019
http://dx.doi.org/10.1109/LRA.2019.2901898
http://dx.doi.org/10.1109/TRO.2020.3006716
http://dx.doi.org/10.1016/S0167-9473(02)00163-9
http://dx.doi.org/10.1007/s10463-006-0097-x
http://dx.doi.org/10.1016/j.patcog.2009.03.011
http://dx.doi.org/10.1177/0049124104268644

	Introduction
	Materials and Methods
	Problem Definition
	Learning Sampling Distribution
	Lazy Demonstration Graph

	Experiments
	2D Gridworld
	Continuous Pick-and-Place of Manipulator
	[id=A1]Physical Robot Arm Planning Experiment

	Conclusions
	References

