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Abstract: Biological motion perception is integral not only to survival but also to the social life
of human beings. Identifying the underlying mechanisms and their associated neurobiological
substrates has been a matter of investigation and debate for some time. Although, in general, it
is believed that the integration of local motion and dynamic form cues in the brain empowers the
visual system to perceive/recognize biological motion stimuli, some recent studies have indicated the
importance of dynamic form cues in such a process. Inspired by the previous neurophysiologically
plausible biological motion perception models, a new descriptive risk-averse Bayesian simulation
model, capable of discerning a ball’s direction from a set of complex biological motion soccer
kick stimuli, is proposed. The model represents only the dorsal pathway as a motion information
processing section of the visual system according to the two-stream theory. The stimuli used have
been obtained from a previous psychophysical study on athletes in our lab. Furthermore, the acquired
psychophysical data from that study have been used to re-enact human behavior using our simulation
model. By adjusting the model parameters, the psychometric function of athlete subjects has been
mimicked. A correlation analysis between human and simulation data shows a significant and robust
correlation between angular thresholds and slopes of the psychometric functions of both groups.
Although it is established that the visual system optimally integrates all available information in the
decision-making process, the results conform to the speculations favoring motion cue importance
over dynamic form by testing the limits in which biological motion perception only depends on
motion information processing.

Keywords: biological motion; Bayesian; dorsal pathway; hierarchical simulation model

1. Introduction

Humans’ robust ability to recover information (e.g., identity or type of activity) about
a moving living thing from sparse input is known as biological motion perception. Such
a sparse input was created and introduced by Johansson in 1973, using only light points
placed on an individual’s strategic joints. Biological motion perception is critical to the
survival and social interactions of humans and primates and plays a significant role in their
activities. In this regard, there has been an emphasis on the visual analysis of human action
in multiple studies with a primary focus on the kinematic information of the movements
(such as the type of activity and emotional states), the motor role in the perception of
actions, and the neural mechanisms (Blake and Shiffrar, 2007; Giese and Poggio, 2003) [1,2].

The many psychophysical, neurophysiological and functional imaging experiments
conducted on movement perception has resulted in a wide range of experimental data and
findings. Activation of the “dorsal pathway,” specialized in motion information processing,
the forms pathway (ventral pathway) and where the two streams converge at the superior
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temporal sulcus (STS) are counted as the highlights of these discoveries, as mentioned
previously (Beintema and Lappe, 2002; Mather et al., 1992) [3,4].

Furthermore, significant accumulation of experimental data and the necessity for a
compelling theoretical framework has emphasized the specific demand for a neurophys-
iologically plausible computational model for biological motion perception (Blake and
Shiffrar, 2007) [1].

Based on the assumption that the visual system stores prototypical patterns in the
perception/cognition process, a hierarchical feed-forward model has been proposed (Giese
and Poggio, 2003) [2]. The model entailed two parallel processing modules simulating the
ventral (form) and dorsal streams (optic flow). The study concluded that local motion anal-
ysis taking place in the dorsal pathway is the most critical factor in pattern detection (Blake
and Shiffrar, 2007; Casile and Giese, 2005; Giese and Poggio, 2003) [1,2,5], contradicting an
earlier study by Beintema and Lappe (Beintema and Lappe, 2002) [3]. Only recently has it
been suggested that a multitude of contingencies are at work simultaneously to integrate
either local motion or dynamic form analysis to make the perception/recognition of actions
in the presence of internal and external noise as robust as possible (Blake and Shiffrar,
2007) [1].

While behavioral evidence implies the existence of low-level filters capable of cap-
turing motion cues to detect biological motion as pure-motion detection mechanisms
(Chang and Troje, 2008; Troje and Westhoff, 2006) [6,7], developmental studies also show
a natural predilection towards biological motion in human infants and newborn chicks
while suggesting the lack of such sensitivity to biological form cues. To be precise, unlike
motion, the visual system processes the biological and non-biological dynamic form in
the same fashion, and there is no specialized substrate in the brain for dealing explicitly
with biological form (Bardi et al., 2011; Vallortigara et al., 2005) [8,9]. Thereafter, in 2014, to
validate the behavioral results from their study and hypothesis, Thurman and Lu proposed
a Bayesian template-matching model, which integrated form features of the stimuli using
some weighting scheme, asserting that the dynamic form analysis pathway (ventral path-
way) works for both biological and non-biological motion in a similar Bayesian fashion.
This result suggests the absence of a specialized substrate for the processing of dynamic
biological form (Thurman and Lu, 2014) [10].

Further investigations of the neural correlates involved in the perception of body
movement show an extensive cortical network (Grosbras et al., 2012) [11]. Even though the
biological motion perception incorporates both form and motion (Kourtzi et al., 2008) [12]
and, therefore, the cortical regions linked to both cues get activated, it is unclear that the
contribution of those areas is all of causal nature (Gilaie-Dotan et al., 2015) [13]. Recently,
to address whether the activations of the ventral pathway during biological motion detec-
tion are functionally integral to the perception process, one study examined six patients
with focally (compromised) injured ventral visual cortex in multiple regions. Not only
did they all manage to recognize the point light stimuli, but their thresholds were also
not significantly different from the control group’s thresholds. More interestingly, they
significantly outperformed subjects with impairment in other regions critical to biological
motion perception (Gilaie-Dotan et al., 2015) [13].

In regard to the question of modeling and simulating this phenomenon more explicitly,
one could always picture the detection of biological motion as a sequential decision-making
task. As with many other natural scenarios, biological motion perception also occurs in
the presence of uncertainty, which stems from the inherent uncertainty of the subject’s
generative model and the noise of the input process (Bitzer, Park, Blankenburg, and Kiebel,
2014) [14]. Uncertainty begets risk, so it is essential to deem human decision making to be
subjected to this factor and, therefore, not always economically rational. In that light, a
more plausible model could most certainly benefit from taking the risk factor into account
(Kahneman and Tversky, 2013) [15]. In recent years, the risk-sensitive decision-making
problem has been brought to researchers’ attention and been investigated in different areas



Biomimetics 2022, 7, 193 3 of 15

including neuroeconomics and cognitive sciences (Braun et al., 2011; Dayan and Niv, 2008;
Nagengast et al., 2010; Niv et al., 2012; Shen et al., 2014) [16–20].

Here, we intend to propose a feed-forward risk-sensitive Bayesian simulation model.
The suggested model is hierarchical and appropriates the earlier assumption of stored
prototypical patterns in STS located in the temporal lobe of the brain. Moreover, to model
the motion pattern neurons, which are the decision-making neurons and also believed
to be located in STS, a dynamic model called the mutual inhibition network was utilized
(Lugo et al., 2018) [21]. The presented model has been challenged with a stimulus of higher
complexity, namely a soccer kick, only to detect the direction of the ball from the subject’s
point of view. Furthermore, as for the proof of concept of the Gilaie and Dotan study in
2015, the ventral pathway was implemented (Gilaie–Dotan et al., 2015) [13]. Finally, the
behavioral data that had been collected previously in our lab was used to validate the
performance of the proposed model, in so far as the model has been tuned to different
modes only to replicate the behavior of 11 athlete subjects. The simulated psychometric
function parameters show a significant correlation with those of athlete human subjects
(Romeas and Faubert, 2015) [22].

2. Model

The neural model devised for our simulations is inspired by the biologically plausible
model proposed by Poggio and Giese (2003) and by Cassile and Giese (2005) (Casile and
Giese, 2005; Giese and Poggio, 2003) [3,5]. Our simulation model appropriates three
assumptions of the models, as mentioned earlier: 1. Dorsal stream (Optic flow) which, as
with other visual pathways, consists of hierarchies of neural detectors to extract optic-flow
features. 2. This model adopts a predominantly feed-forward architecture. 3. The visual
system stores prototypical patterns and uses them for perception/recognition (Figure 1)

The neural hierarchy of the dorsal stream is as follow:

2.1. Local Motion Energy Detectors

These detectors are sensitive to different motion directions and have small receptive
fields (≈0.4 deg). For the present study, the simulations have implemented receptive fields
which are sensitive to four different directions: right, left, up and down and, for the sake
of simplicity, no diagonal direction has been implemented. These detectors have been
deployed in a 36 × 31 assembly of receptive fields according to Smith et al. (1994). It has
been reported that these selectively acting neurons reside in the monkey visual cortex in
area V1/2 and area MT (A. T. Smith and Snowden, 1994) [23].

To simplify things, we calculated the optical flow of every two consecutive frames of
the stimulus so that the activity of all the assigned motion detectors in the 36 × 31 assembly
could be approximated at each time point (every 500 ms) using the obtained vector field. A
more detailed explanation of the implementation of this level can be found in the study of
Casile and Giese [5].

2.2. Opponent-Motion Detectors

These detectors are sensitive to opponent motions such as expansions, contractions,
and rotations. For example, a neuron specialized in vertical contraction detection gets
activated by the occurrence of such an opposite motion in the two adjacent subfields located
in its receptive field (A. T. Smith and Snowden, 1994) [23]. The opponent motion detector
pools the responses of the local motion detectors of the same direction preference into one
subfield using a maximum operator. In the case of vertical contraction, the detector pools
the rightward motion in the left subfield and leftward motion from the adjacent subfield.
The output of the opponent motion is made up of the multiplication of these maxima
(The square root of this multiplicative pooling) (Allman et al., 1985) [24]. Utilization of
the/a maximum operator in the opponent motion-sensitive neurons simulation is rooted
in the discovery of the same sort of computation in the visual cortex of monkeys and
cats (Gawne and Martin, 2002; Lampl, Ferster, Poggio, and Riesenhuber, 2004) [25,26].
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Moreover, the pooling process entails a spatial invariance within the respective receptive
fields (Riesenhuber and Poggio, 1999) [27].
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Figure 1. Schematic of the model in one hypothetical point in time, from left to right: (a) the reel of
biological motion stimulus, (b) local motion detectors as an ensemble of 1116 neurons positioned
in a 36 by 31 arrangement, that fire due to motions they experience during two consecutive frames,
represented by the cells with color-filled arrows (blue: right, orange: left, grey: up, and green: down).
The larger, two-headed, colorful arrows are drawn to display the types of opponent motions that
would be sensed at the next level (cyan: horizontal expansion, orange: vertical expansion, and
magenta: vertical contraction). (c) Opponent motion detectors as an ensemble of 100 neurons to
detect horizontal expansion, horizontal contraction, vertical expansion, and vertical contraction.
The activated detectors are marked with color-filled hexagons with their corresponding color (cyan:
horizontal expansion, orange: vertical expansion, and magenta: vertical contraction). (d) Optical-flow
pattern detectors as an arrangement of 18 neurons following one-dimensional mean-field dynamics,
each neuron incorporates a statistical template (displayed as a colorful map) that represents a specific
part of the manifold of the kicking sequences (for example neuron number two contains a template
for the seconds 11 to 20 of the kick-to-right sequence, while neuron number 10 would have a larger
instantaneous input for the seconds 1 to 10 of the kick to the left stimulus). Green arrows highlight
the contribution of two cells to the evidence integration at that hypothetical point due to the similarity
of the evidence signal and their template. (e) Thresholding stage, comprising two decision neurons
for the right and left decisions (marked by capital letters R and L on the square cells with soft edges)
follow our mutual inhibition dynamics receiving their corresponding inputs from the integration
stage. The straight and curve lines with rounded heads highlight the inhibitory interaction between
the neurons and the auto-inhibition, respectively. No activity could be seen by either of the neurons
since at that hypothetical point in time, neither had made a decision yet.

Imaging studies suggest that opponent-motion detectors probably exist in the kinetic
occipital area (KO/V3B) of humans (Orban et al., 1995; Orban et al., 1992) [28,29].

Similar to Cassile’s 2005 study, we implemented the four types of opponent motion—
vertical and horizontal, contraction and expansions—using 5 × 5 assemblies of detectors to
generate 100 simulated features at each time point (every 500 ms). For more descriptive
details one must refer to (Casile and Giese, 2005) [5].

2.3. Complex Global Optical-Flow Patterns

The third hierarchy level is made up of neurons capable of discerning momentarily
complex optic flow patterns. The other critical factor to which these neurons must be
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responsive is the temporal order of the input that they are receiving. In other words, each
detector is tuned to a certain optic flow pattern of a certain temporal order. In previous
attempts to model optic flow detectors with this characteristic, a network of laterally
coupled neurons has been proposed. It is through these asymmetrical connections that the
active neuron at one moment excites the neurons tuned to the future optic flow patterns and
inhibits the rest of the detectors encrypting earlier patterns (Mineiro and Zipser, 1998) [30].
In this manner, the assumed dynamic of the optic flow pattern neuron sensitive to the ith
frame (the optic flow that comes from the i− 1 and ith frames) of one stimulus sequence is
as follow (Casile and Giese, 2005) [5]:

τOFP
.

Hi(t) = −Hi(t) + Gi(t) + ∑
m

w(i−m) f (Hi(t)) (1)

where Hi(t) is the activity of the ith neuron, the τOFP = 150 ms is the time constant of
the global optic flow pattern detection dynamic, w(m) is an asymmetrical weight kernel,
f (H) is a step threshold function, and Gi(t) is considered the instantaneous feed-forward
input of the neuron. As mentioned before, one of the fundamental assumptions about
the model is the prototypical matching performed by the neuron. It is only the result of
this template matching process that constitutes the aforementioned feed-forward input.
In previously proposed models, for each key feature vector derived from the stimulus
video sequence, namely template, a Gaussian radial basis function has been designated and
tuned to it. Thus, when the detector receives its input from the previous level, depending
on how similar it is to the center of the corresponding Gaussian function, the instantaneous
feed-forward input gets generated. For a detailed description of this, the reader is referred
to Giese and Poggio (2003) and Casile and Giese (2005) (Casile and Giese, 2005; Giese and
Poggio, 2003) [2,5]. While our model holds the exact laterally connected dynamics for the
optical flow detectors, it uses far fewer neurons and a different strategy to generate the
instantaneous feed-forward input, Gi(t).

In our model, the feed-forward input Gi(t) is deemed to be a product of a multiclass
Bayesian classification scheme. Here, the most classical minimization of classification errors
did not seem to serve the purpose; instead, minimizing the average risk method, which
includes different significances for different errors, shows more efficiency. To be more
precise, false classification of the represented frame into one of the future vital feature-
vectors must have less gravity compared to one related to an older template (Theodoridis,
2010) [31]. The logic behind it can be explained by the goalkeeper example; meaning that if
a goalkeeper decides that the frame observed in a scene belongs to one of the future states
of the sequence, the chance to save the ball is less compromised as opposed to classifying
that scene into one of the earlier-encoding templates.

The same stimuli have been used in previous experiments in our lab (Romeas and
Faubert, 2015) [22]. Each stimulus sequence comprises 90 frames. For every two consecutive
frames (after passing through the first two levels), a feature-vector of 140 elements would
be generated and fed to the optical flow pattern detection stage. There exists a stimulus for
every angle of deviation from the center in order to train or test the model. We considered
nine stages for each kicking sequence. Our classification problem consists of 18 classes, nine
classes for the rightward kick and nine for the leftward. Each class represents one specific
stage of the kicking process, i.e., the first class associated with right-ward kick means we are
in the first stage of the kicking process (first ten frames) and the third class associated with
a left-ward kick is the right decision when the stimulus reaches somewhere between frames
31 to 40. Therefore, our problem is an 18-class, ωi, i = 1, . . . , 18 classification problem,
where Rj, j = 1, . . . , 18 makes up the regions of the feature space. An error happens when
the feature-vector u which pertains to the region Ri gets misclassified in class ωk while
i 6= k and so a loss term, λki, will be assigned to this incorrect decision. In this manner, a
loss matrix could be formed whose element λki constitutes the penalty for action k (here:
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classification in class ωk) when the actual state is i (the feature-vector fed to the layer). It
can be shown that the average risk is minimized when (Theodoridis, 2010) [31]:

u ∈ Ri i f
18

∑
k=1

λki p(u|ωk)p(ωk) <
18

∑
k=1

λkj p(u|ωk)p(ωk) λll = 0, ∀ j 6= i (2)

which indicates, that u originates from the region Ri when it has the lowest weighted sum
and classifies in class ωi.

p(u|ωk) is the likelihood of the feature-vector given that the class ωk, and p(ωk) is the
prior probability of the class ωk. In our model, we assume that the likelihood of feature-
vectors of each region Ri follows a Gaussian distributionN (µi, Σi), in which, µi is the mean
vector, and Σi is the covariance matrix. Moreover, the priors, p(ωk), are predefined for each
class ωk separately where ∑18

k=1 p(ωk) = 1.
In this manner, the detector tuned to class ωi receives a positive non-zero feed-forward

input, Gi(t), at each time step whenever u(t) belongs to the feature region, Ri.
To describe it at the cellular level, when one input matches the saved template of one

neuron, all other neurons with different classes see that as a sizeable, weighted quantity
added to their risk sum while the loss term λii = 0 relieves the matching neuron from
adding that large signal to its risk sum. In other words, the neuron with the matching
template inhibits the feed-forward input of other neurons.

The consensus is that the complex optic flow pattern neurons are likely to be found
in disparate areas of the superior temporal sulcus (Decety and Grèzes, 1999; Oram and
Perrett, 1994; Perrett et al., 1985; Vaina et al., 2001) [32–35].

2.4. Complete Biological Motion Pattern Detectors (Motion Pattern Detectors)

Discrimination of complete biological motion patterns occurs in motion pattern neu-
rons, which make up the fourth and highest level of the model. The complete biological
actions in our study are composed of leftward and rightward kicks. The sum of the activ-
ities of the optic flow pattern detectors that belong to one particular action serves as an
input to the motion pattern detector associated with that very action. It is the activities of
these motion pattern detectors which constitute the decision response or more generally
the behavior of the biological motion detection system (Casile and Giese, 2005; Giese and
Poggio, 2003) [2,5]. Moreover, imaging studies have accounted for the possibility of the
existence of motion pattern neurons in STS (Grossman et al., 2000; Vaina et al., 2001) [35,36],
and perhaps also in FFA (Grossman et al., 2000) [36].

A non-linear, excitatory and inhibitory network has been adapted to simulate these
motion pattern detectors, which had initially been used to describe neuronal polarity under
various circumstances (Lugo et al., 2018) [21]. In this mechanism, which is known as mutual
or global inhibition, the element with the highest excitatory input suppresses the activity
of those whose activities have not passed their thresholds in a nonlinear and reciprocated
fashion (Lugo et al., 2018; Wilson, 1999) [21,37].

The fact that mathematical models similar to the mutual inhibition model have shown
success in the simulation of humans’ decision neuronal networks (Wilson, 1999) [37] is the
reason behind this choice of model.

2.5. Robust Mutual Inhibition Model

Initially, the mutual inhibition model (Lugo et al., 2018) [21] explains the response of
decision making neurons using the following nonlinear dynamic below:

τ
dT
dt

= −T + S(PT(D)) (3)

τ
dD
dt

= −D + S(PD(D, T)) (4)
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where T is the activity of the first neuron to get excited by the activity of the previous
hierarchy level and D is the activity of the remaining neurons. τ is a time constant and S()
is a modified Michaelis–Menten function (Wilson, 1999) [37] which is especially useful in
designing excitatory–inhibitory networks (Lugo et al., 2018) [21]:

S(P) =

{
MP2

σ2+P2 P ≥ 0
0 P < 0

}
(5)

where M is the maximum information threshold for the excitatory–inhibitory activity and
σ almost always marks the information threshold point where the function hits half of its
maximum. PT and PD are the information thresholds available to T − type and D− type
neurons, respectively:

PT(D) = ET − kND (6)

PD(D, T) = ED − k(N − 1)D− kT (7)

where N is the number of neurons and the constant k is the inhibitory feedback gain. Also,
ET and ED represent the external inputs generated from the previous hierarchy level. The
number of equations to solve depends on how many decision-making neurons are involved
in the process. For instance, if we wanted decision-making agents to pick one choice out of
N choices, we would need to solve one Equation (6) and N − 1 Equation (7). Thus, N = 2,
since, in our model, the decision is between left and right kicks. For more information and
mathematical details, one must refer to Lugo et al. (2018) (Lugo et al., 2018) [21].

The original mutual inhibition model dictates that only the non-negative information
thresholds, PT or PD, would contribute to the activity of the decision neurons and, when
negative, the neuron activity attenuates exponentially according to the linear first-order
dynamic that it follows in the absence of any input and interconnection between other
neurons. Although this implementation maintains some degree of robustness, it falls short
when facing the high variation signals coming from the third hierarchy layer. To reduce the
level of sensitivity, we modified the system to neglect the negative changes. In other words,
when neurons are disconnected as a result of negative information thresholds, detectors’
activities will be as follows:

τ
dT
dt

=

{
−T T ≤ 0

0 T > 0

}
(8)

τ
dD
dt

=

{
−D D ≤ 0

0 D > 0

}
(9)

2.6. Modeling of the Internal Noise

To simulate uncertainty in the decision-making process, we assumed that the output
of each optic flow pattern neuron is drawn from a Gaussian distribution, N

(
Hi(t), ∆tδ2),

where Hi(t) is the ideal activity of the optic flow neuron in the absence of the added
internal noise of the variance, δ2. In our model, this implementation can be construed
as the generative input process of the fourth layer due to the physiological noise in the
visual pathway. It also can be shown that, in the particular case of the constant priors
for generating the feed-forward input Gi(t), such exercise mirrors the uncertainty in the
internal generative models of the third layer. In this case, the added noise represents the
error between the internal generative model and the feature input that the decision-making
agent receives.

3. Methods

All implementations of the simulation model were executed in Matlab, and for the
data fitting and statistical analyses, R Studio platform was used.
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3.1. Stimuli and Data

To simulate the same conditions of the psychophysics study (Romeas and Faubert,
2015) [22] for which we propose a simulation model, we adopted the same original point
light soccer kick captured by Mixamo studio. The stimulus comprises 15 dots representing
the head and the human body’s major joints (shoulders, hips, elbows, wrists, knees, and
ankles). The stimulus is composed of 90 frames with a duration length of 4.5 s. By rotating
the original stimulus around the Z-axis, we were able to create the stimuli for leftward
and rightward point-light soccer kicks with different angles. In the psychophysics study,
subjects were exposed to the stimuli with deviations of 2◦, 4◦, 8◦ and 15◦ angles either
towards the left-hand side or right-hand side of the viewer. For training and cross-validation
of the model, the utilized data are comprise all shooting angles within the range of 1◦ to
20◦. This range is the angular range in a penalty kick from the goalkeeper’s point of view.
As a real-world example, a penalty kick resembles a wide range of situations. Nonetheless,
in a regulated and constrained condition, it provides a framework to estimate an angular
range within which one can assume the human brain has been trained. In other words, we
believe that this angular range is the approximate range that constructs the prototypical
patterns in one’s visual system.

A k-fold cross-validation (k = 5) procedure was used to validate our model (Jung and
Hu, 2015) [38]. Thenceforth, the model was trained in the range of 7◦ to 20◦ and, moreover,
tested for angles 2◦, 4◦, 8◦ and 15◦ to recreate the behavioral test conditions.

3.2. Local Motion Energy and Opponent Motion Neurons

The methods to implement the 1st and the 2nd hierarchy level of the present simulation
model have been borrowed from the previous studies (Casile and Giese, 2005; Giese and
Poggio, 2003) [2,5].

3.3. Optic Flow Pattern Neurons

For each direction (left or right), we installed nine optical flow pattern detectors. Each
detector is selective for 10 consecutive frames out of 90; for example, neuron HLe f t

1 is

selective for frames 1 to 10 of the left side shooting and HRight
6 is selective for the frames 41

to 50 of the right-side shooting. Each neuron incorporates an internal generative model,
p(u|ωk), k = 1, . . . , 18, assumed to be of the Gaussian form, N (µk, Σk). The mean, µk, and
covariance matrix, Σk of each template are computed using feature vectors derived from
10 frames of multiple stimuli with different degrees of deviation. For instance, HRight

6 is
trained using feature vectors from frames 61 to 70 of the shots with 7◦ to 20◦ of deviation to
the right-hand side of the observer. Concisely, HRight

6 is supposedly selective for frames 61
to 70 regardless of the deviation of the shots.

While the feed-forward input to each optic flow neuron is derived from the previous
layer output, the dynamic of the neurons of this level, following (1), is solved using Euler’s
method. To provide the input for the next hierarchy level, an independent Gaussian noise
was added to the activity of each of the optical flow detectors.

Below, the activity of these neurons in the absence of the internal noise to the stimulus
representing a kick with 9◦ degrees of deviation to the right is demonstrated (Figure 2).

3.4. Motion-Pattern Neurons

At the decision-making layer, two motion pattern neurons were implemented, one for
the leftward kick motion and the other for the rightward kick motion. As described in the
previous section we modeled the dynamic of these detectors using a robust mutual inhibi-
tion method. The fourth-order Runge–Kutta method was utilized to solve the nonlinear
system dynamics.

Furthermore, the activity of these decision-making neurons as members of the thresh-
olding stage when the stimulus is a sequence of a 9◦ degrees to the right kick, while the
internal noise is not present, is depicted in Figure 3, below:
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Figure 3. The neuron responsive to the right-side kick (blue) is highly activated, while the inhibition
in the other neuron is evident.

3.5. Simulating Human Behavior

In their behavioral study, Romeas and Faubert (2015) utilized a forced-choice paradigm
task to decide the direction of the ball (left or right) by relying solely on the biological
motion signal (Romeas and Faubert, 2015) [22]. Each subject was exposed to a total of
1080 randomized stimulus sequences of left and right shots with deviations of 2◦, 4◦, 8◦

and 15◦ angles (120 times for each angle at each side). Accordingly, for each subject, a
psychometric function to relate human behavior to the angular deviation was determined
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(Romeas and Faubert, 2015) [22]. Here, to simulate those performances, three parameters
of our simulation model were adjusted to mimic the behaviors of 35 athlete subjects from
the psychophysical study.

Just as with the behavioral study, for each angle and side, the simulation model was
exposed to the particular stimulus 120 times in order to generate an error percentage
quantity. Additionally, this was repeated 30 times, and the corresponding psychometric
function was determined using the simulated results.

The three variables for tuning the model to 35 athlete subjects were:

1. The standard deviation of the added internal noise, δ.
2. The time constant, τ.
3. The inhibitory feedback gain, k.

4. Results

While the previously proposed models, trained with similar data, performed very
poorly for detecting the point-light kicking sequences, our model efficiently showed out-
standing performance facing the stimuli. The five-fold cross-validation of our model
resulted in an average success of 87.5%.

The model performance demonstrated remarkable robustness in the presence of a wide
range of imposed internal noise, δ. Besides noise being a prominent adjuster of our model,
the degree of inhibition occurring between two decision making neurons, represented by k,
along with their intrinsic latency, represented by τ, prove to be critical factors to bring the
model into different functional states. Grid search computation was performed for different
ranges of internal noise, δ, mutual inhibition gain, k, and intrinsic latency of the decision
neurons (thresholding stage), to generate the results. Here we present a part of the results
from solving the model for different parameters as an effort to get an insight into how each
parameter could contribute to the model’s decision-making behavior (Table 1). Increase in
neurons’ dynamic time constant, τ always results in better performance, meaning lower
angular thresholds and steeper slopes, while an increase in the inhibitory gain, k shows a
different trait (Figures 4 and 5).
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Figure 4. The resulting psychometric function angular thresholds when running the model for
exemplary ranges of neuronal latency (τ = 0.024, 0.025, 0.03, 0.033, 0.037 s) and inhibitory gain
(k = 2, 4, 8, 16, 32) for three noise levels (δ = 0.028, 0.030, 0.034).
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Table 1. The parameters’ contribution to the model’s decision-making behavior.

Subjects
Angular

Thresholds from
Experiment

Angular
Thresholds from

Simulation

Slopes
from

Experiment

Slopes
from

Simulation

Inhibitory Gain
(k)

Time
Constant (τ) Noise (δ)

C12 4.041 ± 1.05 5.209 ± 0.200 0.261 ± 0.03 0.260 ± 0.0048 4 0.0245 0.022
A10 4.176 ± 1.08 „ 0.252 ± 0.028 „ „ „ „
B04 4.506 ± 1.1 „ 0.246 ± 0.027 „ „ „ „
B01 4.805 ± 1.12 „ 0.243 ± 0.026 „ „ „ „
A15 5.321 ± 1.14 5.448 ± 0.205 0.242 ± 0.025 0.251 ± 0.0047 2 0.033 0.032
B05 5.361 ± 1.04 5.425 ± 0.193 0.284 ± 0.028 0.279 ± 0.005 4 0.037 0.03
B09 6.602 ± 1.41 6.871 ± 0.268 0.188 ± 0.02 0.181 ± 0.0036 4 0.025 0.034
A11 6.637 ± 1.52 „ 0.171 ± 0.019 „ „ „ „
A06 6.609 ± 1.21 6.556 ± 0.232 0.233 ± 0.022 0.218 ± 0.004 8 0.033 0.032
A01 7.000 ± 1.51 7.228 ± 0.263 0.175 ± 0.019 0.188 ± 0.0036 8 0.03 0.034
C07 7.097 ± 1.42 „ 0.192 ± 0.02 „ „ „ „
C11 7.165 ± 1.39 „ 0.197 ± 0.02 „ „ „ „
B14 7.692 ± 1.79 7.664 ± 0.363 0.147 ± 0.017 0.130 ± 0.0031 1 0.024 0.026
B08 7.753 ± 1.8 „ 0.146 ± 0.017 „ „ „ „
A02 7.837 ± 1.86 „ 0.141 ± 0.017 „ „ „ „
A13 7.873 ± 1.69 „ 0.159 ± 0.018 „ „ „ „
B11 8.132 ± 2 8.509 ± 0.421 0.132 ± 0.017 0.115 ± 0.003 1 0.024 0.028
C13 8.594 ± 2.08 „ 0.128 ± 0.016 „ „ „ „
C04 9.173 ± 1.77 9.275 ± 0.337 0.158 ± 0.017 0.151 ± 0.003 16 0.025 0.034
B03 9.191 ± 2.64 9.198 ± 0.438 0.103 ± 0.016 0.113 ± 0.0029 2 0.024 0.028
C06 9.543 ± 2.34 9.818 ± 0.496 0.118 ± 0.016 0.102 ± 0.0028 2 0.024 0.03
B07 9.589 ± 2.86 „ 0.096 ± 0.015 „ „ „ „
C08 9.747 ± 1.69 9.791 ± 0.313 0.170 ± 0.017 0.168 ± 0.0031 32 0.033 0.032
A03 10.49 ± 1.56 11.131 ± 0.376 0.130 ± 0.011 0.144 ± 0.0028 32 0.025 0.34
A04 10.801 ± 2.2 „ 0.132 ± 0.015 „ „ „ „
A07 10.843 ± 2.25 „ 0.128 ± 0.015 „ „ „ „
A05 10.77 ± 2.71 10.696 ± 0.529 0.105 ± 0.015 0.098 ± 0.0028 4 0.024 0.028
C01 10.83 ± 2.6 „ 0.110 ± 0.015 „ „ „ „
A08 12.132 ± 2.75 12.315 ± 0.606 0.109 ± 0.015 0.091 ± 0.0027 8 0.024 0.028
B02 12.173 ± 2.67 „ 0.113 ± 0.015 „ „ „ „
B06 12.525 ± 2.81 „ 0.108 ± 0.014 „ „ „ „
B13 12.86 ± 3.93 12.258 ± 0.664 0.078 ± 0.014 0.083 ± 0.0027 2 0.024 0.034
A14 16.617 ± 4.88 17.978 ± 1.105 0.071 ± 0.013 0.06 ± 0.0025 8 0.024 0.036
A09 17.194 ± 5.84 „ 0.061 ± 0.013 „ „ „ „
C02 17.787 ± 5.35 „ 0.068 ± 0.013 „ „ „ „

Table 1: by tuning the k, τ and δ Parameters the angular thresholds (75%) and the slopes of athletes’ psychometric
functions have been simulated (symbol „ indicates that the quantity in that placeholder is the same as the quantity
above it).
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for three noise levels (δ = 0.028, 0.030, 0.034).
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At first, the increase of inhibition gain k, leads to a deterioration in performance (higher
threshold, flatter slope) but this change after k passes the value of eight. However, the
phenomenon seems less evident for δ = 0.030. At that noise level, the angular thresholds do
not decrease but rather increase at a lower rate; however, one must notice the slopes taking
on a new trend wherein they become steeper, which can mean only that a higher accuracy
is being reached in smaller angular deviations.

Unsurprisingly, the betterment of the performance does not come free of cost. Analyz-
ing the activity of decision neurons shows it takes far more time for the winning neuron to
reach the highest point of its activity when the inhibitory gain, k, is too large, and this can
only be interpreted as longer processing time.

Human Results vs. Simulation Results

By adjusting the parameters mentioned above: internal noise δ, mutual inhibition
time constant τ, and inhibitory gain k, the behaviour of 35 athlete subjects was mimicked.
The parameters and the associated simulated angular thresholds and slopes versus the
experimental values are reported below in Table 1. Subjects were grouped by similar
angular thresholds and slopes and each group was simulated by one set of parameters.
Such an approach helps to acquire a more generalized understanding of subjects’ behaviors
as groups.

Moreover, a ranked assembly of experimental angular thresholds versus their sim-
ulated counterparts is plotted in Figure 6, and the corresponding slopes to the angular
thresholds are plotted versus their corresponding simulated slopes in Figure 7. The two
figures provide a more discernable comparison between experimental and simulation
results.
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Correlation analysis shows a significant positive correlation between experimental and
simulated angular threshold values, with the Spearman correlation coefficient rs = 0.991,
p − value = 7.08 × 10−31 (p < 0.001) and another significant positive correlation be-
tween simulated and experimental slope values with Spearman correlation coefficient
rs = 0.963, p− value = 2.7× 10−20 (p < 0.001). Additionally, to regard the descriptive
model’s simulated angular threshold/slope outputs as independent variables to explain
experimental human behavior, linear regression modeling was executed, with experimental
angular threshold and slope being the dependent variables. More precisely, one linear
model that simulated an angular threshold/slope array explains the experimental angular
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threshold, while the second linear model simulating angular threshold/slope describes
the experimental slope. The R-squared and adjusted R-squared values for the angular
threshold linear model are 0.965 and 0.963, respectively. Similarly, the linear regression
model for the experimental slope model exhibits an R-squared of 0.747 and an adjusted
R-Squared of 0.731 as measures for the goodness of fit.
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5. Discussion

We applied our descriptive risk-averse Bayesian decision-making approach to the third
layer and the mutual inhibition method to the fourth layer of the hierarchies, and unlike its
predecessor proposed methods (Casile and Giese, 2005; Giese and Poggio, 2003) [2,5], this
model showed notable success in simulating human behavior in the sense of mimicking
their psychometric function. Therefore, despite all the existing limitations of the model,
mirroring the behavior of 11 athletic subjects was accomplished. Moreover, we deem that
the model has not yet met its full capacity, and that its potential to encompass the behavior
of all the subjects has yet to be implemented. One other future work at hand is to integrate
the reaction time into the present model.

It is generally agreed that the human visual system exploits a mixture of all sorts of
motion and form cues to detect biological motion and neither the optical flow features nor
the form features in and of themselves are adequate for biological motion recognition (Blake
and Shiffrar, 2007) [1]. Here, by the proposed model, we aimed to investigate and test the
extent of the optic flow features sufficiency to discern a complex biological motion stimulus.
The results seem to corroborate the findings in the study of Gliaie and Dotan (2015), which
does not find the form cues integral to biological motion detection (Gilaie-Dotan et al.,
2015) [13]. Furthermore, our findings are in line with the claim in the Thurman and Lu
(2014) study suggesting that the ventral pathway processes the dynamic biological and
non-biological forms in the same fashion (Thurman and Lu, 2014) [10].

However, there are limitations to be considered and discussed. One imposed constraint
is the fact that each opponent motion neuron in our model only looks at two horizontally
abutting receptive fields while in reality some of these neurons are wired to pool the signals
from two distant receptive fields, enabling the visual system to process more global relative
motions in a moving scene (A. T. Smith and Snowden, 1994) [23]. Furthermore, for the sake
of simplification, and as in previous studies, the activity of the local motion neurons were
approximated by the computation of the optical flow from the stimulus animation (Casile
and Giese, 2005) [5]. Additionally, both the first and second layers have been presumed
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to be noise free. While the existence of rotation detectors have been substantiated in the
human visual system (A. T. Smith and Snowden, 1994) [23], in our model, opponent motion
detection level only provides the next level with expansion and contraction cues while
rotation cues are an additional source of information from which the decision making parts
of the model could benefit. Again, online learning is another capacity that needs to be
implemented.

Additionally, it has been shown that executive function deficit leads to slower cog-
nitive processing speed and longer time for completing tasks (Hill, 2004) [39]. Moreover,
disorders such as anxiety disorder, major depressive disorder, attention deficit hyperactivity
disorder, and autism impair the executive function (Hosenbocus and Chahal, 2012) [40].
Furthermore, one introduced model has suggested that some forms of autism are caused by
an increased ratio of excitation/inhibition in sensory, mnemonic and some other systems
because of genetics and environmental factors affecting one’s neural system (Rubenstein
and Merzenich, 2003) [41]. In our model, the increase in the processing time appearing in
large inhibitory gains (which affects the excitation/inhibition ratio of the motion pattern
neuronal system) could be construed as noticeable compliance of the present model with
current findings.

The present model uses fixed prototypes, parameters, and priors to perceive and make
decisions. A more comprehensive model could benefit from online learning and adaptation
capacities. To implement such capabilities in the current platform and empower it to detect
biological motion through online learning also lies in our plan for future work.
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