
Citation: Khan, A.H.; Cao, X.; Xu, B.;

Li, S. Beetle Antennae Search: Using

Biomimetic Foraging Behaviour of

Beetles to Fool a Well-Trained

Neuro-Intelligent System. Biomimetics

2022, 7, 84. https://doi.org/

10.3390/biomimetics7030084

Academic Editor: Stanislav N. Gorb

Received: 30 May 2022

Accepted: 16 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Beetle Antennae Search: Using Biomimetic Foraging Behaviour
of Beetles to Fool a Well-Trained Neuro-Intelligent System
Ameer Hamza Khan 1 , Xinwei Cao 2,*, Bin Xu 3 and Shuai Li 4

1 Smart City Research Institute, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong;
ahakhan@polyu.edu.hk

2 School of Business, Jiangnan University, Wuxi 214122, China
3 School of Automation, Northwestern Polytechnical University, Xi’an 710072, China;

mileface.binxu@gmail.com
4 School of Informatics, Lanzhou University, Lanzhou 730000, China; lishuai@lzu.edu.cn
* Correspondence: xcao.fudan@gmail.com

Abstract: Deep Convolutional Neural Networks (CNNs) represent the state-of-the-art artificially
intelligent computing models for image classification. The advanced cognition and pattern recogni-
tion abilities possessed by humans are ascribed to the intricate and complex neurological connection
in human brains. CNNs are inspired by the neurological structure of the human brain and show
performance at par with humans in image recognition and classification tasks. On the lower extreme
of the neurological complexity spectrum lie small organisms such as insects and worms, with simple
brain structures and limited cognition abilities, pattern recognition, and intelligent decision-making
abilities. However, billions of years of evolution guided by natural selection have imparted basic
survival instincts, which appear as an “intelligent behavior”. In this paper, we put forward the
evidence that a simple algorithm inspired by the behavior of a beetle (an insect) can fool CNNs in
image classification tasks by just perturbing a single pixel. The proposed algorithm accomplishes
this in a computationally efficient manner as compared to the other adversarial attacking algorithms
proposed in the literature. The novel feature of the proposed algorithm as compared to other meta-
heuristics approaches for fooling a neural network, is that it mimics the behavior of a single beetle and
requires fewer search particles. On the contrary, other metaheuristic algorithms rely on the social or
swarming behavior of the organisms, requiring a large population of search particles. We evaluated
the performance of the proposed algorithm on LeNet-5 and ResNet architecture using the CIFAR-10
dataset. The results show a high success rate for the proposed algorithms. The proposed strategy
raises a concern about the robustness and security aspects of artificially intelligent learning systems.

Keywords: fooling attacks; nature-inspired algorithm; cognitive intelligence; neuro-intelligent
systems

1. Introduction

The level of intelligence, learning, and cognitive ability possessed by living beings
is directly associated with the structural complexity [1,2] and the size of the brain [3–5].
Human brains demonstrate an excellent ability to discover, learn, and recognize intricate
patterns because of complex interconnection between neurons [6]. The complexity of the
neural structure of the human brain has inspired the development of artificially intelligent
learning systems [7–11], which are rapidly coming at par with the performance of human
brain itself [12–14]. As shown in Figure 1, on the other end of the biological intelligence
spectrum, lies small organisms e.g., worms and insects, which demonstrate an rudimentary-
intelligent behavior and limited learning ability [15] because the neurological structure
is not complex enough to develop intelligent reasoning. However, in this paper, we
demonstrate a counter-intuitive result that an artificial learning system, inspired by the
human brain, can be fooled by following a straightforward algorithm inspired by the

Biomimetics 2022, 7, 84. https://doi.org/10.3390/biomimetics7030084 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics7030084
https://doi.org/10.3390/biomimetics7030084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0002-5367-5277
https://doi.org/10.3390/biomimetics7030084
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics7030084?type=check_update&version=1

Biomimetics 2022, 7, 84 2 of 21

behavior of an insect. More specifically, the proposed algorithm is inspired by the Beetle
Antennae Search (BAS) algorithm based on the food foraging behavior of beetles [16–19].
This simple algorithm can successfully fool a deliberately designed and extensively trained
Convolutional Neural Networks (CNNs) to make the wrong decisions for recognizing
objects in input images. We anticipate that the presented results will provide further insight
into the nature of artificial learning systems. Furthermore, these results create important
implications for the security and robustness of the intelligent computation models and how
it will affect the future of artificial intelligence, particularly since such systems are being
widely used in commercial products [20–24].

Natural Intelligence

Neurocomputational intelligence

Is it possible to fool a highly intelligent

computation models by a simple and

under-intelligent model?

Yes! In this paper we present an attacking

strategy to fool intelligent computation

models, by simply following the food foraging

behavior of a Beetles.

Reversing The Trend

Insects &

birds Mammals
Humans

Increasing level of intelligence & Cognitive ability

Increasing level of Neural Complexity

Single

Perceptron

Artifical Neural

Network

Deep Neural

Network

Convolutional

Neural Network

Complexly Connected

Deep CNN

Very primitive

decision making

ability.
Developing ability

for decision making.

Developed ability

for decision making,

and understand

complex interations.

e.g., RNNs, LSTM.
Developed ability to

recoginise patterns

and learn new

patterns from

available data.

e.g., LeNet, AlexNet.
Advanced learning,

cognitive and decision.

making abilities. Highly

developed ability to

learn and recoginise

complex patterns

e.g., ResNet, CapsNet.

From single neuron to

highly complex neural

networks with hundereds of

layers and millions of neurons.

Figure 1. Evolution of artifical and neurocomputational intelligence. The spectrum of natural
intelligence ranges from simple organisms to highly intelligent human brains. The spectrum of
artificial neurocomputational intelligence also follows a similar trend in term of complexity and
ranges from single perceptron to multi-layered neural networks comprising of millions of neurons.

Biomimetics 2022, 7, 84 3 of 21

The proposed algorithm belongs to the class of nature-inspired metaheuristic algo-
rithms. In recent years, nature-inspired optimization has been an active area of research
and has given rise to several efficient optimization algorithms [11,19,25]. For example,
biological evolution and natural selection have inspired the formulation of Evolutionary
and Genetic Algorithms (GAs) [26]. Similarly, the flocking and swarming behavior (also
referred to as swarm intelligence) of birds has inspired the creation of Particle Swarm
Optimization (PSO). Similarly several other algorithms have been proposed inspired by
social behaviour of other animals and insects, e.g., Ant Colony Optimization (ACO) [27],
Artificial Fish Swarm Algorithm [28], Cuckoo Search [29], Invasive Weed Optimization
(IWO) [30], Honey Bee Algorithm (HBA) [31], and Firefly Algorithms (FAs) [32], Grey
Wolf Optimizer (GWO) [33], Ref Fox Optimizer (RFO) [34,35], and Black Widow Optimiza-
tion (BWO) [36,37]. The interesting difference between BAS and other nature-inspired
algorithms is that it isn’t based on the swarming or social behavior of the animals. It is
inspired by the food foraging behavior of a single beetle. Beetle behavior is of particular
research interest because, unlike other insects, beetles usually do not work in a swarm
and have the ability to search for food individually. It requires fewer search particles and
objective function evaluations in each iteration of the algorithm, making it computationally
efficient. Table 1 shows comparison between different metaheuristic algorithms proposed
in literature for fooling neural network models.

Table 1. Comparison between metaheuristic algorithms proposed in the literature for fooling Neural
Network Models.

Algorithm Nature-Inspired Attacked
Model Dataset Type Number Search

Particles

Grey wolf
optimization [38]

Yes AlexNet Image sequences Several

SIGMA [39] No Neural
Networks

Network
Intrusion

detection dataset
30

PSO [40] Yes BiLSTM and
BERT

Text (Natural
Language) 8

Differential
Evolution [41]

No VGG16 and
AlexNet

Images
(CIFAR-10) 400

BAS (proposed) Yes LeNet and
ResNet

Images
(CIFAR-10) 2

Deep CNNs are a special type of neural network, designed specifically for learning
the features from images. CNNs make use of spatial correlation of image pixels and there-
fore match the mechanism of how the human brain process visual signal. CNNs have
been an active area of research in recent years [14,42,43] and are able to outperform the
traditional processing algorithms in several tasks such as, image classification [44], seg-
mentation [45], and restoration [46]. However, several studies also approached the CNNs
from the perspective of security, robustness, and sensitivity to the noise in the input image.
Szegedy et al. [47] highlight the sensitivity of the CNN to different factors of the input
image, e.g., colors, light direction, the posture of objects, and several other factors. Based
on this, several algorithms have been proposed [48] to fool CNN to misclassify an input
image. Most of these algorithms work by adding a properly designed perturbation to the
input image such that the CNN will eventually misclassify it. Goodfellow et al. [41,48–50]
proposed a mechanism to calculate the required perturbation to fool a CNN by exploiting
their linear behavior in high-dimensional space. Similarly, Moosavi-Dezfooli et al. [49]
proposed DeepFool, an optimization-based algorithm to find the required perturbation. Su
et al. [41] extended the scope of attacking strategies by fooling a CNN by perturbing just
a single pixel. They used a population-based metaheuristic algorithm, called differential
evolution, to find an optimal image perturbation. However, these strategies either require

Biomimetics 2022, 7, 84 4 of 21

the estimation of the gradient of the objective function or use a population of several
searching particles, which make them computationally expensive to execute.

In this paper, we propose a computationally efficient searching strategy based on
the nature-inspired food foraging behavior of beetle to fool a CNN by just modifying a
single pixel. Nature-inspired optimization algorithms [51–53] have been popular in the
literature because of their ability to solve complex nonlinear optimization problems without
relying on the gradient of the objective function [54–58]. They show efficient computational
properties and fast convergence performance [59–62]. First, we mathematically formulate
the CNN fooling as a constrained optimization problem. The objective function takes the
pixel location, and brightness value as input, and its value is proportional to the confidence
of CNN in the real class. The solution to the optimization problem will minimize the
confidence of CNN in a real class, such that it will output the wrong class. Next, we
propose the optimization algorithm, which uses a single search particle to search for the
pixel-perturbation, to fool the CNN.

It should be noted that in contrast to the current algorithm, the proposed algorithm
neither requires the gradient of the objective function nor the use of a population of several
search particles. In fact, it just uses a single search particle, which makes it much more
numerically efficient for a large-scale attack on a CNN. This work is motivated by the
need to highlight the weakness of artificial learning systems. Our aim is to motivate the
development of intelligent computation models with robustness as a primary concern in
addition to accuracy [43]. The main highlights of this paper are listed as follows:

1. A pixel-level fooling attack algorithm for CNN, by just using a single search particle.
2. The algorithm is independent of the architecture of the CNN. It treats the CNN as a

black-box and just relies on the output prediction of the CNN. Therefore, the algorithm
is general enough to be applied to different CNN architectures.

3. The algorithm is very efficient since it relies on only a single search particle.
4. Extensive experimental results using two CNN architectures; LeNet-5 and ResNet are

presented to demonstrate the efficacy of the proposed algorithm.

The rest of the paper is organized as follows. Section 2 will present the problem
formulated and mathematically model the CNN fooling as a constrained optimization
problem. Section 3 will formulate the algorithm to solve the formulated optimization
problem. Section 4 presents the methodology to evaluate the performance of the proposed
algorithm, along with the experimental results. Section 5 concludes the paper.

2. Problem Formulation

In this section, we will present the mathematical formulation of the optimization
problem used to conduct a pixel-level attack on the CNN. First, we briefly describe the
structure of CNNs, then discuss two types of attacks; targeted and untargeted.

2.1. Convolutional Neural Networks

CNNs belong to a special type of neural networks, designed specifically for learning
the features on visual data, e.g., images. The architecture of CNNs allows taking advantage
of spatial correlation between a neighboring pixel of the images, a feature lacking from
a simple feedforward neural network. In CNNs, the input of the network is followed
by convolutional layers and downsampling layers, before the fully connected layers, to
extract useful image features efficiently. A typical CNN is shown in Figure 2. It is a simple
CNN architecture with a convolutional layer, a downsampling layer, and a fully connected
layer followed by a softmax layer to output probabilities of the image belonging to a
particular class.

Biomimetics 2022, 7, 84 5 of 21

Convolutional

Max Pooling

Flattening

Layer

F
u
ll

y
co

n
n
ec

te
d

so
ft

m
ax

L
ay

er

Input Image

(32× 32× 3)
Convolutional

layer output

(28× 28× 6)

Downsampling

layer output

(14× 14× 6)

Figure 2. A simple structure of CNN for an image classification task. The network consists of one
convolutional layer, one downsampling layer, and a fully connected layer followed by the output
layer. The network output the probabilities that the image contains particular objects.

The most common application of CNN is image classification. It takes an image as
the input, and assign probabilities to each output class. The probabilities represent the
confidence of the neural network, whether the input image belongs to a particular class. To
write it mathematically, a CNN can be considered a nonlinear function fcnn applied on an
image input Ximg, which return the probability for each class

p = fcnn(Ximg), (1)

where p is the vector of output probabilities, with each element corresponding to an output
class. Suppose the set of all classes is represented by a vector C,

C = [C1, C2, . . . , CN]
T ∈ RN (2)

where N is the total number of output classes and C1, C2, . . . , CN are the classes labels e.g.,
car, aeroplane, cat, dog, etc.

Since CNN outputs a probability for each class, the class with the highest probability
is called the prediction of the neural network,

i∗ = argmax
i

p[i],

C∗ = C[i∗], (3)

where argmaxi returns the index of the element of p with maximum value, [.] represent
indexing operator into a vector and C∗ is the label of the predicted class.

Based on (1) and (3), it can be infered that the predicted class C∗ is actually a function
of input image Ximg, therefore we can write

C∗ = F(Ximg). (4)

where F(.) represent the combined effect of (1) and (3). Figure 3 shows the predictions of
simple CNN architecture introduced in Figure 2 on real-world images.

For simplification of mathematical notation in later sections, let us define a new
function P as follow

P(p, Ci) = p[i], (5)

Biomimetics 2022, 7, 84 6 of 21

which takes probability vector p and class name Ci as input and outputs the probability of
the corresponding class. Here [.] is the index operator and gives the ith element of vector p.

Prediction:

Car

Confidence:

98.5

(a)

Prediction:

Bird

Confidence:

72.3

(b)
Figure 3. Prediction of a trained simple CNN network on real-world images. (a) The network predict
that the input image is a car with a confidence of 98.5%. (b) The network predict that the input image
is a car with a bird of 98.5%.

2.2. Image Perturbation

Our CNN fooling attack works by perturbing a finite number of pixels of the input
image to change the output probabilities of the neural networks. In this paper, we used a
k-pixel attack strategy in which only k pixels of the input image is allowed to be changed.
Higher the value of k, easier it is to fool the CNN since we can just modify a large part
of the image. The real challenge lies in successfully fooling the CNN using fewer pixels
e.g., single-pixel (k = 1) attack, where the attacking algorithm is only allowed to modify a
single pixel.

To mathematically define the image perturbation function P , consider the input
image Ximg has m× n rgb-pixels. The pixel intensity varies from 0 to 1 i.e., rgb ∈ [0, 1].
The perturbation function takes three metrices with k numbers of rows as input; rows
r ∈ [1, 2, . . . , m]k×1, columns c ∈ [1, 2, . . . , n]k×1 and rgb values rgb ∈ [0, 1]k×3. The function
P returns a perturbed image Xper such that the rows and columns provided in metrices r
and c and changed with corresponding values in rgb matrix

Xper = P(Ximg, r, c, rgb). (6)

The working of perturbation function P is defined as follow:

P : Ximg[r[i], r[j]] := rgb[i], where i ∈ {1, 2, . . . , k} (7)

where := is the assignment operator. Figure 4 shows an illustration of k-pixel attack.
The objective of a CNN fooling attack is to find a perturbed image Xper such that the

CNN outputs a wrong predicted class C∗ 6= Creal . Two different types of attacks have been
proposed; untargeted and targeted attacks. Now we will model each type of these attacks
as an optimization problem.

Original image

(a)

1-pixel attack (k = 1)

(b)

3-pixel attack (k = 3)

(c)

5-pixel attack (k = 5)

(d)
Figure 4. Illustration of k-pixel perturbation technique for attacking a CNN. It shows a image with
a grid of 8× 8 pixels. (a) Original Image, (b) k = 1, (c) k = 3, and (d) k = 5. A pixel is assigned a
random RGB value for attack.

Biomimetics 2022, 7, 84 7 of 21

2.3. Untargeted Attack

In an untargeted attack, the objective is as follows; to change the input image Ximg to a
perturbed image Xper such that the predicted class C∗ is not equal to the real class Creal . In
an untargeted attack, we are not concerned about the value of the new predicted class. In
other words, we just want to minimize the confidence of the CNN in the real class Creal . By
using the definition from (5) and (1) we can write the following minimization problem

X∗per = argmin
Xper

P(fcnn(Xper), Creal),

where X∗ is the modified image which minimize the confidence of the CNN in the real class
Creal . For k-pixel attack, (6) can be used to rewrite the above objective function as

r∗, c∗, rgb∗ = argmin
r,c,rgb

P(fcnn(P(Ximg, r, c, rgb)), Creal)

Subject to:

0 ≤ r[i, 1] ≤ m, where i ∈ {1, 2, . . . , k}
0 ≤ c[i, 1] ≤ n, where i ∈ {1, 2, . . . , k} (8)

0 ≤ rgb[i, j] ≤ n, where i ∈ {1, 2, . . . , k}, j ∈ {1, 2, 3}

where notation [i, j] represents indexing into a matrix and returns element at ith row and
kth column. r∗, c∗ and rgb∗ are the required rows, columns and rgb values.

2.4. Targeted Attack

In a targeted attack, the objective of the attack is not just to change the output of the
network from real class Creal , but also fool the network to output a target class Ctarget 6= Creal .
The targeted attack adds a secondary requirement on the success criteria. To model it as an
optimization problem, we need to use the fact that our objective is to increase the confidence
of the CNN in the target class Ctarget. We can model it as following maximization problem.

X∗per = argmax
Xper

P(fcnn(Xper), Ctarget),

which is equivalent to the following problem in term of k-pixel attack,

r∗, c∗, rgb∗ = argmax
r,c,rgb

P(fcnn(P(Ximg, r, c, rgb)), Ctarget)

Subject to:

0 ≤ r[i, 1] ≤ m, where i ∈ {1, 2, . . . , k}
0 ≤ c[i, 1] ≤ n, where i ∈ {1, 2, . . . , k} (9)

0 ≤ rgb[i, j] ≤ 1, where i ∈ {1, 2, . . . , k}, j ∈ {1, 2, 3}

To use the same optimization framework for targeted and untargeted attacks, we
can convert the above maximization problem to the following equivalent optimization
problem,

r∗, c∗, rgb∗ = argmin
r,c,rgb

1− P(fcnn(P(Ximg, r, c, rgb)), Ctarget), (10)

where r∗, c∗ and rgb∗ are the rows, columns and rgb to change the output of the CNN to
the targeted class.

Biomimetics 2022, 7, 84 8 of 21

3. Algorithm

In this section, we will present the algorithm to efficiently solve the optimization
problem formulated in Section 2. First, we characterize the food foraging behavior of
beetles and then mathematically formulate the algorithm.

3.1. Mathematically Modelling Behavior of Beetle

To formulate a computationally efficient optimization algorithm, requiring just a single
search particle, we propose a nature-inspired optimization algorithm based on the food
foraging behavior of beetles. It is in contrast to the traditional CNN fooling algorithms
that require several search particles to fool the CNN. The Beetles have antennae-like
structure attached to their heads. The antennae help them probe for the smell of food in the
environment. This ability of using antennae to search for food is particularly interesting
because it can efficiently explore an unknown environment and find the goal, i.e., food
source, without any advanced sensory capabilities.

The problem mentioned above of searching for an food source is essentially an opti-
mization problem. The distance from the food source is equivalent to the objective function.
The goal of a beetle is to minimize the distance between itself and the food source. A beetle
starts from a random location in the environment. At each step during the search, it uses
antennae to probe its surrounding locations, i.e., calculate the value of the objective function
at the location of antennae. The beetle estimate this value using the intensity of smell. Based
on the probed values, it determines an incrementally favorable search direction toward
the food source. It keeps on taking steps using the same strategy until finally reaching the
optimal point of the objective function, i.e., food source. Figure 5 illustrates the concept.

Smell intensity at left Antennae >

Smell intensity at right Antennae. (Turn Left)

† Yellow color map represents the smell intensity

Food Source

(a)

Smell intensity at right Antennae >

Smell intensity at left Antennae. (Turn Right)

† Yellow color map represents the smell intensity

Food Source

(b)

t = 0

t = 1

t = 2

t = 3

t = 4

† Yello color map represent Light intensity

At each step, the beetle turn

Left or right based on the difference

in intensity of smell at both antennae.

Food Source

(c)

Figure 5. Illustration of Beetle’s strategy during searching for food source, i.e., maximum intensity of
food smell. (a,b) shows different configuration of food source and the beetle. (c) Illustration of the
locomotion of the microorganism.

3.2. Optimization Algorithm

To mathematically model the behavior of a beetle, let us consider the searching for the
food source (i.e., place with maximum intensity of food smell) as an optimization problem.
The map of smell intensity in the environment corresponds to the value of objective

Biomimetics 2022, 7, 84 9 of 21

functions. The goal for beetle is to find the maxima of the smell intensity i.e., the food
source. Let g(x) is the function representing the smell intensity at point x. The searching for
maximum smell intensity is equivalent to the solution of following optimization problem
with linear inequality constraints

max
x

g(x)

Subject to: xmin ≤ x ≤ xmax. (11)

Suppose at time instant t, the beetle finds itself at position xt. The intensity of smell is
given by g(xt), at the current location. In order to take the next step, the beetle measure
intensity of smell in each direction using each of its antennae. Suppose the antennare
is located in the radially opposite direction, and randomly generated ~b represents the
direction vector of left antennae relative to the current position of the beetle xt. The
following equations give the position of antennae endpoints

xl = xt + λ~b,

xr = xt − λ~b, (12)

where λ is the length of an antennae, xl , and xr are the position vectors of left and right
antennae respectively. However, these vectors may violate the constraint of (11) because of
randomly generated vector~b. Therefore, we define a constrained set Ψ as follow

Ψ = {x|xmin < x < xmax}.

and project the vectors xl and xr on the constrained set Ψ

Ψxl = PΨ(xl),
Ψxr = PΨ(xr), (13)

Ψ is written in superscript to denote that the vectors are projected on set Ψ. The
function PΨ(.) is called a projection function. We defined it as follow,

PΨ(x) = max{xmin, min{x, xmax}}. (14)

Such a definition of projection function is simple and and computational efficient.
The smell intensities at projected antennae location is given by g(Ψxl) and g(Ψxr). By

comparing these values, the beetle take next step according to the following rule,

xnew = xt + δ sign(g(xl)− g(xr))~b, (15)

where the signum function sign(.) ensures that the next step is taken toward the direction
of higher smell intensity. δ is the actual step-size taken by the beetle and proportional to
Euclidean distance between xnew and xt. After reaching the new location the beetle will
re-measure the intensity of smell; if there is an improvement it will remain at the new
location; otherwise, it will return to the previous location, i.e.,

xt+1 =

{
xnew, if, g(xnew) ≥ g(xt)

xk, if, g(xnew) < g(xt)
. (16)

After reaching xt+1, we again generate a random direction vector~b and repeat the
same process until reaching the goal. Although the above algorithm is formulated for the
maximization problem (11), it can be converted used for the minimization problem by
modifying the update rule in (15) as

xnew = xt − δ sign(g(xl)− g(xr))~b. (17)

Biomimetics 2022, 7, 84 10 of 21

The algorithm can be summarised as following:

1. Start from random location x0.
2. Generate a random direction vector~b for left antennae relative to current position x0

of the beetle.
3. Calculate the position of left and right antennae (xl and xr) using (12).
4. Calculate new position xt+1 using (15) and (16).
5. If reached goal position xG, stop. Otherwise, return to step 2.

To use this algorithm for solving the optimization problem of untargeted and targeted
attack defined in (8) and (10) respectively, we define a matrix X

X =
[
r c rgb

]
. (18)

By considering the notation defined in Section 2.2, the dimension of X becomes k× 5.
This definition of a new matrix X allow us to define the objective function using a single
variable. For an untargeted attack, the objective function becomes,

g(X) = P(fcnn(P(Ximg, X[:, 1], X[:, 2], X[:, {3, 4, 5}])), Creal), (19)

where the semicolon symbol (:) in the matrix indexing is used to denote the entire column
of the matrix. Similarly, for the targeted attack, the objective function becomes,

g(X) = 1− P(fcnn(P(Ximg, X[:, 1], X[:, 2], X[:, {3, 4, 5}])), Ctarget). (20)

Since r and c in (18) can only take integer values, we use the round function to convert
floating-point values to integers. Based on these mathematical relations for the objective
function of untargeted and targeted attacks, we formally present the steps of optimization
algorithm in Algorithm 1.

3.3. Illustration of Attacking Algorithm

Figure 6 illustrates the proposed attacking strategy. The CNN model takes a 32× 32× 3
RGB image as input and outputs the class of objects present in the image, i.e., horse, dog, car,
etc. For the demonstration of the fooling algorithm, we used bettle with just two antennae.
The original input image contains a horse. Figure 6a shows the CNN correctly predicts the
class to be a horse for the original with the confidence of 95.7%. Then we start the iterations
of our fooling algorithm by initializing the algorithm at a random pixel location. Figure 6b
shows the modified image after the first iteration; the modified pixel is highlighted in
red. At this iteration, CNN still predicts the correct class, but the confidence of reduced to
93.67%. Figure 6c shows further decrease in confidence after a mere 32 iterations. Finally,
the beetle is able to find a pixel to fool the CNN after 200 iterations, as shown in Figure 6d.
The network is fooled into predicting that the input image contains a cat, whereas, in reality,
only one pixel of the input image is modified.

3.4. Computational Complexity

The computational complexity of the proposed algorithm can be computed by ana-
lyzing the steps listed inside while loop of Algorithm 1. The first step of the algorithm
requires the generation of (3k + k + k =)5k uniformly distributed random variables, where
k denotes the number of attacked pixels. On modern processors with the native ability
to generate random numbers, it will require 5k operations in the worst case (support for
vectorized operation will considerably reduce this number). The second step, i.e., calcula-
tion of antennae’s end-point locations, requires (2× 5k =)10k multiplication and a similar
number of additions, making up a total of 20k floating-point operations in this step. The
next step requires the evaluation of the objective function twice. A careful analysis of the
objective function tells that it basically consists of two primary steps: (1) perturbing the
input image and (2) forward passing the perturbed image through the CNN. Since the
neural networks are very computationally expensive systems and even a single forward

Biomimetics 2022, 7, 84 11 of 21

pass can require a large number of floating-point operations. Although the exact numbers
of floating-point operations depend on the design of CNN architecture, even small net-
works, such as LeNet, can require millions of computations. Let’s suppose the number of
floating-point operations required by the CNN model are N. Since we need to forward pass
through the CNN model twice, which brings the number of floating-point operations 2N.
Adding all computations for all these steps, we reach a final value of 5k + 20k + 2N ≈ 2N.
The last approximation is based on the fact that N >> k, i.e., the number of computations
required by CNN, is much higher than the number of attacked pixels. From this analysis, it
can be seen that the amount of computation per iteration is primarily dominated by the
CNN model and the computation requirement of BAS are negligible in comparison.

Algorithm 1: Attacking Algorithm.
Input: Ximg, input image of dimension m× n

C, image classes
X0, initial starting point
is_targeted, attack is targeted or untargeted
k, number of attacked pixels
λ, antennae length
δ, step-length
tstop, maximum number of iterations

Output: r∗, c∗ and rgb∗.
if is_targeted == True then

Construct objective function g(.) using (20).
else

Construct objective function g(.) using (19).
end
Define a function rand(dim, low, upper, type) which generate a random matrix of

dimension dim, with elements in range [low, upper]. The type can be ‘integer’ or
‘float’.

t← 0
g0 ← g(X0)
while t < tstop do

Generate random matrices as follow:
~br ← rand((k, 1), 1, m, ‘integer’)
~bc ← rand((k, 1), 1, n, ‘integer’)
~brgb ← rand((k, 3), 0, 1, ‘float’)

Combine the above to form the following matrix:
~b = [~br~bc~brgb]

Calculate antennae locations Xl and Xr using (12).
Xl = Xt + λ~b, Xr = Xt − λ~b.

Project the locations in the constrained set Ψ using the projection function
defined in (14). ΨXl = PΨ(Xl), ΨXr = PΨ(Xr).

Calculate the new position for the beetle using (15).
Xnew = Xt − δ sign(g(Xl)− g(Xr))~b.

Evaluate objective function at new location:
gnew ← g(Xnew)

if gnew < gt then
Xt+1 ← Xnew, gt+1 ← gnew

else
Xt+1 ← Xt, gt+1 ← gt

end
t← t + 1

end

Biomimetics 2022, 7, 84 12 of 21

Original Image CNN Model

Prediction:

Horse

Confidence:

95.7%

(a)

Beetle
Attacked pixel

Antennae

CNN fooling Attack

(Iteration 1)

Prediction:

Horse

Confidence:

93.67%

Attack Success:

Unsuccessful

=
=

=

(b)

Beetle
Attacked pixel

Antennae

CNN fooling Attack

(Iteration 33)

Prediction:

Horse

Confidence:

83.58%

Attack Success:

Unsuccessful

=
=

=

(c)

Beetle Attacked pixel
CNN fooling Attack

(Iteration 200)

Prediction:

Cat

Confidence:

36.15%

Attack Success:

Successful

==

(d)

Figure 6. Illustration of the CNN attacking algorithm. (a), The original input image to the CNN
model: the image contains a horse, and the CNN’s prediction is also a horse with the confidence of
95.7%. (b), First iteration of the fooling attack: the modified image reduced the confidence to 93.67%
with just modification of single pixel. (c), 33rd iteration of the fooling attack: after searching for a
while, the algorithm found a pixel which reduced confidence to 83.58%. (d), 200th iteration of the
fooling attack: the algorithm finally found a pixel which fools the CNN to classify the image as a cat.

Biomimetics 2022, 7, 84 13 of 21

4. Experiment Methodology and Results

In this section, we will present the experimental methodology to evaluate the success
rate of the proposed attacking algorithm. Then we will discuss the results.

4.1. Evaluation Methodology

To statistically evaluate the effectiveness of the proposed algorithm we choose two
CNN architectures; LeNet-5 [63] and ResNet [64], trained on CIFAR-10 dataset [65].

4.1.1. Image Dataset

The CIFAR-10 dataset consists of a total of 60,000 RGB images. Each image have a
dimension of 32× 32× 3. The images belong to 10 classes, namely airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, truck. The dataset is evenly distributed among ten
classes i.e., 6000 images belong to each class. The dataset is divided into two portions; the
first portion is a training dataset, contains 50,000 images, while the second portion contains
10,000 images reserved for testing. The dataset is widely used in the training and testing of
computer vision and machine learning models. The dataset is split into 50,000 training and
10,000 test images. Figure 7 shows one sample image from each of the ten classes of the
dataset.

Aeroplane Automobile Bird Cat Deer

Dog Frog Horse Ship Truck

Figure 7. Sample images from the CIFAR-10 dataset. The dataset contains a total of 10 classes,
including animals and objects. One image from each class is shown here.

4.1.2. LeNet-5 Architecture

LeNet is a five-layer CNN architecture. It consists of two 2D-convolutional with
downsampling layers, followed by two fully connected layers and the softmax output layer.
The architecture of LeNet is shown in Figure 8a. The input to the LeNet is a 32× 32× 3
RGB image from CIFAR-10 dataset and output is a 10× 1 probability vector. The hidden
layers of LeNet-5 are in the following order.

1. The first hidden layer of LeNet is a 2D convolutional layer with six kernels, each of
dimension 5× f ive× 3. Each kernel uses a rectified linear unit (ReLU) as an activation
function. The total tunable parameter in this layer, including the bias parameters, are
5× 5× 3× 6 + 6 = 456. A max-pooling layer follows the convolutional layer with a
stride of (2, 2).

2. The second hidden layer is similar 2D convolutional layer with 16 kernels, each of
dimension 5× 5× 6. Total number of tunable parameters in this layer are 5× 5× 6×
16 + 16 = 2416.

3. The output of the second convolutional layer is flattened from a 5× 5× 16 to a 400× 1
vector. The flattened layer is connected to a fully connected later with 120 neurons with
ReLU activation. The total trainable parameters in this layer are 400× 120 + 120 = 48,120.

Biomimetics 2022, 7, 84 14 of 21

4. The fourth layer is also a fully connected layer with a total of 84 neurons with ReLU
activation. Connection with layer three makes the total trainable parameters in this
layer to be 120× 84 + 84 = 10,164.

5. The last layer is a fully-connected layer with ten neurons using softmax activation. The
connection with fourth layer makes a total of 84× 10 + 10 = 850 trainable parameters.
The output is 10× 1 vector.

The above mentioned 5 layers make the total trainable parameter count for LeNet-5
architecture to be 62,006.

Conv2D

(5× 5× 3)
×6 kernels

No Padding Max Pooling

Strides: (2, 2)

Conv2D

(5× 5× 6)
×16 kernels

No Padding

Max Pooling

Strides: (2, 2)

32× 32× 3
28× 28× 6

14× 14× 6
10× 10× 16

5× 5× 16

Flattening

Layer

Fully Connected

(400× 120)

Fully Connected

(120× 84)

Softmax Layer

(84× 10)

Total trainable parameters: 62, 006

Aeroplane

Automobile

Bird

Cat

Deer
Dog

Frog

Horse
Ship

Truck

LeNet-5

(a)

3
×

3
×

1
6

3
×

3
×

1
6

3
×

3
×

1
6

3
×

3
×

1
6

3
×

3
×

1
6

3
×

3
×

3
2

3
×

3
×

3
2

3
×

3
×

3
2

3
×

3
×

3
2

3
×

3
×

3
2

3
×

3
×

6
4

3
×

3
×

6
4

3
×

3
×

6
4

3
×

3
×

6
4

3
×

3
×

6
4

R
es

id
u

a
l

B
lo

ck

Conv2D Conv2D
Batch

Normalization
ReLU

Aeroplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Conv2D

(5× 5× 3)
×16 kernels

Same Padding

Input: 32× 32× 16
Output: 16× 16× 16

Conv2D: 10 layers

Input: 16× 16× 16
Output: 8× 8× 32
Conv2D: 10 layers

Input: 8× 8× 32
Output: 1× 1× 64
Conv2D: 10 layers

32× 32× 3

32× 32× 16

Flattening

Layer

Softmax Layer

(64× 10)
ResNet

+++++++++++++++

=

Total trainable parameters: 467, 946

(b)

Horse

LeNet: 99.9%

ResNet: 99.8%

Truck

LeNet: 99.7%

ResNet: 99.7%

Aeroplane

LeNet: 97.5%

ResNet: 98.61%

Frog

LeNet: 99.6%

ResNet: 100%

Bird

LeNet: 99.17%

ResNet: 100%

Deer

LeNet: 95.95%

ResNet: 100%

Cat

LeNet: 74.4%

ResNet: 99.99%

Bird

LeNet: 61.7%

ResNet: 99.98%

(c)

Figure 8. CNN architecture used for experiments in this paper. (a) Topology of LeNet-5, it contains a
total of 5 trainable layers. (b) Topology of ResNet, it contains a total of 32 trainable layers. (c) Predic-
tion of trained LeNet-5 and ResNet models for sample images of CIFAR-10 dataset. ResNet usually
show high confidence as compared to LeNet-5 because of higher number of layers.

4.1.3. ResNet Architecture

Residual Network (ResNet) architecture is another popular CNN architecture that
employs the concept of residual learning to train the neural networks efficiently. The used
ResNet architecture is shown in Figure 8b. It can be seen that the architecture contains a spe-
cial type of block called residual blocks. Each residual block contains two 2D-convolutional
layers. Apart from the usual forward path through convolutional layers, the residual blocks
also have an alternate shortcut forward path. This shortcut path allows the convolutional
layers only to learn residual mapping instead of actual mapping. There are a total of
15 residual blocks and 15× 2 + 1 = 31 convolutional layers. Similar to LeNet-5 architec-

Biomimetics 2022, 7, 84 15 of 21

ture, the ResNet takes a 32× 32× 3 RGB image as input and output a probability vector.
Some features of ResNet architecture are briefly given below.

1. The first hidden layer is a 2D convolutional layer with 16 kernels, each of dimension
3× 3× 3. This convolutional layer uses zero paddings; therefore, the output of this
layer has a dimension of 32× 32× 16.

2. The first convolutional layer is followed by a set of 5 similar residual blocks. Each
residual block contains two convolutional layers. Each of the convolutional layers
contains 16 kernels of dimension 3 × 3 and uses zero paddings to maintain the
dimension between its input and output. Each convolutional layers outputs a 3D-
matrix of dimension 32× 32× 16, except the output of fifth residual block which
apply max polling with stride (2, 2), making output dimension 16× 16× 16.

3. After the fifth residual block, we have another set of 5 residual blocks. For this set of
the block, each convolutional layer has a total of 32 kernels of dimension (3× 3). Each
convolutional layer outputs a 3D-matrix of dimension 16× 16× 32, except the output
of the tenth block, which employs a max-pooling layer and outputs a 3D-matrix of
dimension 8× 8× 32.

4. The residual blocks from eleventh to fifteenth are also similar to each other. The
convolutional layers in these blocks have a total of 64 kernels of dimension (3, 3). The
output of each convolutional layers is a 3D-matrix of dimension 8× 8× 64.

5. The output of the fifteenth residual block is passed through a global average pooling
layer and outputs a 3D-matrix of dimension 8× 8× 1.

6. The 8× 8× 1 tensor is flattened into 64× 1 vector and connected with a fully connected
layer of 10 neurons with softmax activation.

Apart from the output layer, all the remaining layers use ReLU activation. The total
number of trainable parameters in this ResNet architecture are 467,946. This number
is almost 7.5 times larger then LeNet-5. Due to the higher number of parameters and
more complexity, the ResNet architecture shows much better performance as compared to
LeNet-5.

4.1.4. Training of CNNs

We implemented both CNN architectures in TensorFlow [66] and trained them using
the 50,000 training images from the CIFAR-10 dataset using categorical cross-entropy as the
loss function. Figure 8c shows the prediction of the CNN for some sample images along
with the corresponding confidence values for the trained LeNet-5 and ResNet models. It
can be seen that the confidence value of the ResNet model is comparatively higher than the
LeNet-5 model for most of the image. It can be attributed to the larger size and complex
structure of ResNet. The complex structure allows the ResNet to learn more image features
as compared to LeNet-5. The prediction accuracy of the LeNet-5 and ResNet model on the
training and testing models are summarized in Table 2.

Table 2. Summary of trained CNN architectures.

× No. of
Parameters

Training
Samples

Training
Accuracy

Testing
Samples

Testing
Accuracy

LeNet-5 50,000 50,000 78.47% 10,000 74.88%
ResNet 50,000 50,000 99.83% 10,000 92.31%

4.2. Results and Discussion

To conduct a fair evaluation of our proposed algorithm, we only attacked images
from the test dataset, which are correctly classified by the corresponding trained models.
According to Table 2, only 7488 out of 10,000 test images were used in fooling attack on
LeNet-5. Similarly, for ResNet, 9231 out of 10,000 test images were considered. Now we will
present the results for untargeted and targeted attacks on both of these networks separately.

Biomimetics 2022, 7, 84 16 of 21

Figure 9 shows some of the sample images for untargeted fooling attacks. Figure 9a
corresponds to the images for the LeNet-5 and Figure 9b present the images for ResNet.
Each image also mentions the pre-attack prediction of the corresponding CNN along with
the confidence. The post-attack prediction of the wrong class, along with the new confidence
value, is also shown. The modified pixel is shown as red. The number of iterations required
to find the pixel to fool the CNN is also shown. An interesting observation is to note that the
CNN can be fooled even when the perturbed pixel does not directly lie on the actual object.

Similarly, Figure 10 shows the sample images for targeted fooling attacks. Figure 10a
corresponds to the images for the LeNet-5 and Figure 10b present the images for ResNet.
In addition to the information described above for Figure 9, Figure 10 also shows the target
class. The target class for each image is chosen randomly, however it was made sure that
the it is never same as the real class of the image.

Pre-attack:

Cat (45.2%)

Post-attack:

Deer (46.2%)

Iterations:

50

Pre-attack:

Horse (65.6%)

Post-attack:

Dog (52.85%)

Iterations:

280

Pre-attack:

Automobile (93.4%)

Post-attack:

Aeroplane (48.13%)

Iterations:

427

Pre-attack:

Bird (72.3%)

Post-attack:

Truck (51.62%)

Iterations:

136

Pre-attack:

Bird (46.48%)

Post-attack:

Aeroplane (60.72%)

Iterations:

1

(a)

Pre-attack:

Automobile (99.99%)

Post-attack:

Aeroplane (90.36%)

Iterations:

41

Pre-attack:

Truck (76.08%)

Post-attack:

Aeroplane (56.06%)

Iterations:

1

Pre-attack:

Dog (99.58%)

Post-attack:

Frog (62.15%)

Iterations:

312

Pre-attack:

Horse (99.63%)

Post-attack:

Cat (81.18%)

Iterations:

136

Pre-attack:

Bird (99.99%)

Post-attack:

Deer (61.8%)

Iterations:

156

(b)

Figure 9. Samples of single pixel successful untargeted attacks on LeNet-5 and ResNet architectures.
Perturbed pixel is marked as red. The pre-attack, post-attack predictions and confidences along with
the number of iteration required to fool the CNN are also shown below the images. (a) Samples for
LeNet-5. (b) Samples for ResNet.

To compile the statistical results, we randomly selected a total of 300 images. We then
used a 5-fold attacking method, i.e., each image was attacked five times. We also evaluated
the performance of the proposed algorithm for the case of 3-pixel and 5-pixel attacks. The
distribution of success rate is shown as a histogram and pie chart in Figure 11. Figure 11a
shows the success rate distribution for the attacks on LeNet-5 architecture. The left-most
end of the histogram represents the images on which all attempts failed. Whereas, the
right-most end contains the images with success on all five trials. Although most samples
are contained at the edges of the histogram, still there are some samples in the middle. It
indicates that the algorithm shows probabilistic behavior, i.e., succeed and failed on the
same input image. Additionally, it can be seen that for higher number of pixels, the success

Biomimetics 2022, 7, 84 17 of 21

rate also increases. It is intuitive since the more the number of perturbed pixels, the greater
is the difference between the original image and the new image. Similarly, it can be seen
that the success rate for the untargeted attack is higher as compared to the targeted attack.

Target:

Truck

Pre-attack:

Car (98.6%)

Post-attack:

Truck (59.74%)

Iterations:

358

Target:

Dog

Pre-attack:

Frog (23.4%)

Post-attack:

Dog (66.08%)

Iterations:

3

Target:

Deer

Pre-attack:

Aeroplane (59.55%)

Post-attack:

Deer (59.17%)

Iterations:

33

Target:

Aeroplane

Pre-attack:

Ship (78.4%)

Post-attack:

Aeroplane (60%)

Iterations:

27

Target:

Cat

Pre-attack:

Truck (90.64%)

Post-attack:

Cat (52.5%)

Iterations:

459

(a)

Target:

Dog

Pre-attack:

Frog (84.51%)

Post-attack:

Dof (47.18%)

Iterations:

1

Target:

Bird

Pre-attack:

Truck (91.98%)

Post-attack:

Bird (61.88%)

Iterations:

23

Target:

Horse

Pre-attack:

Automobile (97.14%)

Post-attack:

Deer (52.88%)

Iterations:

160

Target:

Horse

Pre-attack:

Ship (98.52%)

Post-attack:

Horse (98.52%)

Iterations:

3

Target:

Dog

Pre-attack:

Cat (95.83%)

Post-attack:

Dog (63.28%)

Iterations:

30

(b)

Figure 10. Samples of single pixel successful targeted attacks on both LeNet-5 and ResNet architec-
tures. Perturbed pixel is marked as red. The pre-attack, post-attack predictions and confidences along
with the number of iteration required to fool the CNN are also shown below the images. (a) Samples
for LeNet-5. (b) Samples for ResNet.

We repeated the same set of experiments for the ResNet. As expected, the attack on
ResNet proved to be difficult as compared to LeNet and achieved a lower success rate.
Figure 11c summarize the success rate for targeted and untargeted attack on ResNet for the
case of 1, 3 and 5-pixel attacks on ResNet. As an overall summary, Figure 11b shows the
distribution of the number of success in all the 5-fold attacks. It shows that the proposed
algorithm is able to fool the CNNs for a large proportion of images successfully.

Biomimetics 2022, 7, 84 18 of 21

Success (out of 5)Success (out of 5)

N
u

m
b

er
o
f

a
tt

a
ck

s
N

u
m

b
er

o
f

a
tt

a
ck

s

00 11 22 33 44 5500

5050

100100

150150

200200

250250
1 pixel - Untargeted1 pixel - Untargeted

1 pixel - Targeted1 pixel - Targeted

3 pixel - Untargeted3 pixel - Untargeted

3 pixel - Targeted3 pixel - Targeted

5 pixel - Untargeted5 pixel - Untargeted

5 pixel - Targeted5 pixel - Targeted

Success rate distribution for

5-fold attacks on LeNet-5

using 1, 3 and 5 pixels.

Success rate distribution for

5-fold attacks on LeNet-5

using 1, 3 and 5 pixels.

(a)

Overall ratio of successful

attempts in 5-fold attacks

0 success / 5 attempts
1 success / 5 attempts
2 success / 5 attempts
3 success / 5 attempts
4 success / 5 attempts
5 success / 5 attempts

54%

4%
4%

3%

5%

30%

(b)

Success (out of 5)

N
u

m
b

er
o
f

a
tt

a
ck

s

0 1 2 3 4 5 0

50

100

150

200

250

300
1 pixel - Untargeted

1 pixel - Targeted

3 pixel - Untargeted

3 pixel - Targeted

5 pixel - Untargeted

5 pixel - Targeted

Success rate distribution for

5-fold attacks on ResNet

using 1, 3 and 5 pixels.

(c)

Figure 11. Statistics of the attack success rate for all experimental scenarios. (a) The histogram shows
the success rate distribution in 5-fold attacking experiments for LeNet-5. Random images from
the CIFAR-10 test dataset are attacked five times each using 1,3 and 5-pixels, and the number of
successful attempts is recorded as shown in the histogram. The targeted attacks have a lower success
rate as compared to untargeted attacks. Additionally, as the number of attacked pixels increases, the
success rate also improves. (b) The proportion of successful and unsuccessful attacks for all of the
experiments. (c) Success rate distribution for ResNet in both targeted and untargeted attacks.

5. Conclusions

Experimental results presented in this paper clearly show that, from a computational
point of view, the behavior of an rudimentary-intelligent insect, i.e., beetle, is fully capable
of fooling artificially intelligent computation models. These results can help provide insight
into the nature of artificial intelligent learning systems and their comparison with natural
intelligence. Additionally, this paper emphasizes the need for robustness in the designing
of artificial learning systems. We demonstrate the efficacy of the proposed CNN attacking
algorithm by considering two CNN architectures; LeNet-5 and ResNet, trained on the
CIFAR-10 dataset. The statistical results show that the algorithm was able to successfully
fool CNN for a large proportion of the input images.

Author Contributions: A.H.K. performed the mathematical and numerical analysis along with the
drafting of the manuscript. X.C. proposed the idea and designed the base framework. B.X. contributed
to the analysis of the dataset and the drafting of the paper. S.L. contributed to the development of
mathematical analysis and verified the numerical analysis. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors used the CIFAR-10 dataset (https://www.cs.toronto.edu/~kriz/
cifar.html) and Tensorflow (https://www.tensorflow.org/) to conduct the experiments. Website
access date: 1 May 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hilger, K.; Ekman, M.; Fiebach, C.J.; Basten, U. Intelligence is associated with the modular structure of intrinsic brain networks.

Sci. Rep. 2017, 7, 16088. [CrossRef]
2. Genç, E.; Fraenz, C.; Schlüter, C.; Friedrich, P.; Hossiep, R.; Voelkle, M.C.; Ling, J.M.; Güntürkün, O.; Jung, R.E. Diffusion markers

of dendritic density and arborization in gray matter predict differences in intelligence. Nat. Commun. 2018, 9, 1905. [CrossRef]
[PubMed]

3. Lee, J.J.; McGue, M.; Iacono, W.G.; Michael, A.M.; Chabris, C.F. The causal influence of brain size on human intelligence: Evidence
from within-family phenotypic associations and GWAS modeling. Intelligence 2019, 75, 48–58. [CrossRef] [PubMed]

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.tensorflow.org/
http://doi.org/10.1038/s41598-017-15795-7
http://dx.doi.org/10.1038/s41467-018-04268-8
http://www.ncbi.nlm.nih.gov/pubmed/29765024
http://dx.doi.org/10.1016/j.intell.2019.01.011
http://www.ncbi.nlm.nih.gov/pubmed/32831433

Biomimetics 2022, 7, 84 19 of 21

4. Gibson, K.R. Evolution of human intelligence: The roles of brain size and mental construction. Brain Behav. Evol. 2002, 59, 10–20.
[CrossRef] [PubMed]

5. Pietschnig, J.; Penke, L.; Wicherts, J.M.; Zeiler, M.; Voracek, M. Meta-analysis of associations between human brain volume and
intelligence differences: How strong are they and what do they mean? Neurosci. Biobehav. Rev. 2015, 57, 411–432. [CrossRef]
[PubMed]

6. Mattson, M.P. Superior pattern processing is the essence of the evolved human brain. Front. Neurosci. 2014, 8, 265. [CrossRef]
[PubMed]

7. Jaeger, H. Artificial intelligence: Deep neural reasoning. Nature 2016, 538, 467. [CrossRef]
8. Vargas, D.V.; Murata, J. Spectrum-diverse neuroevolution with unified neural models. IEEE Trans. Neural Netw. Learn. Syst. 2016,

28, 1759–1773. [CrossRef]
9. Hassabis, D.; Kumaran, D.; Summerfield, C.; Botvinick, M. Neuroscience-inspired artificial intelligence. Neuron 2017, 95, 245–258.

[CrossRef]
10. Kar, K.; Kubilius, J.; Schmidt, K.; Issa, E.B.; DiCarlo, J.J. Evidence that recurrent circuits are critical to the ventral stream’s

execution of core object recognition behavior. Nat. Neurosci. 2019, 22, 974–983. [CrossRef]
11. Bingul, Z. Adaptive genetic algorithms applied to dynamic multiobjective problems. Appl. Soft Comput. 2007, 7, 791–799.

[CrossRef]
12. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. In Proceedings of the Advances in Neural Information

Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3856–3866.
13. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

14. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of
the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105.

15. Boisseau, R.P.; Vogel, D.; Dussutour, A. Habituation in non-neural organisms: evidence from slime moulds. Proc. R. Soc. Biol. Sci.
2016, 283, 20160446. [CrossRef] [PubMed]

16. Khan, A.H.; Li, S.; Cao, X. Tracking control of redundant manipulator under active remote center-of-motion constraints: an
RNN-based metaheuristic approach. Sci. China Inf. Sci. 2021, 64, 1–18. [CrossRef]

17. Khan, A.H.; Cao, X.; Li, S.; Luo, C. Using social behavior of beetles to establish a computational model for operational management.
IEEE Trans. Comput. Soc. Syst. 2020, 7, 492–502. [CrossRef]

18. Zivkovic, M.; Bacanin, N.; Venkatachalam, K.; Nayyar, A.; Djordjevic, A.; Strumberger, I.; Al-Turjman, F. COVID-19 cases
prediction by using hybrid machine learning and beetle antennae search approach. Sustain. Cities Soc. 2021, 66, 102669. [CrossRef]

19. Xie, S.; Chu, X.; Zheng, M.; Liu, C. Ship predictive collision avoidance method based on an improved beetle antennae search
algorithm. Ocean Eng. 2019, 192, 106542. [CrossRef]

20. Levi, G.; Hassner, T. Age and gender classification using convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 34–42.

21. Svoboda, P.; Hradiš, M.; Maršík, L.; Zemcík, P. CNN for license plate motion deblurring. In Proceedings of the 2016 IEEE
International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 3832–3836.

22. Zhang, Z.; Chen, P.; McGough, M.; Xing, F.; Wang, C.; Bui, M.; Xie, Y.; Sapkota, M.; Cui, L.; Dhillon, J.; et al. Pathologist-level
interpretable whole-slide cancer diagnosis with deep learning. Nat. Mach. Intell. 2019, 1, 236. [CrossRef]

23. zu Belzen, J.U.; Bürgel, T.; Holderbach, S.; Bubeck, F.; Adam, L.; Gandor, C.; Klein, M.; Mathony, J.; Pfuderer, P.; Platz, L.; et al.
Leveraging implicit knowledge in neural networks for functional dissection and engineering of proteins. Nat. Mach. Intell. 2019,
1, 225. [CrossRef]

24. Pasquale, G.; Ciliberto, C.; Odone, F.; Rosasco, L.; Natale, L. Real-world Object Recognition with Off-the-shelf Deep Conv Nets:
How Many Objects can iCub Learn? arXiv 2015, arXiv:1504.03154.

25. Ding, Y.; Zhang, W.; Yu, L.; Lu, K. The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction
kinetic parameters of biomass pyrolysis. Energy 2019, 176, 582–588. [CrossRef]

26. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
27. Dorigo, M.; Di Caro, G. Ant colony optimization: a new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary

Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; IEEE: Piscataway, NJ, USA, 1999; Volume 2,
pp. 1470–1477.

28. Neshat, M.; Sepidnam, G.; Sargolzaei, M.; Toosi, A.N. Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridiza-
tion, combinatorial and indicative applications. Artif. Intell. Rev. 2014, 42, 965–997. [CrossRef]

29. Yang, X.S.; Deb, S. Engineering optimisation by cuckoo search. arXiv 2010, arXiv:1005.2908.
30. Mehrabian, A.R.; Lucas, C. A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 2006,

1, 355–366. [CrossRef]
31. Nakrani, S.; Tovey, C. On honey bees and dynamic server allocation in internet hosting centers. Adapt. Behav. 2004, 12, 223–240.

[CrossRef]

http://dx.doi.org/10.1159/000063730
http://www.ncbi.nlm.nih.gov/pubmed/12097857
http://dx.doi.org/10.1016/j.neubiorev.2015.09.017
http://www.ncbi.nlm.nih.gov/pubmed/26449760
http://dx.doi.org/10.3389/fnins.2014.00265
http://www.ncbi.nlm.nih.gov/pubmed/25202234
http://dx.doi.org/10.1038/nature19477
http://dx.doi.org/10.1109/TNNLS.2016.2551748
http://dx.doi.org/10.1016/j.neuron.2017.06.011
http://dx.doi.org/10.1038/s41593-019-0392-5
http://dx.doi.org/10.1016/j.asoc.2006.03.001
http://dx.doi.org/10.1098/rspb.2016.0446
http://www.ncbi.nlm.nih.gov/pubmed/27122563
http://dx.doi.org/10.1007/s11432-019-2735-6
http://dx.doi.org/10.1109/TCSS.2019.2958522
http://dx.doi.org/10.1016/j.scs.2020.102669
http://dx.doi.org/10.1016/j.oceaneng.2019.106542
http://dx.doi.org/10.1038/s42256-019-0052-1
http://dx.doi.org/10.1038/s42256-019-0049-9
http://dx.doi.org/10.1016/j.energy.2019.04.030
http://dx.doi.org/10.1007/BF00175354
http://dx.doi.org/10.1007/s10462-012-9342-2
http://dx.doi.org/10.1016/j.ecoinf.2006.07.003
http://dx.doi.org/10.1177/105971230401200308

Biomimetics 2022, 7, 84 20 of 21

32. Yang, X.S. Firefly algorithms for multimodal optimization. In Proceedings of the International Symposium on Stochastic
Algorithms, Sapporo, Japan, 26–28 October 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 169–178.

33. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
34. Połap, D.; Woźniak, M. Red fox optimization algorithm. Expert Syst. Appl. 2021, 166, 114107. [CrossRef]
35. Zhang, M.; Xu, Z.; Lu, X.; Liu, Y.; Xiao, Q.; Taheri, B. An optimal model identification for solid oxide fuel cell based on extreme

learning machines optimized by improved Red Fox Optimization algorithm. Int. J. Hydrogen Energy 2021, 46, 28270–28281.
[CrossRef]

36. Hayyolalam, V.; Kazem, A.A.P. Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering
optimization problems. Eng. Appl. Artif. Intell. 2020, 87, 103249. [CrossRef]

37. Hu, G.; Du, B.; Wang, X.; Wei, G. An enhanced black widow optimization algorithm for feature selection. Knowl. Based Syst. 2022,
235, 107638. [CrossRef]

38. Maqsood, M.; Ghazanfar, M.A.; Mehmood, I.; Hwang, E.; Rho, S. A Meta-Heuristic Optimization Based Less Imperceptible
Adversarial Attack on Gait Based Surveillance Systems. J. Signal Process. Syst. 2022, 1–23. [CrossRef]

39. Msika, S.; Quintero, A.; Khomh, F. SIGMA: Strengthening IDS with GAN and Metaheuristics Attacks. arXiv 2019,
arXiv:1912.09303.

40. Zang, Y.; Qi, F.; Yang, C.; Liu, Z.; Zhang, M.; Liu, Q.; Sun, M. Word-level textual adversarial attacking as combinatorial
optimization. arXiv 2019, arXiv:1910.12196.

41. Su, J.; Vargas, D.V.; Sakurai, K. One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. 2019, 23, 828–841.
[CrossRef]

42. Su, J.; Vasconcellos, V.D.; Prasad, S.; Daniele, S.; Feng, Y.; Sakurai, K. Lightweight classification of IoT malware based on image
recognition. In Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo,
Japan, 23–27 July 2018; IEEE: Piscataway, NJ, USA, 2018; Volume 2, pp. 664–669.

43. Pasquale, G.; Ciliberto, C.; Rosasco, L.; Natale, L. Object identification from few examples by improving the invariance of a deep
convolutional neural network. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Daejeon, Korea, 9–14 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 4904–4911.

44. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

45. Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation.
In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 565–571.

46. Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning deep CNN denoiser prior for image restoration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3929–3938.

47. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.
arXiv 2013, arXiv:1312.6199.

48. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572.
49. Moosavi-Dezfooli, S.M.; Fawzi, A.; Frossard, P. Deepfool: A simple and accurate method to fool deep neural networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2016;
pp. 2574–2582.

50. Xu, X.; Chen, X.; Liu, C.; Rohrbach, A.; Darrell, T.; Song, D. Fooling vision and language models despite localization and attention
mechanism. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22
June 2018; pp. 4951–4961.

51. Sun, Y.; Zhang, J.; Li, G.; Wang, Y.; Sun, J.; Jiang, C. Optimized neural network using beetle antennae search for predicting the
unconfined compressive strength of jet grouting coalcretes. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 801–813. [CrossRef]

52. Jiang, X.; Li, S. BAS: Beetle Antennae Search Algorithm for Optimization Problems. Int. J. Robot. Control 2018, 1, 1–5. [CrossRef]
53. Khan, A.H.; Li, S.; Luo, X. Obstacle avoidance and tracking control of redundant robotic manipulator: An rnn based metaheuristic

approach. IEEE Trans. Ind. Inform. 2019, 16, 4670–4680. [CrossRef]
54. Khan, A.T.; Li, S.; Zhou, X. Trajectory optimization of 5-link biped robot using beetle antennae search. IEEE Trans. Circuits Syst. II

Express Briefs 2021, 68, 3276–3280. [CrossRef]
55. Wu, Q.; Shen, X.; Jin, Y.; Chen, Z.; Li, S.; Khan, A.H.; Chen, D. Intelligent beetle antennae search for UAV sensing and avoidance

of obstacles. Sensors 2019, 19, 1758. [CrossRef] [PubMed]
56. Zhang, J.; Huang, Y.; Ma, G.; Nener, B. Multi-objective beetle antennae search algorithm. arXiv 2020, arXiv:2002.10090.
57. Khan, A.H.; Li, S.; Chen, D.; Liao, L. Tracking Control of Redundant Mobile Manipulator: An RNN based Metaheuristic Approach.

Neurocomputing 2020, 400, 272–284. [CrossRef]
58. Khan, A.T.; Cao, X.; Li, Z.; Li, S. Enhanced beetle antennae search with zeroing neural network for online solution of constrained

optimization. Neurocomputing 2021, 447, 294–306. [CrossRef]
59. Khan, A.T.; Li, S.; Cao, X. Human guided cooperative robotic agents in smart home using beetle antennae search. Sci. China Inf.

Sci. 2022, 65, 1–17. [CrossRef]
60. Ren, Z.; Li, P.; Fang, J.; Li, H.; Chen, Q. SBA: an efficient algorithm for address assignment in ZigBee networks. Wirel. Pers.

Commun. 2013, 71, 719–734. [CrossRef]

http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.eswa.2020.114107
http://dx.doi.org/10.1016/j.ijhydene.2021.06.046
http://dx.doi.org/10.1016/j.engappai.2019.103249
http://dx.doi.org/10.1016/j.knosys.2021.107638
http://dx.doi.org/10.1007/s11265-022-01742-x
http://dx.doi.org/10.1109/TEVC.2019.2890858
http://dx.doi.org/10.1002/nag.2891
http://dx.doi.org/10.5430/ijrc.v1n1p1
http://dx.doi.org/10.1109/TII.2019.2941916
http://dx.doi.org/10.1109/TCSII.2021.3062639
http://dx.doi.org/10.3390/s19081758
http://www.ncbi.nlm.nih.gov/pubmed/31013782
http://dx.doi.org/10.1016/j.neucom.2020.02.109
http://dx.doi.org/10.1016/j.neucom.2021.03.027
http://dx.doi.org/10.1007/s11432-020-3073-5
http://dx.doi.org/10.1007/s11277-012-0840-y

Biomimetics 2022, 7, 84 21 of 21

61. Khan, A.H.; Cao, X.; Katsikis, V.N.; Stanimirović, P.; Brajević, I.; Li, S.; Kadry, S.; Nam, Y. Optimal Portfolio Management for
Engineering Problems Using Nonconvex Cardinality Constraint: A Computing Perspective. IEEE Access 2020, 8, 57437–57450.
[CrossRef]

62. Khan, A.H.; Cao, X.; Li, S.; Katsikis, V.N.; Liao, L. BAS-ADAM: an ADAM based approach to improve the performance of beetle
antennae search optimizer. IEEE/CAA J. Autom. Sin. 2020, 7, 461–471. [CrossRef]

63. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

64. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

65. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; Citeseer: Princeton, NJ, USA,
2009.

66. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow:
A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

http://dx.doi.org/10.1109/ACCESS.2020.2982195
http://dx.doi.org/10.1109/JAS.2020.1003048
http://dx.doi.org/10.1109/5.726791

	Introduction
	Problem Formulation
	Convolutional Neural Networks
	Image Perturbation
	Untargeted Attack
	Targeted Attack

	Algorithm
	Mathematically Modelling Behavior of Beetle
	Optimization Algorithm
	Illustration of Attacking Algorithm
	Computational Complexity

	Experiment Methodology and Results
	Evaluation Methodology
	Image Dataset
	LeNet-5 Architecture
	ResNet Architecture
	Training of CNNs

	Results and Discussion

	Conclusions
	References

