
biomimetics

Article

EvoSeg: Automated Electron Microscopy Segmentation through
Random Forests and Evolutionary Optimization

Manuel Zumbado-Corrales and Juan Esquivel-Rodríguez *

����������
�������

Citation: Zumbado-Corrales, M.;

Esquivel-Rodríguez, J. EvoSeg:

Automated Electron Microscopy

Segmentation through Random

Forests and Evolutionary

Optimization. Biomimetics 2021, 6, 37.

https://doi.org/10.3390/

biomimetics6020037

Academic Editor: Josep Samitier

Received: 16 April 2021

Accepted: 28 May 2021

Published: 1 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Pattern Recognition and Machine Learning Group, Computer Engineering School, Costa Rica Institute
of Technology, Cartago 30101, Costa Rica; manzumbado@ic-itcr.ac.cr
* Correspondence: jesquivel@tec.ac.cr

Abstract: Electron Microscopy Maps are key in the study of bio-molecular structures, ranging from
borderline atomic level to the sub-cellular range. These maps describe the envelopes that cover
possibly a very large number of proteins that form molecular machines within the cell. Within those
envelopes, we are interested to find what regions correspond to specific proteins so that we can
understand how they function, and design drugs that can enhance or suppress a process that they
are involved in, along with other experimental purposes. A classic approach by which we can begin
the exploration of map regions is to apply a segmentation algorithm. This yields a mask where
each voxel in 3D space is assigned an identifier that maps it to a segment; an ideal segmentation
would map each segment to one protein unit, which is rarely the case. In this work, we present
a method that uses bio-inspired optimization, through an Evolutionary-Optimized Segmentation
algorithm, to iteratively improve upon baseline segments obtained from a classical approach, called
watershed segmentation. The cost function used by the evolutionary optimization is based on an ideal
segmentation classifier trained as part of this development, which uses basic structural information
available to scientists, such as the number of expected units, volume and topology. We show that a
basic initial segmentation with the additional information allows our evolutionary method to find
better segmentation results, compared to the baseline generated by the watershed.

Keywords: electron microscopy; segmentation; EM; machine learning; random forests; evolutionary
algorithms

1. Introduction

The biological sciences have greatly benefited from advances in microscopy over the
past decade, which have enabled techniques such as cryo-electron microscopy to produce
3D images that elucidate near-atomic level features of proteins. The highest resolution images
created have approached the 1.5 Å range [1–3]. At this resolution, it is even possible
to identify atomic structures in proteins, although the results depend on the map itself.
Identifying protein structures at lower resolutions is still a crucial task to understand the
way macromolecular assemblies work, as the average resolution of structures released in
public databases remains over 5 Å [4]. Several methods have been developed to identify the
secondary structure of proteins within EM maps [5–9]. A related problem, de novo chain
modeling, has been addressed by leveraging segmentation and symmetry [10]. More re-
cently, the use of machine learning techniques has been applied in this space [11–14]
and deep learning, in particular, has shown its potential to identify secondary structure
elements in EM maps [15–18]. It is possible to use hybrid approaches to extract addi-
tional information from electron microscopy maps at resolutions up to 10 Å [19]. Similar
techniques have been applied to study the organization of proteomes, as seen in [20].
Furthermore, the same algorithms have been applied to the EM-fitting problem domain,
where we want to identify how an atomic resolution protein model fits into an EM map,
with the objective of knowing the exact position of each element [21–23].
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The atomic level details found in a map are not the only valuable pieces of information.
In [24] it was possible to find the architecture and helical regions of a 26S proteasome. It is
also possible to use the information encoded in EM maps to study the interactions between
previously unknown protein complexes [25].

The development of algorithms and models in this domain has been boosted by
the large availability of open bio-molecular data. On one hand, the Protein Data Bank
(PDB) [26] is a well known resource that contains over 175,000 atomic-resolution protein,
RNA and DNA structural complexes. While some of the structures deposited in the PDB
correspond to larger molecules, the majority of them only contain a handful of protein units.

To complement this high-resolution data source, we can also leverage a second valu-
able source of data: the EM Data Resource [27]. This database stores three-dimensional
models derived from electron microscopy data that allows us to study larger bio-molecular
complexes, although at lower resolutions than we would normally find with PDB data.
Most notably, the majority of EM maps do not easily allow for atomic identification. An-
other important characteristic of these maps is that, due to the lower resolution of images
found, we need to deal with the noise that comes in the images. According to the repository
statistics, while the average resolution of EM structures deposited went from roughly
12 Å in 2015 to about 6 Å in recent years, the mean resolution across all maps is still over
5 Å. At such resolutions, the identification of atomic elements is still a challenge, which
requires computational methods that help elucidate structural insights.

A common algorithmic technique employed to study the possible molecular units
contained in an EM map is based on image segmentation principles. The main idea is to
divide maps into density regions that should correspond to individual protein units or,
at minimum, relevant domains within protein units. Some of the approaches assume prior
knowledge about the components, or the symmetry between protein complexes [28–30].
The atomic-detailed models that correspond to EM maps under study may not always be
available or we may need to deal with additional complexities, in order to obtain baseline
EM maps that yield lower resolution images [31].

The immersive watershed algorithm is a classic technique used to assign density
regions to labels, as a first pass, followed by a grouping stage where we can use methods
such as scale-space filtering [32]. As explained by the authors, that method is useful to avoid
over-segmenting images. A prior study applying this type of segmentation in EM maps
was shown in [33]. At a high level, the watershed algorithm can be understood as a process
by which we can fill topographical regions with water, as an analogy, by first allowing the
entry through local minima that can represent small holes [34]. As we submerge the regions
further down into the water, the level will rise from the minima entry points progressively.
So called watershed lines are defined whenever two distinct regions are about to touch
through the water, as the level rises. All these lines would delineate the different segments.

Even when such approaches can be better than basic segmentation, it is still common
to find that EM images are over segmented, as we have seen in [33]. It can be possible
to use classical segmentation implementations such as Segger [32] but the burden on the
scientists interested in analyzing molecular structures can be high, as they need to fine
tune parameters that can vary from one case to another. Ideally, we want computational
methods that only require basic information about the molecules under study that can be
used to find segmentation candidates that improve upon the baseline given by watershed
segmentation, for instance. It is not unreasonable to think that scientists already have
access to the approximate volume of individual protein units, the approximate number of
units expected and some information about the connectivity between units. We can then
use the additional information to iteratively search for better segmentation results.

In the following sections we describe a methodology that combines these concepts
within the framework of evolutionary algorithms. This type of optimization technique
has already been proven successful to optimize watershed segmentation in multi-spectral
images [35]. The overall effectiveness of such algorithms has also been shown in the general
field of medical imaging [35–37].
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The main contribution of our work centers around improved segmentation results
against state-of-the-art segmentation, such as Segger [32]. In order to achieve this we ask for
a small amount of information that describes the molecule, such as the expected volume
and connectivity between units. The additional data given allow us to differentiate between
good and bad segmentation candidates, as our method iteratively optimizes using the
evolutionary framework.

As we will see in our results, both from a quantitative and a qualitative point of view,
we are able to improve upon baseline segmentation candidates without requiring extensive
parameter tuning from researchers.

2. EvoSeg: Evolutionary-Optimized Segmentation

The ideal segmentation can be defined as one where individual regions in maps match
one corresponding protein unit of the macromolecular assembly. The flip side of this would
be to have protein units that contain multiple segments or even segments that span across
multiple proteins.

We frame the problem to solve as a two-stage investigation where the end result
should be to find a close-to-ideal segmentation. In order to do so, we require:

• A way of determining if a segmentation is good or bad. In other words, is a segmenta-
tion result close to being biologically correct?

• Once we can discriminate good segmentation results, we need a method to create
segmentation candidates to explore the space, and keep traversing the regions of the
space that are biologically relevant.

For the first part, we created a supervised learning classifier, trained on a dataset
suited for this purpose, described in Section 2.4. Thanks to the existence of the classifier,
we can perform an evolutionary optimization process over a set of segmentation states.
This stochastic process flow is shown in Figure 1. First, we define an initial population as a
set of random segmentation states. Successive states are generated combining two parent
states, as explained in Section 2.1. Each created state is subjected to random mutations,
a process detailed in Section 2.2. Then, the fitness value of each individual is determined by
how close it is to a meaningful solution of the problem (i.e., the ground truth segmentation).
A Random Forest classifier is trained to learn the fitness function from EM and PDB data.
Details about fitness scoring and the data representation used to learn the fitness function
are presented in Sections 2.3 and 2.4, respectively. Finally, the iterative process stops when
the proposed fitness goals are achieved.

Start
Population
Initialization

Parents
Selection

Crossover

Mutation Stop?
Optimized

Segmentation

n
o

yes

Figure 1. Diagram of the Evolutionary-Optimized Segmentation protocol proposed. The optimization
process relies on a supervised classifier trained on a curated dataset of relevant EM maps. Parameters
and feature encoding are defined in detail, in Section 2.

In general, a state (or “individual”) with a high fitness score equates to having a higher
probability of being selected as parent to create new individuals; this process follows a
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round-robin approach. The number of individuals in the initial population is set to 30,
mostly due to resource constraints when running the algorithm. There is a σ parameter that
controls the segmentation smoothing amount in each region grouping step s, as defined by
the scale-space grouping process. σ and s values follow a uniform distribution between 1
and 4. A fitness value is assigned to each individual after the initial population is created.
Then, 30 parents are selected according to the round robin policy and combined to create
15 new segmentation states. Individuals with the best fitness score have a higher chance of
being parents multiple times. With respect to the stopping criteria, the optimization process
stops either at 200 iterations or after 20 consecutive iterations without reaching a higher
fitness score. As we will see in Section 4, there is convergence within those boundaries.

2.1. Crossover

As introduced in Figure 1, crossover is performed after parents are selected, specifically
with a probability of 0.9. Otherwise, the offspring is just a direct copy of one of its parents,
uniformly selected. If we define the set of n selected parents as ∆ = {δ1, δ2, . . . , δn} in a
single iteration, each offspring created by the combination of two different parents is the
result of the crossover operator defined as follows:

X = δa ⊗ δb, (1)

with X a set of r segments {χ1, χ2, . . . , χr} where X ⊂ δa ∪ δb. Note that a parent is also a
set of segments. Thus, the set of segments of an offspring is determined by the uniform
selection and superposition of segments from its parents, iteratively. The combination
stops when there are no voxels left without an associated semantic class label.

2.2. Mutation

Mutation is performed on offspring with a probability of 0.1. We define two mu-
tation operations based on the most common observations around segmentation errors.
Over segmentation is the most recurring issue we have seen, where segmentation algo-
rithms conservatively create small sections without merging areas that, in the context
of bio-molecules, are part of just one unit, but the density profile is different enough
that the algorithms do not consider them to be “mergeable”. Similarly, for regions with
fuzzy boundaries, where density profiles are too similar, there is a risk that the initial
segmentation joins areas that are meant to be separate.

2.2.1. Merge Operation

This operation addresses the first error case described. A single segment S in the
offspring segmentation individual is randomly selected. Adjacent segments are considered
candidates to be merged with the segment selected S. A new segment is created with a new
semantic class label by the union of voxels of S with voxels of one of its adjacent segments,
uniformly selected.

2.2.2. Split Operation

A split is in charge of repairing segmentation problems due to fuzzy boundaries in
density space. This is performed on a single segment Q of the offspring individual. A new
random watershed segmentation Q′ is computed, so that Q is split in two or more regions
of Q′ that match the voxels of Q. In some cases, voxels of segment Q are associated to only
one segment in Q′. In that case, a new random segmentation is computed until splitting
becomes feasible.

2.3. Ideal Segmentation Classifier

Our method uses a feature representation of map segments for the purpose of segmen-
tation evaluation. The ideal segmentation is the perfect matching of predicted segments to
their corresponding protein units, in the ground truth. In other words, an ideal segmenta-
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tion is obtained when the predicted segments have the same structural details of ground
truth proteins.

Selected features encode structural details of a segmented map, in particular:

• Number of segments: Directly derived from the expected number of protein units in
the macromolecule.

• Volume of segment: Proportion of the total macromolecule volume in voxels, captured
by each segment.

• Topology of segments: Euler–Poincaré Characteristic is used to encode invariant shape
details of segments.

Following a supervised training approach, the learning algorithm has to produce a
function f : Rn → Rk where k is the number of classes. When y = f (x) the model assigns
an input described by the vector of features x to a probability distribution over k classes
denoted as y. In our case, the model has to be able to distinguish between a bad and a
good segmentation. That is, the model outputs a probability value for a segmentation
to be classified as bad or good. The value of interest here is the probability that ends up
becoming the fitness function that describes individuals in the Evolutionary-Optimized
Segmentation process.

As mentioned above, the feature vector x encodes structural information of a seg-
mented map. In detail, x = (x1, x2, . . . , xn) where n = 121. The first component of the
feature vector x encodes the number of identified segments, overall. The remaining compo-
nents encode 2 elements per segment: the volume and its correspondent Euler–Poincaré
characteristic (key due to its shape invariance). Based on the distribution of segments in the
ground truth, we define an upper bound to the maximum number of segments to encode
at 60 (for a total of 120 components that describe individual segments). We set component
values to zero when the macromolecule under study does not require all (i.e., because it
has less than the maximum segments to be encoded).

In order to get the best model parameters, a grid search is performed over parameter
search spaces and models as presented in Table 1. Because our focus is not just on creating
a classifier, but to use it as a way of identifying good segmentation candidates, we use a
vanilla grid search approach, where standard parameter values for each of the models is
used. The order of magnitude of the numeric parameters is similar, for each of the parame-
ters mentioned, and we report the parameter values that yielded the highest area under
the ROC curve for each model. We select Random Forests since it yields the best results.

2.4. Data

To the best of our knowledge, there is no fully-annotated EM segmentation dataset
available for the evaluation of a method, such as the one proposed here. We require electron
microscopy maps such that there is an annotated segment identifier that links each voxel,
in map space, to an actual protein unit. To create such dataset, we use the EM Data Resource
(EMDB) and the Protein Data Bank (PDB) public databases. EM maps with a matching
atomic structure on the Protein Data Bank allow us to create fully-annotated cases. Figure 2
shows a diagram that summarizes the dataset creation process.

In total, 12,667 EM maps are automatically analyzed to filter candidate maps according
to the following selection criteria:

• Macromolecules with at least 2 subunits: We need macromolecules with more than a
single subunit, as we want to assess segmentation performance.

• Macromolecules in a resolution range of 4.5 Å to 10 Å : It is possible to derive struc-
tures from maps with resolutions below 4.5 Å . On the other hand, lower resolutions
above 10 Å may not have enough signal for predictive purposes.

• Macromolecules with an associated atomic structure: It is necessary for ground
truth annotation.
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(a)

(b)

Figure 2. Dataset creation process. (a) All EMDB entries are analyzed to filter candidates according to criteria described in Section 2.4,
resulting in 73 maps available. (b) Dataset is split in standard training and test sets, as well as an 8 map holdout set. Note that samples
are augmented to create bad and good segmentation cases, since the size of our data pool could be a concern in training.

After the selected samples are filtered using the criteria described above, an additional
volume proportion filter is used to exclude maps where the volume contained in the map
is not proportional to the volume generated by their associated atomic structure. This is
an ad hoc check that we had to add at some point for high-throughput matching of PDBs,
since some structures that allegedly were related in metadata did not directly match as
would be expected. The atomic structure has the information needed to associate regions of
maps to an specific molecular subunit, allowing the creation of ground truth. The selected
proportional volume ratio between the map and the atomic structure has to be a value
between 0.8 and 1.2.

The filtering process results in a dataset of 73 maps. To train the classification model,
a data augmentation approach is used to create a balanced number of samples annotated
accordingly to bad and good segmentation classes. Bad segmentation samples are gener-
ated with watershed which typically produces over segmentation. Good segmentation
samples are derived from ground truth annotation of segments, randomly selecting and
splitting a single segment per map. In the end, 20 samples (10 annotated as good and 10 as
bad) are augmented from each sample of the filtered dataset, resulting in 1460 samples.

3. Performance Measures
3.1. Matching IoU

Because the segmentation we produce can have a different number of segments
than the ground truth, a challenge we are faced with is how to correctly reward and
penalize particular cases. As an example, if the ground truth had a map with two segments
Γ = {γ1, γ2} and we have a candidate with three segments P = {ρ1, ρ2, ρ3} we would
want to penalize more heavily if all ρi span between both ground truth segments frequently.
However, we may not want to penalize as significantly if γ1 ≈ ρ1 and γ2 ≈ ρ2, because ρ3
could be a small volume which does not affect the overall segmentation result. It is good
to remember that our objective in this study is to provide a meaningful segmentation to
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scientists studying protein complexes, which may not be significantly impacted by small
segmentation discrepancies.

IoU is one of the standard metrics to evaluate segmentation tasks. We follow a similar
approach as the one presented in [38] to address the problem of label permutation of
segmentation results to match ground truth, and its invariance in qualitative validation.
Let the ground truth labeling of a map denoted by Γ to have t segments {γ1, γ2, . . . , γt}
where each segment is a macromolecule subunit given by a set of voxels with an associated
semantic class label. The output of the Evolutionary-Optimized Segmentation is a set P of
p segments {ρ1, ρ2, . . . , ρp}, each associated with a semantic class label too. As mentioned
before, t and p values could vary such that a segmentation result can lead to less, equal
or more segments than ground truth value. We can denote Φ as a set with all possible
label permutations on regions of the resulting segmentation P. Note that in Figure 3
permutations between red and blue region labels of the selected segmentation result do not
have an effect in the qualitative result. Thus, P̊ can be defined as the matched permutation
that maximizes the IoU between the segmentation result P and the ground truth Γ:

P̊ = arg max
φ∈Φ

IoU(φ, Γ) . (2)

(a) (b) (c)

Figure 3. Selected segmentation results are evaluated on ground truth data using a matched version
of the IoU metric. In this Figure, regions of a selected segmentation result of EMD-0044 (a) are
permuted (b) to match ground truth labels (c).

3.2. Homogeneity

Every segment should be as homogeneous as possible. In other words, when our
algorithm creates a segment, ideally, it should only contain voxels that correspond to
a single segment from the ground truth. More specifically, we want to measure how
many voxels in a segment γi correspond to the correct ground truth segment ρj (i.e., true
positives). However, because perfect segments are unlikely to happen, we want to know
how many of the voxels in γi correspond to some other ground truth segment ρk (i.e., false
positives). We thus repurpose the canonical definition of precision to be our homogeneity
measure, which we would want to be as high as possible.

H =
TP

TP + FP
. (3)

Note that we can have H values with an over segmentation. In particular, if every
ground truth ρj has multiple predicted segments γi we can maximize the metric by having
every segment be a single voxel assign to the correct ρj. We call this out in order to make it
explicit that H alone would not be enough to evaluate a good segmentation.
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3.3. Proportion of Estimated Segments

In order to address the cases not captured by H we also want to measure, for each
ground truth segment, the number of predicted segments si that were created. The ideal
case, naturally, is that one estimated segment would correspond to one ground truth
segment (i.e., a protein unit). The larger this proportion is, the further away it would be
from a good segmentation. Because this metric should take into account all segments,
we normalize it by the actual number of segments N.

P =
1
N

N

∑
i=1

si. (4)

3.4. Consistency

An average can dilute the extreme effect that point values have. Since P is an average
we also want to understand what the most dominant assignment is, for particular segments.
We analyze the protein unit (i.e., a ground truth segment) with the largest number of
predicted segments to serve as a consistency measure. If the largest protein has a diverse
number of predicted segments, then the overall prediction is not likely to be useful.

C = Pmax(i). (5)

4. Results

The main objective at the onset of this work was to create a computational protocol
that would allow scientists (e.g., biologists, pharmacologists, physicians) to start from an
Electron Microscopy map, gather some basic information about the proteins contained
in the EM and produce better segmentation results than what baseline segmentation
can produce at this time. In this section, we show that we have achieved that goal by
highlighting the metrics described previously, as well as comparing against segmentation
results obtained in ChimeraX [39], a well known bio-molecular manipulation tool with
segmentation features.

4.1. Ideal Segmentation Classifier

The main evolutionary optimization protocol is in charge of generating the final seg-
mentation results. Before analyzing them, however, we first highlight the results of training
a Random Forest classifier that serves as the cost function in the optimization process.

In Table 1 we show the Area Under the ROC curve for several model alternatives
we tried, with the best parameters tested. To do this we used the dataset described in
Section 2.4 using the standard cross-validation procedure with a holdout validation set.

Table 1. Performance of different classification models with best parameters given by grid search.
Random Forests outperforms other models in terms of the area under the ROC curve metric.

Model Area under ROC Parameters

Logistic Regression 0.77 C: 10, dual: False, max_iter: 120, penalty: l2
SVM 0.79 C: 0.1, gamma: 1, kernel: rbf

MLP 0.78 activation: relu, alpha: 0.0001,hidden_layer_sizes: 100,
learning_rate: constant, solver: adam

Random Forests 0.83 max_features: auto, n_estimators: 1200

We provide more detailed results about the Random Forest training and validation
process in Figure 4, where we can see that the training was stable across folds and the
validation set, along the 2 axes of the ROC curve. Note that because the classifier is a key
component to the overall protocol we decided to use the majority of our available dataset
in the cross-validation process. That is the reason why only eight unseen structures are
used for final validation.
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Figure 4. Performance of the segmentation classifier described by (a) training and (b) validation ROC
curves. Generalization power is evaluated with a final testing dataset of 8 maps previously unseen
by the model.

It is worth pointing out that using supervised learning here requires us to have a
complete set of EM maps and matching ground truth PDB structures. That is a key limiting
factor in terms of the size of the dataset available. While there are other less rigorous
avenues to create a synthetic dataset (e.g., generating predictions on EM maps using
software tools) we preferred to use experimentally validated data in the form of deposited
Protein Data Bank structures.

4.2. Evolutionary-Optimized Segmentation Validation

As mentioned in Section 4.1, we have used a large number of structures from the
dataset in the cross validation process, to train the ideal segmentation classifier. If we were
to assess the effectiveness of the evolutionary optimization using any of the elements in
that portion of the dataset we could be giving us an unfair advantage, and thus make the
results appear better than they truly are.

For that reason, in this section we show detailed analysis of eight EM structures,
which were not seen by the classifier training process. We have calculated all four metrics
described in Section 3, which can be seen in Table 2. We provide their fitness score along
with the other measures.

The range of both Matching IoU and H is between [0, 1] while C and P are >= 1.
In the case of the former two, we want higher values; the latter ones should have as low a
value as possible. To provide a fair interpretation for the metrics we need to establish that
a perfect segmentation with limited information is very difficult to achieve. Furthermore,
as we have pointed out in previous sections, EM maps are inherently noisy. We can
categorize five out of the eight results as successful, in terms of providing a segmentation
that has a good coverage based on Matching IoU and H, and provides a low number of
predicted segments per ground truth protein unit.
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Table 2. Fitness score and segmentation evaluation metrics on validation dataset. Both IoU columns
show the standard Intersection-Over-Union metric where our method outperforms Segger baseline
segmentation (state-of-the-art comparison). H stands for Homogeneity, C for Consistency and P for
Proportion. A value of H less than 1 means that subunits are partially captured by a smaller segment
on average. C shows the number of segments identified in the subunit with largest volume. Column
P describes the average number of different segments identified in a single subunit.

Sample Score Matching IoU Segger IoU H C P

EMD-7090 0.98 0.07 0.00 0.08 9 8.00
EMD-4670 0.57 0.08 0.06 0.25 1 3.35
EMD-0044 0.90 0.09 0.05 0.20 1 4.33
EMD-0790 0.87 0.11 0.00 0.14 5 5.00
EMD-8528 0.77 0.10 0.07 0.28 2 2.60
EMD-3206 0.95 0.15 0.02 0.35 4 2.50
EMD-3573 0.90 0.19 0.14 0.52 1 1.67
EMD-20824 0.98 0.23 0.00 0.40 3 3.00

We complement this analysis by comparing our method against Segger, which can
be considered the state-of-the-art segmentation, and it is included in some of the most
recognized structural biology tools. In Table 2, we also present Segger IoU results. As we
can see, our method is able to obtain better results in all cases. Note that both IoU metrics
calculated in the table are the most strict assessment we can apply to both methods,
since there can be a series of segments that do not have a correspondence to a ground truth
segment. This is to be expected since over segmentation is a common issue, in this type of
problem. That means that the (potentially) large number of zero IoU values will bring the
metric down, when aggregated overall.

To determine whether the unmatched segments are affecting either of the methods,
we also calculated IoU taking into account only segments that were matched to a ground
truth counterpart. Table 3 shows that comparison. Our method outperforms Segger in four
of the cases, it has comparable results in two, and it is outperformed in the remaining two
cases (EMD-0044 and EMD-3573).

Table 3. Matching IoU metric for EvoSeg and Segger. Matched segments were considered only,
excluding remaining segments in the calculation of IoU metric.

Sample Matching IoU Segger IoU

EMD-7090 0.33 0.32
EMD-4670 0.07 0.07
EMD-0044 0.28 0.32
EMD-0790 0.25 0.13
EMD-8528 0.10 0.10
EMD-3206 0.31 0.26
EMD-3573 0.09 0.44
EMD-20824 0.37 0.08

We also compare the number of segments generated by each of the two methods in
Table 4. The main reason to do this is to understand the possible over segmentation yielded.
We can see that we reduce the number of predicted segments by an order of magnitude in
every case. We are not able to match the ground truth number of segments but, given our
objective, this is clearly an improvement over Segger. Note how there is a large discrepancy
in the number of segments generated for the 2 cases where our method is outperformed by
Segger in Table 3.
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Table 4. Number of segments for EvoSeg and Segger on the validation dataset. Results show that
our method produces significantly less segments than baseline Segger.

Sample EvoSeg Segger Ground Truth

EMD-7090 9 32 2
EMD-4670 44 293 54
EMD-0044 9 18 3
EMD-0790 9 91 4
EMD-8528 5 25 5
EMD-3206 4 31 2
EMD-3573 3 19 6
EMD-20824 3 81 2

When we analyzed the results in Table 2 we stated that three of the eight validation
cases should be considered worse results, based on the metrics. We looked into the
evolutionary optimization logs, shown in Figure 5, to determine whether it was a search
problem (i.e., the algorithm never explored a good region of the space) or a fitness function
problem (i.e., the classifier evaluates bad segmentation candidates as good), in order to
inform future improvements.

We find that, in the case of EMD-3573, there was a better candidate structure earlier
in the exploration process, but the fitness score did not deem it to be as good as other
segmentation predictions. This case points to a problem directly related to the fitness
function, which could be solved with the exposure of the classifier to more data. Given that
our dataset was limited to start with, we may need to use data augmentation techniques
or use some portion of synthetic data. Either potential approach has pros and cons that
would need to be explored in a future study.

The other two cases, EMD-4670 and EMD-8528, were never able to find a good
candidate in terms of the fitness score, which points to a search problem. As stated in
Section 2 we already have stopping criteria in place that ensure that the candidates are
stable for a large number of generations. In Section 5 we mention some alternatives that
can be pursued in the future to address this problem.

It is important to note that all runs shown in Figure 5 allow all of the population to be
replaced from one generation to the next. That is why it can sometimes yield significant
fluctuations. Table 5 showcases the summary results using a strategy that maintains the top
fitness scores from one generation to the next, shown as “Result 2” (“Result 1” corresponds
to Figure 5 results). We can see that, from an optimization point of view, the convergence
at the end is similar. We must note, however, that the actual IoU results, which is our true
target, finds better results in some cases.

Table 5. Matching IoU metric on matched segments and maximun score for two EvoSeg runs on the
validation dataset.

Sample Result 1 IoU Result 1 Max Score Result 2 IoU Result 2 Max Score

EMD-7090 0.33 0.98 0.53 0.94
EMD-4670 0.07 0.57 0.08 0.55
EMD-0044 0.28 0.90 0.33 0.94
EMD-0790 0.25 0.87 0.29 0.96
EMD-8528 0.10 0.77 0.17 0.62
EMD-3206 0.31 0.95 0.38 0.98
EMD-3573 0.09 0.90 0.45 0.85
EMD-20824 0.37 0.98 0.37 0.98
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Figure 5. Score and Matching IoU metric evolution through successive generations by our
Evolutionary-Optimized Segmentation applied to testing data: (a) EMD-7090, (b) EMD-4670, (c) EMD-
3573, (d) EMD-0044, (e) EMD-0790, (f) EMD-8528, (g) EMD-3206, (h) EMD-20824. Note that in (a),
(c)–(f) even if a higher fitness score is achieved throughout the generations, the Matching IoU is not
always the highest attained.
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So far we have presented measures to highlight the effectiveness of our method. In the
context of structural biology, it is always good to visualize the results because they should
be consistent with metrics gathered. In Figures 6 and 7 we see three visual representations
for each of the 8 validation cases:

• The ground truth protein units
• Our segmentation results
• Segger results with baseline configuration

(a) (b)
(c)

(d) (e)
(f)

(g) (h) (i)

(j) (k) (l)

Figure 6. Ground truth labels of testing data, the Evolutionary-Optimized Segmentation and Segger segmentation results are shown
on the left, center and right columns, respectively. The listed maps are EMD-7090 ((a)–(c)), EMD-4670 ((d)–(f)), EMD-3573 ((g)–(i)),
EMD-0044 ((j)–(l)). Results show that baseline Segger produces segmentation results with a number of segments far from the ground
truth ideal value, in contrast to our method.
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(a) (b) (c)

(d) (e)
(f)

(g) (h) (i)

(j) (k) (l)

Figure 7. Ground truth labels of testing data, EvoSeg and Segger segmentation results are shown on the left, center and right columns
respectively. The listed maps are EMD-7090 ((a)–(c)), EMD-0790 ((d)–(f)), EMD-3206 ((g)–(i)), EMD-20824 ((j)–(l)).

We can see that we can consistently provide segmentation results that have less seg-
ments and are closer to the target structures, especially for the cases where our metrics show
good results. While it could be possible to configure Segger so that a better segmentation
result is generated, the parameterization can be very specific to each case, as opposed to
the basic information our method requires.
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5. Conclusions and Discussion

In this work we have shown that it is possible to obtain more refined segmentation
results with respect to baseline watershed segmentation, by using easily derivable informa-
tion from protein complexes and an Evolutionary-Optimized segmentation algorithm, that
is powered by a Random Forest classifier to assess good segmentation candidates. Existing
tools in structural biology, such as ChimeraX [39], provide access to well established algo-
rithms for segmentation but default configurations lead to over segmented images, in most
cases. Better segmentation results can be achieved by manually optimizing parameters for
each EM map under analysis. Our underlying hypothesis was that requiring information
like basic topology and approximate volumes would allow us to provide improved results,
without the need to fine tune difficult to understand segmentation configuration.

The results shown in Figures 6 and 7 are clear from a qualitative standpoint. Specifi-
cally, we can see how the output generated by our method is closer to the ground truth
segmentation for most of the cases. From the quantitative analysis point of view we see
good metrics. Given the complexity of the problem at hand we consider Matching IoU
values between 0.3 and 0.4 very promising particularly because the most common problem
we are faced with is over segmentation, which can be solved with a marginal amount of
human intervention. While it would be ideal to have a fully automated segmentation, and
that is what we aim for, there is always domain knowledge that we can leverage from
scientists who study these systems on a regular basis. As mentioned before, it is common
for researchers to use computational tools to help in their work. Here we have made that
tooling even closer to the ground truth. We recognize that, even though we have improved
the segmentation over our baseline, there is still work to do in the future to push the
boundaries of automated identification further.

For instance, there are several cases in which we see a better candidate segmentation
throughout the evolutionary optimization, but we eventually replace it by a segmentation
that is marginally worse. That can be interpreted as our search strategy being successful but
leaving room for improvement on the cost function side. We can either augment our feature
vector and eventually retrain our classifier or even expose the models to an augmented
data set that allows it to learn even more segmentation patterns. We can also improve
our population management by applying structural clustering to each population so that
candidates kept from one generation to the next are as varied as possible. The idea in the
context of protein complexes has previously been applied in [40], although adjustments
would be needed, since we do not have atomic positions to guide the clustering, in the
current problem domain.

All of the programmatic work we have developed and the data set used for training
purposes is available in GitHub, as referenced in the Data Availability Statement.
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