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Abstract: Computers nowadays have different components for data storage and data processing,
making data transfer between these units a bottleneck for computing speed. Therefore, so-called
cognitive (or neuromorphic) computing approaches try combining both these tasks, as is done in
the human brain, to make computing faster and less energy-consuming. One possible method to
prepare new hardware solutions for neuromorphic computing is given by nanofiber networks as they
can be prepared by diverse methods, from lithography to electrospinning. Here, we show results of
micromagnetic simulations of three coupled semicircle fibers in which domain walls are excited by
rotating magnetic fields (inputs), leading to different output signals that can be used for stochastic
data processing, mimicking biological synaptic activity and thus being suitable as artificial synapses
in artificial neural networks.

Keywords: neuromorphic computing; nanofibers; bending radius; data processing; spikes; neuron
excitation

1. Introduction

Neuro-inspired signal processing presently relates to the most intensively studied
topics of technical sciences in a wide range of completely different realizations. It can
be implemented from an electronic perspective, using, for example, field-programmable
gate array (FPGA) circuits [1–4] or employing the recent achievements of spintronics [5–7],
phase change materials [8,9] or other components.

Different computational schemes have been developed, such as artificial neural net-
works (ANNs), support vector machines or reservoir computing as a special type of recur-
rent ANN [10–12]. Simulating the human brain with recurrent neural networks necessitates
calibration of weights and connections of the nodes in the network; this time-consuming
task can be avoided by using a reservoir in which weights between input values and
reservoir neurons are either set arbitrarily or optimized [13,14], while the weights between
reservoir neurons and output layer are linearly trained, thus speeding up the training
process [15,16]. For all these approaches, it is necessary to produce artificial neurons and
synapses that are able to transfer and modulate data. Often, such artificial neurons and
synapses are produced by electronic devices with a variable resistance which represents
the synaptic weight [17–19].

Several approaches to neuro-inspired signal processing are based on magnetic mate-
rials. There is a rich tradition of such research, firstly introduced by works of Allwood,
Cowburn et al. [20–22] and more recently by Grollier et al. [23,24], to name just a few.
Generally, signal processing necessitates a deterministic or stochastic correlation between
input and output values. This means that not only input and output need to be defined,
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but also data transport and processing between them. In several approaches, nanofibers or
nanofiber networks are used for these tasks, in which data can be transported and manipu-
lated in the form of domain walls [25–27]. The static and dynamic magnetic properties of
such nanofibers depend strongly on their geometry, material and orientation with respect
to the external magnetic field [28–31].

From the perspective of neuroscience and neuronal spikes, the effect of neuron ex-
citation if a given threshold level is exceeded is fundamental [32–34]. In the language of
bioelectronics, this can be interpreted in the following way: If the excitations from several
inputs overlap constructively, a defined energy barrier is overcome, and the output action
potential is different from zero. Hence, since biological signals have different amplitudes, it
can be imagined that the implementation of a small network of ferromagnetic fibers might
be a good choice to use magnetization dynamics to provide a wide enough range of vector
values, mimicking neuronal and synaptic activity.

Here we investigate three-semicircle systems with two inputs and three outputs with
dynamic micromagnetic simulations. Our results show that, depending on the chosen
threshold values, different data processing operations can be defined in this simple system.
It must be mentioned that the nanofiber network presented here forms a single artificial
neuronal cell body, receiving signals and performing data processing, which can be used
as a part of a forward-propagating neural network [35–37]. It does not form a full artificial
neural network with axons and synapses, which has to be implemented after establishing
the functionality of these devices. Generally, the functionalities of the elements found in
the human brain are not 100% reflected by such a neuromorphic approach.

2. Materials and Methods

Micromagnetic simulations were carried out using the micromagnetic solver Magpar,
which dynamically solves the Landau–Lifshitz–Gilbert equation of motion [38]. The simu-
lation parameters were chosen as follows: saturation magnetization JS = 1.005 T, damping
constant α = 0.02, exchange constant A = 1.3·10−11 J/T, and anisotropy constant equal
zero since the material permalloy (Py) was chosen. The total length of each single fiber is
1570 nm with a bending radius of 500 nm, the cross-section 10 nm × 60 nm, meshed with
an average size of 3.3 nm. The externally applied field is 1 T at a frequency of 500 MHz,
applied at local input areas of 60 nm× 60 nm× 10 nm. The simulated geometry is depicted
in Figure 1. This combination of material and dimensions was investigated before and
found to be suitable to enable domain wall nucleation and propagation by a local rotating
magnetic field of the frequency chosen here [39]. Such nanostructures can be produced by
e-beam lithography or similar methods from different materials, typically on Si wafers or
other non-magnetic flat surfaces, but also in a free-standing form [40–42].
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red = up, blue = down, green = horizontal.
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Micromagnetic simulations are performed with four input combinations, defined by
in-plane rotating fields: LL, LR, RL, and RR, where L = counterclockwise and R = clockwise.
These inputs are used to feed information into the system. The resulting output signals
are derived at the positions A, B, and C, meaning that we obtain magnetization vectors.
Each vector component can have values from −1 to +1. After that, for a given component
(separately for Mx, My, Mz) the weighted sum is calculated. This step is not yet imple-
mented physically; possible realizations are connections with different lengths, diameters
or in general different probabilities for data transport in a defined time.

It should be mentioned that while this is a proof-of-concept, building up the system in
reality is technologically possible. The dimensions chosen here are relatively large and well
suited for lithographic production. Applying localized varying magnetic fields at regions
of some ten to a few hundred nanometers diameter is usually performed by microwave
technique, as shown in diverse papers [43–46].

3. Results and Discussion

As an example, the calculation

M(tot)
x = wA M(A)

x + wB M(B)
x + wC M(C)

x , (1)

imitates similar combinations found in neural networks, with wi defining the weights of the
respective outputs. The total signal M(tot)

x is then normalized by its maximum value that
occurs during simulations, related usually to 150 ns or 200 ns. In this way, the M(tot−norm)

x
component values fall in the range of < −1;+1 >. Next, for the assumed threshold value
Mth, a digitization operation is performed; i.e. the transformation from M(tot−norm)

x into
M(tot−dig)

x , namely

M(tot−dig)
x =

{
1 i f M(tot−dig)

x ≥ Mth

0 i f M(tot−dig)
x < Mth

. (2)

Since M(tot−norm)
x ∈ < −1;+1 >, we tested Mth ∈ < −1;+1 > with a resolution of

0.1. The steps of data preparation are shown in Figure 2 for wA = wC = 0.45, wB = 0.1,
Mth = 0.7, and RL combination of rotating fields.
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Figure 2. Cont.
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Figure 2. Data preparation steps: (a) time-resolved output of positions A, (b) B and (c) C; (d) the weighted sum over these 
outputs, as calculated in Equation (1); (e) the normalized weighted sum; and (f) the digitized signal which is higher than a 
defined threshold. 
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Figure 2. Data preparation steps: (a) time-resolved output of positions A, (b) B and (c) C; (d) the weighted sum over these
outputs, as calculated in Equation (1); (e) the normalized weighted sum; and (f) the digitized signal which is higher than a
defined threshold.

Firstly, Figure 2a–c shows the single outputs. It is visible here that outputs A and
C show very fast oscillations between maximum and minimum x components, i.e., fast-
moving and oscillating domain walls (cf. domain walls near output A in Figure 1). Output
B behaves differently, as also visible in Figure 1. Here, the interaction between the left and
the right semi-circle results in a more stable situation, with some “spikes” visible when
domain walls move through this output. It should be mentioned that these spikes are not
directly suitable to be used as logic results, as in spin-torque oscillators used to prepare
neural circuits [47]. Instead, weighted sums of the three outputs are applied here to allow
for differentiation between the input combinations LL, LR, RL and RR.

In all three outputs, it is visible that the signal starts only at approx. 20–25 ns. This
time gap between the onset of the rotating input fields and the onset of receiving an output
value is correlated with the velocity of the domain walls moving through the nanostrips
(cf. Figure 1). After this time gap, the initial starting configuration is overwritten with the
introduced signals.

Due to the spatial symmetry of our fiber-based neuron, for all simulated cases we
assume wA = wc 6= wB, while wA + wB + wC = 1. As an example of calculation results,
we present in Table 1 the case RL along with wA = wc = 0.45, wB = 0.1; wA = wc =
0.40, wB = 0.2; or wA = wc = 0.35, wB = 0.3, for several representative threshold values
of Mth.
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Table 1. Digital signals, derived for the case RL and different combinations of weights and threshold values, as explained in
the text. The x-axes differ to make the signals better visible.

Mth wA = wc = 0.45, wB = 0.1 wA = wc = 0.40, wB = 0.2 wA = wc = 0.35, wB = 0.3
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Here, the influence of the threshold values is obvious. Smaller values of 𝑀  are 
easier overcome by 𝑀( ), so that smaller threshold values will lead to more posi-
tions being 1 than 0 and vice versa. In this way, it is possible to define the output with the 
desired probability. 

This, on the other hand, is the basis for the common process of adding up signals. 
For this, it is necessary that not only “learning” is realized, but also “forgetting”; i.e., if a 
certain stimulus value (here named in this way to avoid confusion with the threshold 
values defined before) is not reached after a certain time, the sum of the signals is set back 
to its original value (here zero) and summing up starts again [48]. This process can be 
realized, e.g., by a mono-domain magnetic tunnel junction in which the input stimuli 
frequency must be high enough to allow for crossing the energy barrier that separates 
two stable states [49]. Quite similarly, here it is possible to define a certain time (i.e., 
number of simulation steps) after which a stimulus value must be crossed; else the state 
reached is “forgotten” and the process starts again from zero. 

Figure 3 depicts the corresponding summing mechanism of two examples using the 
weights 𝑤 = 𝑤 = 0.35, 𝑤 = 0.3 and thresholds of 0.4 or 0.2, respectively. The first 25 
ns in which the input signals do not fully influence the output signals are neglected. 
While Figure 3a,b show the original signals derived for these thresholds, Figure 3c,d 
show the corresponding “learning and forgetting” simulation. Here, each “1” in Figure 
3a,b adds a defined value in Figure 3c,d (“learning”), while for each “0” in Figure 3a,b, a 
value > 0 in Figure 3c,d is reduced by a defined value (“forgetting”). The leaking rate, 
defining the “forgetting”, is set to values from 0.1 to 0.3. A value of 0.1, e.g., means that 
one “learning” step” is “forgotten” after 10 “forgetting” steps, etc.  
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Here, the influence of the threshold values is obvious. Smaller values of Mth are easier
overcome by M(tot−dig)

x , so that smaller threshold values will lead to more positions being
1 than 0 and vice versa. In this way, it is possible to define the output with the desired
probability.

This, on the other hand, is the basis for the common process of adding up signals.
For this, it is necessary that not only “learning” is realized, but also “forgetting”; i.e., if
a certain stimulus value (here named in this way to avoid confusion with the threshold
values defined before) is not reached after a certain time, the sum of the signals is set
back to its original value (here zero) and summing up starts again [48]. This process can
be realized, e.g., by a mono-domain magnetic tunnel junction in which the input stimuli
frequency must be high enough to allow for crossing the energy barrier that separates two
stable states [49]. Quite similarly, here it is possible to define a certain time (i.e., number of
simulation steps) after which a stimulus value must be crossed; else the state reached is
“forgotten” and the process starts again from zero.

Figure 3 depicts the corresponding summing mechanism of two examples using the
weights wA = wc = 0.35, wB = 0.3 and thresholds of 0.4 or 0.2, respectively. The first 25 ns
in which the input signals do not fully influence the output signals are neglected. While
Figure 3a,b show the original signals derived for these thresholds, Figure 3c,d show the
corresponding “learning and forgetting” simulation. Here, each “1” in Figure 3a,b adds
a defined value in Figure 3c,d (“learning”), while for each “0” in Figure 3a,b, a value > 0
in Figure 3c,d is reduced by a defined value (“forgetting”). The leaking rate, defining the
“forgetting”, is set to values from 0.1 to 0.3. A value of 0.1, e.g., means that one “learning”
step” is “forgotten” after 10 “forgetting” steps, etc.
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Figure 3. Magnetization components calculated for 𝑤 = 𝑤 = 0.35, 𝑤 = 0.3 and threshold values of (a) MT = 0.4; (b) MT 
= 0.2; summing up signals for different leaking rates, calculated for the same weights and threshold values of (c) MT = 0.4; 
(d) MT = 0.2. Leaking rates are defined as “forgetting” rates; i.e., after 5 steps with a leaking rate of 0.2, a single “learning” 
step is “forgotten” again. 

Comparing these exemplary threshold values (cf. Table 1), it becomes clear that they 
should be correlated with different stimulus values, here chosen as 0.5 (Figure 3c) or 2.5 
(Figure 3d), respectively, as marked by the horizontal lines. Comparing “learning” (i.e., 
ranges of increasing values) and “forgetting” (i.e., ranges of decreasing values), it can be 

Figure 3. Magnetization components calculated for wA = wc = 0.35, wB = 0.3 and threshold values of (a) MT = 0.4;
(b) MT = 0.2; summing up signals for different leaking rates, calculated for the same weights and threshold values of (c)
MT = 0.4; (d) MT = 0.2. Leaking rates are defined as “forgetting” rates; i.e., after 5 steps with a leaking rate of 0.2, a single
“learning” step is “forgotten” again.
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Comparing these exemplary threshold values (cf. Table 1), it becomes clear that
they should be correlated with different stimulus values, here chosen as 0.5 (Figure 3c)
or 2.5 (Figure 3d), respectively, as marked by the horizontal lines. Comparing “learning”
(i.e., ranges of increasing values) and “forgetting” (i.e., ranges of decreasing values), it
can be noted that the first shows a certain stochastic behavior, as mentioned before, while
“forgetting” is here realized by a simple linear function, as explained in the caption of
Figure 3. This can be modified in a next step to mimic the human brain more adequately;
however, this was not within the scope of this project.

While until now we concentrated on the input case RL to describe the system and its
basic functionality, a discussion of the influence of the input on the weighted output is still
necessary. Tables 2–4 depict the values of the digital signals, averaged over the time in
which a signal can be measured at the outputs (i.e., after 25 ns, cf. Figure 2), derived for
the different input cases LL, LR, RL and RR in case of the aforementioned combinations of
weights and threshold values. It must be mentioned that these weights are just a few from
a broad range of possible combinations. The column RL corresponds to the values depicted
in Figure 2; Tables 2–4 correspond to the weight combinations in columns 2–4 of Table 1.

Table 2. Averaged values of digital signals for the weights wA = wc = 0.45, wB = 0.1.

Mth LL LR RL RR

+0.8 0.0032 0.0022 0.0015 0.0008
+0.4 0.0487 0.0591 0.0681 0.0809
0.0 0.3010 0.4839 0.5593 0.3169
−0.4 0.9867 0.9330 0.9452 0.9839
−0.8 0.9997 0.9985 0.9981 1.0000

Table 3. Averaged values of digital signals for the weights wA = wc = 0.40, wB = 0.2.

Mth LL LR RL RR

+0.8 0.0010 0.0022 0.0021 0.0019
+0.4 0.1431 0.0607 0.1426 0.1976
0.0 0.5754 0.4820 0.5754 0.8356
−0.4 0.9750 0.9286 0.9495 0.9982
−0.8 0.9993 0.9980 0.9987 1.0000

Table 4. Averaged values of digital signals for the weights wA = wc = 0.35, wB = 0.3.

Mth LL LR RL RR

+0.8 0.0062 0.0018 0.0013 0.0032
+0.4 0.1630 0.0526 0.1226 0.3047
0.0 0.4832 0.4811 0.5940 0.9532
−0.4 0.9999 0.9365 0.9704 1.0000
−0.8 1.0000 0.9989 0.9999 1.0000

In particular, a threshold value of 0 (marked in grey) seems to be suitable to differenti-
ate between different input combinations. It must be mentioned that the differences in the
averaged values found for this threshold value (and others) strongly depend on the chosen
weights. While for a combination of wA = wc = 0.45, wB = 0.1, i.e., the smallest value of
wB chosen here, LL and RR give quite similar results for Mth = 0, LR and RL differ clearly
from each other and from the symmetric cases (Table 2). This is different for the cases
in which larger values for wB were chosen (Tables 3 and 4), where LL and RR give quite
different results, while LL and RL (Table 3) or LL and LR (Table 4) give nearly identical
averaged values.

As this short overview shows, the system suggested here cannot be used to build up
a classical binary logic, as it is available in a transistor, etc. Instead, a more complicated
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logic is enabled with a broad range of possible correlations between inputs and outputs,
defined by the combinations of weights of the single outputs. Similar to artificial neural
networks, setting these weights will define the results of the performed logic operations,
i.e., the correlation between inputs and output. In a full neural network, the averaged
values can also be used to define new weights in the next layer.

As these examples show, domain wall motion in small nanowire networks can serve
to simulate neuronal behavior, including “learning” and “forgetting”.

4. Conclusions

In a recent study, neurons were defined as three coupled semicircle fibers in which
domain walls are excited by rotating magnetic fields. These inputs, defined by pairs or
rotational orientations (clockwise/counterclockwise), result in different outputs, which
were investigated in terms of “learning” and “forgetting”. Depending on the number of
added signals per time, defining “learning”, and the leaking rate, defining “forgetting”,
these artificial neurons are found to reach a defined stimulus value with a certain probability.
Such simple systems, which can be prepared by lithographic processes, can thus be used as
parts of neuromorphic hardware.
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