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Abstract: Design of bioinspired materials that mimic the extracellular matrix (ECM) at the nanoscale
is a challenge in tissue engineering. While nanofibrillar gelatin materials mimic chemical composition
and nano-architecture of natural ECM collagen components, it lacks the characteristic D-staggered
array (D-periodicity) of 67 nm, which is an important cue in terms of cell recognition and adhesion
properties. In this study, a nanofibrous gelatin matrix with improved biomimicry is achieved using
a formulation including a minimal content of D-periodic self-assembled atelocollagen. We suggest
a processing route approach consisting of the thermally induced phase separation of the gelatin
based biopolymeric mixture precursor followed by chemical-free material cross-linking. The matrix
nanostructure is characterized using field emission gun scanning electron microscopy (FEG-SEM),
transmission electron microscopy (TEM), wide angle X-ray diffraction (XRD) and Fourier-transform
infrared spectroscopy (FT-IR). The cell culture assays indicate that incorporation of 2.6 wt.% content
of D-periodic atelocollagen to the gelatin material, produces a significant increase of MC3T3-E1
mouse preosteoblast cells attachment and human mesenchymal stem cells (hMSCs) proliferation, in
comparison with related bare gelatin matrices. The presented results demonstrate the achievement
of an efficient route to produce a cost-effective, compositionally defined and low immunogenic
“collagen-like” instructive biomaterial, based on gelatin.

Keywords: atelocollagen; D-periodic collagen; nanofibrous gelatin; collagen-like biomaterials; TIPS;
3D cell culture

1. Introduction

The design of materials that mimic the extracellular matrix (ECM) is a challenge in
tissue engineering. Efforts are currently devoted to improving key biomaterials’ features
such as surface chemistry, topography and stiffness [1–3]. The ECM is a complex structure
where cells reside, remodel and interact over a range of length scales to maintain tissue
homeostasis, growth and repair. The structure at the nanoscale of the ECM provides a
natural net of intricate nanofibers, collagen being one of the main protein components. Type
I collagen is the most abundant collagen of the human body, for example, it forms more
than 90% of the organic mass of bone [4]. The collagen basic molecule (tropocollagen) is
characterized by its triple-helical structure of 300 nm in length formed by three polypeptide
chains, which self-assemble into large fibrillar supramolecules [5]. Current models suggest
that five of these collagen molecules assemble to form one initial fibril as the basic building
block of larger fibrils with diameters of about 100 nm [6,7]. This arrangement produces
an axial periodicity of 67 nm, so-called D-periodic spacing, which is characteristic of
collagen type I materials [8,9] and can be clearly observed by electron microscopy [10].
The resulting organization and amino acid placement produce a spatial imprint of specific
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epitopes (ligands) and chemical functional groups within the fibrillar ECM that cells may
respond to.

Mammalian cells attach to ECM motifs via integrins, heterodimeric transmembrane
proteins consisting of α and β subunits. On the extracellular side, integrins recognize
specific amino acid sequences, allowing them to adhere to various components of the
ECM. In addition to RGD, the most prevalent peptide motif, other collagen type I adhesive
peptide motifs include GFOGER and DGEA [11,12]. Integrins α1β1 and α2β1 are the
major integrin collagen receptors and recognize the same specific GFOGER amino acid
sequence in triple helical collagens [13]. Hence, α2β1 integrin promotes the integrin-
mediated formation of long cellular projections typically induced by fibrillar collagen
and the α2β1 integrin-specific GFOGER peptide triggers the activation of focal adhesion
kinase and alkaline phosphatase in osteoblastic cells, both implicated in the osteoblast
differentiation pathway [14,15]. Specific periodicity similar to the collagen pattern of 63 nm
(±5 nm), achieved in synthetic helical nano-ribbons, has induced much more specific cell
adhesion and greater commitment to the osteoblast lineage than twisted nanoribbons with
a periodicity of 100 nm helping to demonstrate that nanoscale biomimicry is important [16].

Although collagen-based biomaterials extracted from animal sources has been proven
effective in a wide variety of medical applications [17,18], present batch-to-batch variability
and other drawbacks such as high degradation rates, poor processability, high costs of
manufacturing and the possibility of diseases transfection or immune responses [19].
Gelatin instead, that mimics collagen chemical composition including linear RGD cell
adhesive motifs, has been recognized as a GRAS (generally regarded as safe) material by
the FDA [20,21], and can be fabricated in the form of permeable fibrillar structures [22].
However, the gelatin is a denatured protein and derived materials lack the characteristic
D-staggered array (D-periodicity), which is an important cue in terms of cell recognition
and adhesion properties.

To overcome these limitations, atelocollagen, a form of highly purified collagen from
which the telopeptides have been enzymatically removed, is a very promising candidate for
application in tissue engineering and regeneration therapies [23,24]. Atelocollagen prod-
ucts in the monomeric form are commercially available and can reproducibly self-assemble
in vitro into organized fibrils of D-periodicity [25,26]. The advantages in terms of biocom-
patibility and reduced immunogenicity, are encouraging very promising research using
atelocollagen of different sources and processing forms. Hence, porcine atelocollagen gel
beds have been shown to improve human mesenchymal stem cells (hMSCs) chondrogenic
differentiation [27], and fibril coatings using Bester sturgeon atelocollagen and MC3T3-E1
cells are proven as interesting tools for in vitro studies [28]. Three dimensionally cul-
tured adipose tissue-derived mesenchymal stem cells (ADMSCs), on honeycomb scaffolds
of atelocollagen from cattle, have demonstrated good biocompatibility with host cardio
tissue in in vivo [29], and atelocollagen suspended in mesenchymal stem cells (MSCs)
secretome implants enhanced the migration of endogenous stem cells in the rat calvarial
bone defect model [30]. Besides, injectable forms of atelocollagen are being assayed in the
clinic and outcomes recently reported for meniscal root repair [31] and gingival soft tissue
regeneration [32].

However, the use of monomeric atelocollagen for the fabrication of collagen-based
biomaterials in the solid form is not widespread. Although, the casting and freeze-drying of
atelocollagen formulations have been assayed [26,33], new synthesis and processing route
strategies remain relatively unexplored. In this respect, the presented work brings forward
the use of atelocollagen as a functional component to achieve gelatin-based biomaterials
with enhanced biomimicry.

The purpose of the work is to achieve a simple yet scalable process-controlled nano-
fibrous “collagen-like” material based on gelatin, and to demonstrate its improved func-
tionality in terms of cell response. The presented cost-effective processing route consists of
incorporating a minority amount of D-periodic self-assembled atelocollagen, as functional
ligand, within the nanofibrous gelatin using a combination of thermally induced phase
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separation (TIPS) and porogen-leaching. Our hypothesis is that nanofibrous gelatin matri-
ces with improved biomimicry can be reproducibly processed by minimal integration of
specific triple helical collagen motifs using D-periodic atelocollagen fibrils. To prove this,
a series of materials in the form of solid pieces, including the presented matrix material,
the D-periodic structured atelocollagen functionalized nanofibrous gelatin (DCol-NfGel),
and two single-component (bare) control materials of D-periodic structured atelocollagen
(DCol) and gelatin (NfGel), respectively, were processed to carry out appropriate charac-
terization and cell response evaluation. Scheme 1 displays the types of material prepared
pieces and nomenclature used throughout the work.
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Scheme 1. Material pieces processed for the physico-chemical and the in vitro cell culture studies,
and nomenclature used. PEMA: Polyethylmethacrylate.

2. Materials and Methods
2.1. D-Periodic Collagen Fibrils Precursor Synthesis

A collagen type I ((atelo)collagen) solution (354231, BD Biosciences, Corning, Bed-
ford, MA, USA) in 0.01 M hydrochloric acid, HCl, at a concentration of 3.1 mg mL−1

was used. Fibril formation was achieved using 125 µL of 150 mM phosphate buffer
(Na2HPO4/KH2PO4) and 500 µL of the atelocollagen acid solution. The pH of the mixture
solution was adjusted to 7.4 and incubated at 34 ◦C for 24 h. After incubation time, a
washing protocol was performed to eliminate residual salt impurities and a Bradford assay
was used for quantifying final collagen content of the as-prepared fibril suspension. Full
details of the procedure can be found in a recent publication by the authors [26].

2.2. D-Periodic Collagen Solid Pieces (DCol) Processing

Single component (bare) D-periodic collagen matrices (DCol) were prepared as control
samples. The fibril suspension precursor was shaken and 100 µL portions were cast into the
wells of a 96-well polyethylene plate (655161, Greiner Bio-one, Frickenhausen, Germany)
and frozen at −80 ◦C. Then, the plate was placed into a freeze-drier for lyophilization
(Epsilon 2-4 LSC CHRIST, Osterode, Germany) at −30 ◦C and 0.04 mbar for 10 h, followed
by a gradual temperature increasing to 20 ◦C. Finally, a dehydrothermal treatment (DHT)
of 150 ◦C and 10 mbar for 20 h was applied using a vacuum oven (VO 200 Memmert,
Schwabach, Germany) for the crosslinking [22].
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2.3. D-Periodic Collagen—Nanofibrous Gelatin (DCol-NfGel) Pieces Processing

The preparation of the nanofibrous matrices using the thermally induced phase sepa-
ration (TIPS) technique was adapted from the method reported by Liu et al. [34], as well as
a previous work carried out by the authors, using the single-component gelatin system,
on the influence the experimental processing conditions in the final material microstruc-
ture [22]. First, the D-periodic collagen precursor, obtained as described in Section 2.1, was
preconditioned (agitated) for 1 h using 1300 rpm magnetic stirring at 34 ◦C. In parallel,
0.04 g of gelatin were mixed with 200 µL dH2O and stirred using 500 rpm at 45 ◦C for
45 min. Then, 200 µL ethanol (UN1170, AnalaR Normapur) were added to the gelatin
mixture and stirred for other 30 min. After this time, the temperature was lowered to 34 ◦C,
and 300 µL of D-periodic collagen suspension, 200 µL of ethanol and 100 µL of dH2O
were added to the mixture, which was kept in magnetic stirring for 45 min at 500 rpm
(Figure 1a). A water/ethanol (v/v) final ratio of 60/40 is used considering the 300 µL of
collagen fibril suspension as water volume. Then, 100 µL of the gelatin-collagen mixture
(total solids content 4.1% (w/v) consisting of 97.4 wt.% gelatin and 2.6 wt.% collagen) were
cast into the wells of a polystyrene 96-well plate (655161, Greiner Bio-one), which was
previously placed on a prewarmed thermoblock at 36 ◦C (AccuBlockTM Digital Dry Baths,
Labnet, Woodbridge, NJ, USA) to control the casting temperature (Figure 1b). Then, the
96-well plate containing the mixture was immediately frozen at −80 ◦C for 5.5 h allowing
the TIPS process. Furthermore, solvent exchange using ethanol and acetone was carried
out at −20 ◦C. Then, the pieces were placed into a freeze-drier (Epsilon 2-4 CHRIST) at
−30 ◦C and 0.04 mbar for 10 h, followed by a gradual temperature increase up to 20 ◦C
(Figure 1c). Finally, obtained pieces were introduced inside a vacuum oven (VO 200 Mem-
mert, Schwabach, Germany) to carry out a DHT cross-linking process (Figure 1d). The
oven parameters were set to 10 mbar at 150 ◦C for 20 h. Final solid pieces of 6 mm diameter
and 1.5 mm thickness (Figure 1e) were stored in a desiccator until use.
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Single component (bare) nanofibrous gelatin matrix (NfGel) was also prepared as con-
trol material using 5.4% (w/v) gelatin in water/ethanol (v/v) of 50/50 [22]. This precursor
mixture was first conditioned at 40 ◦C and 500 rpm for 1 h, and then the temperature was
raised to 45 ◦C and was maintained for 1 h at 1100 rpm. Finally, 100 µL of the mixture were
cast into a 96-well plate which was placed on a pre-warmed thermoblock at 38 ◦C. The
casted mixture was then placed at −80 ◦C, ethanol and acetone solvent exchange treated,
freeze-dried and DHT cross-linked using similar conditions as detailed above.

2.4. Macroporous—DCol-NfGel (M-DCol-NfGel) Pieces Processing

Pieces with additional macropore cavities were prepared to perform the cell culture
experiments. Atelocollagen monomers self-assembly, TIPS and porogen-leaching were
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combined to obtain macroporous DCol-NfGel (M-DCol-NfGel) matrix pieces. Furthermore,
0.035 g of polyethylmethacrylate (PEMA) spheres (2043, Elvacite) of 140–220 µm particle
size, kindly provided by Lucite International, were deposited into each of the wells of a
96-well polypropylene plate (655201, Greiner Bio-one, Frickenhausen, Germany). The plate
was vigorously tapped to pack the spheres and placed on a prewarmed thermoblock at 36
◦C. Furthermore, 100 µL of the collagen/gelatin mixture precursor (Section 2.3) were cast
onto the porogen spheres. Then, the plates were frozen at −80 ◦C overnight allowing the
TIPS process. Furthermore, cold ethanol at −20 ◦C was added to the samples and stored
in the freezer at −20 ◦C for 20 h. After that, the materials were freeze-dried and cross-
linked following the same protocol as described in the previous sections. Then, the PEMA
spheres were removed from the matrices by dissolution in ethanol at room temperature.
The pieces were soaked in ethanol at the proportion of 1 piece/mL for 24 h, threefold.
Finally, the matrices were freeze-dried for a second time following the same protocol as
before. Final pieces were 5.2 mm diameter and 1.8 mm height. Similarly, macroporous
pieces of bare gelatin, macroporous-nanofibrous gelatin (M-NfGel) were also prepared as
control material.

2.5. Scanning Transmission Electron Microscopy (STEM) and Conventional Field Emission Gun
Scanning Electron Microscopy (FEG-SEM) Observations

STEM observations were performed after negative staining, using phosphotungstic
acid, and carbon coating of the samples as detailed previously [26,35]. Samples were
examined using a HITACHI S-4800 field emission gun scanning electron microscope (FEG-
SEM) working in transmission mode and operating at an accelerating voltage of 30 kV. The
FEG-SEM observations of the matrices were carried out using a working voltage of 2 kV.
Cross-sections of the pieces were previously coated with carbon using an EMITECH K950
carbon evaporator and 60 A of voltage.

2.6. Transmission Electron Microscopy (TEM) Observations

Samples were first fixed using 1.6% glutaraldehyde in cacodylate buffer (0.1 M and
pH 7.4) for 1 h at room temperature. Post-fixation staining was done using 1% OsO4 with
cacodylate buffer (0.1 M and pH 7.4) and 2% uranyl acetate, dehydrated in acetone and
infiltrated in Spurr resin (18306-4221, Ted Pella). Then, ultrathin sections (70 nm) were cut
using automated electronic microscopy tissue processing Leica EM TP (Leica Microsystems,
Wetzlar, Germany) and were deposited on grids. Samples were examined using a Philips
CM-200 operating at an accelerating voltage of 80 kV.

2.7. Physico-Chemical Characterization

The total porosity (P) of the pieces was calculated by P = 1 − (ρmatrix/ρsolid), where
ρsolid was estimated using the proportions of each component and solid density values
for gelatin (ρgelatin = 1.037 g cm−3) [36] and collagen (ρcollagen = 1.343 g cm−3) [37]. X-ray
diffraction (XRD) analysis was performed with a PANalytical X’Pert PRO diffractometer
using Cu-Ka radiation (0.154187 nm) and step size of 0.02 and 800 s exposure time. The
Fourier-transform infrared spectroscopy (FT-IR) analyses were carried out using a JASCO
FT/IR 6200 IRT 5000 spectrometer in transmission configuration. The material pieces were
cut finely and dispersed into pellets of potassium bromide (KBr) and compressed under
8 tonnes to obtain disks. The spectra were recorded in the absorption mode at 4 cm−1

intervals in the 4000–300 cm−1 range. The water uptake ability of the macroporous matrix
materials, Wuptake, was calculated by Wuptake = (Ww − Wd)/Wd, where Wd is the mass
of the dried piece and Ww is the mass after the different immersion times using 4 mL of
phosphate buffered saline (PBS), pH 7.4, per piece at 36.5 ◦C.

As native D-periodic reference control material, a purified collagen sponge (PCS)
(extracted and purified native bovine skin collagen, kindly provided as a gift by LABRET-
UMA Laboratory and referred to as Nimni, M.E.; US patent 5374539) [38], was prepared
appropriately and used for the characterization analysis of Sections 2.5 and 2.7.
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2.8. In Vitro Cell Culture Study

MC3T3-E1 mouse pre-osteoblast cells from the European Collection of Authenticated
Cell Cultures (ECACC), catalogue number 99072810, were cultured in minimum essential
medium, alpha modification (alpha-MEM; Sigma–Aldrich, Steinheim, Germany) supple-
mented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 mg/mL streptomycin
and 2 mM L-glutamine at 37 ◦C in a humidified atmosphere with 5% CO2.

Human mesenchymal stem cells (hMSCs) from adipose tissue (hMSC-AT, PromoCell)
were maintained in Dulbecco’s modified Eagle Medium (DMEM) (41965039, Gibco, Thermo
Fisher Scientific, Waltham, MA, USA) supplemented with 4.5 g L−1 glucose, 100 µM sodium
pyruvate (S8636 Sigma-Aldrich), 1 mM L-glutamine, 10% fetal bovine serum (FBS) (10500,
Gibco) and 100 U mL−1 penicillin/streptomycin (P0781, Sigma-Aldrich). Cultures were
kept at 37 ◦C and 5% CO2 in a humidified atmosphere.

Mouse embryogenic stem cells (mESCs) ES-D3 cell line (American Type Culture
Collection, ATTC) were subcultured in embryogenic stem cells qualified DMEM medium
(SLM-220-M, Millipore) supplemented with 10% FBS ES-qualified (ES-009-B, Millipore), 1%
nucleosides (ES-008-D, Millipore), 1% penicillin/streptomycin (TMS-AB2-C, Millipore), 1%
non-essential amino acids (100×) (TMS-001-C, Millipore), 1% L-glutamine solution (100×),
200 mM (TMS-002-C, Millipore), 1% 2-mercaptoethanol (ES-007-E, Millipore), 5 mL LIF
(ESGRO 105 U/mL) (ESG1107, Millipore). Cultures were kept at 37 ◦C and 5% CO2 in a
humidified atmosphere.

Cell experiments were performed on matrix pieces placed in 96-well plates. The
material pieces were previously sterilized in 100% ethanol for 48 h at 37 ◦C. Decreasing
ethanol in PBS solutions was used to rehydrate the materials, which were finally incubated
overnight in PBS. After that, cell media was added into the wells and 1 × 104 cells were
seeded on each material piece.

Quant-iT PicoGreen dsDNA Assay Kit (P7589, Invitrogen) was used to quantify the
cell number attached to the matrices. Furthermore, 100 µL lysis buffer (10 Mm Tris, 1mM
EDTA and 0.2% Triton ×100) was added for 10 min at room temperature and shaken at
100 rpm. After incubation, 0.1 mL of lysate was transferred to a clean 96-well plate and kept
at −80 ◦C until use. Picogreen kit assay was used according to the manufacturer’s protocol
to quantify double-stranded DNA within the samples. The plate was incubated in the dark
for 5 min, and then fluorescence emission at λ = 538 nm was measured under excitation
at λ = 480 nm on an Infinite M200 PRO (TECAN) plate reader. Live cells were stained
with calcein acetoxymethyl ester (Calcein AM, C3099, Molecular ProbesTM) (1:5000) and
incubated for 15 min at 37 ◦C. Fluorescence images were obtained using a Nikon Eclipse
80i microscope. Phalloidin staining was performed on hMSCs washed thrice after using
a fixative solution of 4% formaldehyde in PBS for 15 min. Rhodamine phalloidin (R415,
Life Technologies) (1:100) was added for 1 h to stain actin and it was washed thrice. Finally,
mounting medium for fluorescence, Vectashield® with DAPI (H-1200, Vector Laboratories,
Burlingame, CA, USA) was used and the images were obtained using the Nikon Eclipse
80i microscope.

2.9. Statistical Analysis

Data are expressed as the mean ± standard deviation (SD). All experimental groups
had a sample size of at least n = 3. Statistical analysis was performed using the two
population Student’s t-test assuming unequal variances. Differences were considered
significant when p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).

3. Results
3.1. Synthesised D-Periodic Collagen Fibrils STEM Characterization

The STEM characterization performed of type I native collagen reference material,
the purified collagen sponge (PCS), is shown in Figure 2a. In comparison, this work
self-assembled collagen fibrils obtained from atelocollagen (Figure 2c), displaying the
characteristic D-periodic banding contrast pattern of 67 ± 2 nm [5,9]. Synthesized fibril
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suspension precursor of 3.57 ± 0.05 mg mL−1, as quantified by the Bradford assay, is
formed of nanostructured fibrils of 150 ± 20 nm diameter average.
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Figure 2. Collagen fibrils scanning transmission electron microscopy (STEM) characterization:
(a) Negatively stained sample micrograph of the native reference material, the purified collagen
sponge (PCS), showing the typical D-periodic contrast pattern of 67 nm; (b) schematic draw of
hierarchical atelocollagen molecules self-assembly; (c) negatively stained sample micrograph of the
synthesized collagen fibrils precursor.

3.2. DCol-NfGel Matrix Processed Pieces Characterization

Pieces of 6.0 mm diameter and 1.5 mm thickness were obtained with total porosity of
92%. Cross-sectional area FEG-SEM images of the presented biomaterial, DCol-NfGel, and
the control materials, the bare gelatin, NfGel, and the bare collagen, DCol, are comparatively
displayed in Figure 3a,c,e. Micrograph of DCol-NfGel (Figure 3c) shows the formation
of a homogeneous nanofibrillar structure featuring fibers of 77 ± 30 nm diameter and
interconnected cavities of 0.58 ± 0.25 µm. For its part, the NfGel matrix (Figure 3e) of 90%
porosity, shows a similar structure but thicker nanofibers of 170 ± 50 nm diameter and
bigger cavities of 1.16 ± 0.36 µm. In this respect, it is important to note the difference of the
total biopolymer content (w/v) used for the two type of materials, 5.4% (w/v) for NfGel
and 4.1% (w/v) for DCol-NfGel. This small difference in the solids content variable could
well significantly affect final nanofibrillar microstructure [22].
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sectional area field emission gun scanning electron microscopy (FEG-SEM) image of DCol; (b) transmission electron
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In comparison, FEG-SEM observations of the 99% porosity DCol matrix (Figure 3a)
show more irregular morphology with frayed fibers and fibril diameters of 150 ± 92 nm,
in good agreement with STEM analysis carried out on the collagen precursor suspension
(Figure 2c). The characteristic D-periodic contrast pattern was confirmed for DCol-NfGel
matrix using TEM (Figure 3d), similarly for the DCol material (Figure 3b). Interestingly,
D-periodic pattern resolution of the TEM observations was high for the DCol-NfGel in
comparison with the bare collagen, DCol, material (Figure 3b,d).

The X-ray diffraction (Figure 4a) and FT-IR (Figure 4b) analyses of DCol-NfGel matrix
were also performed in comparison with the two synthesized control materials DCol and
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NfGel, as well as the native collagen, PCS. PCS shows a semi-crystalline diffractogram
where three 2 theta ranges can be differentiated: a first low peak at 2θ = 5.5◦ (d = 1.60 nm),
a second wider peak at 2θ = 7.9◦ (d = 1.12 nm) and finally, a broad band in the range of
2θ = 12–27◦. This broad band overlaps noticeable peaks at 2θ = 15.2◦ (d = 0.58 nm), 21.5◦

(d = 0.41 nm), 23.0◦ (d = 0.39 nm) and 23.9◦ (d = 0.37 nm). Observed peaks did not match
with any International Centre for Diffraction Data (ICDD) card of inorganic compounds
confirming actual correspondence with the collagen fibrils organized structure. Both, DCol
and DCol-NfGel, showed crystalline peaks at 2θ = 5.5◦ and 2θ = 15.2◦, 21.5◦, 23.0◦ and
23.9◦, similar to those detected in the native PCS material. Although, the broad peak at
2θ = 7.9◦ is not clearly shown in these synthesized matrices, an incipient intensity signal
cannot be disregarded. The d-spacings of 1.60 nm and 1.12 nm, have been correlated to
intermolecular lateral packaging of collagen fibrils [7,39]. Therefore, the peak at 2θ = 7.9◦

could well correspond to the higher supramolecular level. The other d-spacings of 0.41 nm
and 0.37 nm match with the left-hand helix collagen chain d-spaces [39–42]. As expected, the
bare gelatin NfGel matrix did not show any diffraction peak besides the typical amorphous
halo from 2θ = 12◦ to 2θ = 29◦. These results are indicative that the D-periodic structure is a
constitutive structural feature of the atelocollagen-processed matrices. Especially relevant,
is the high crystallinity obtained for DCol-NfGel considering its low collagen content of
2.6 wt.%.
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Figure 4. (a) X-ray diffraction patterns and (b) Fourier-transform infrared spectroscopy analyses of DCol-NfGel matrix and
control materials.

Normalized FT-IR spectra analyses presented in Figure 4b, exhibit amide bands of
N–H stretching at ~3326 cm−1 (Amide A), C–H stretching at ~3098 cm−1 (Amide B), C=O
stretching at 1635 cm−1 (Amide I), N–H deformation at ~1540 cm−1 (Amide II), N–H
deformation at ~1237 cm−1 (Amide III) and also the C–H, CH2– and CH3– stretching
vibrations in the 2980–2830 cm−1 range [43–46]. The relative intensity absorbance bands of
Amide I, II and III are higher for the collagen rich materials DCol and PCS, in comparison
with NfGel and DCol-NfGel. The effect is associated with the collagen denaturation process
occurring in gelatin biopolymers [43,45]. Likewise, correlated to collagen denaturation,
the Amide A band at 3320 cm−1 ascribed to the N-H stretching vibration is clearly less
resolved for NfGel and DCol-NfGel than for DCol and PCS [45].
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3.3. M-DCol-NfGel Matrix Processed Pieces Characterisation

Pieces of 5.2 mm diameter and 1.8 mm thickness were obtained with total porosity
values of 96% and 94%, respectively, for the M-DCol-NfGel and the control material M-
NfGel. As expected, total porosity values for M-DCol-NfGel and M-NfGel matrices are
higher than corresponding porogen-free processed counterparts.

Spherical cavities of 140 ± 30 µm size showing neighbor macropore interconnectivity
and biopolymer nanofibers of 60 ± 20 nm sizes were measured in the macropore walls for
both materials as they are distinguishable in FEG-SEM micrographs in Figure 5. The XRD
analysis of M-DCol-NfGel (Figure 5b) showed sharp peaks at 2θ = 5.5◦, 21.5◦ and 23.9◦,
indicating similar collagen fibril structure definition as for the related porogen-agent free
processed, DCol-NfGel, matrix.

(a)	
 (b)	


(f)	
(e)	


(c)	
 (d)	


100 µm  

100 µm  

2 µm  

2 µm  

500 µm  

Figure 5. M-DCol-NfGel matrix processed pieces’ field emission gun scanning electron microscopy (FEG-SEM) and X-
ray diffraction (XRD) characterization: (a) Low magnification FEG-SEM cross-sectional area image of M-DCol-NfGel
showing macropore interconnectivity (arrows); (b) M-DCol-NfGel XRD pattern; (c) M-DCol-NfGel cross-sectional area low
magnification FEG-SEM image; (d) M-DCol-NfGel higher magnification FEG-SEM image of selected area pointed to by
the arrow inset in micrograph (c); (e) M-NfGel control material cross-sectional area low magnification FEG-SEM image;
(f) M-NfGel higher magnification FEG-SEM image of selected area pointed to by the arrow in micrograph (e).
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The water uptake ability for the macroporous matrix materials suggests good wetting
and permeability performance for both materials (Figure 6). Values of 1560 and 1550 wt.%
water uptake for M-NfGel and M-DCol-NfGel, respectively, were measured after 96 h water
immersion (Figure 6). Although both materials show quite similar profiles with time, the
value at 120 h for M-NfGel is slightly lower than the previous one at 96 h. This result might
indicate not only the beginning of M-NfGel degradation, which is normal for a slightly
crosslinked protein, but also that M-DCol-NfGel is more stable.
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3.4. In Vitro Cell Culture Studies
3.4.1. MC3T3 Cells Viability

DNA quantification after 48 h was measured for DCol-NfGel in comparison with the
two control materials, NfGel and DCol (Figure 7). As expected, DCol contains the highest
number of cells, particularly in comparison with the bare gelatin matrix NfGel (p < 0.001).
However, the results indicate that NfGel functionalization using only 2.6 wt.% of D-periodic
atelocollagen produces a greater than 50% increase of quantified cells (p < 0.01).
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3.4.2. hMSCs Viability

Processed macro-porous matrices, M-DCol-NfGel and control M-NfGel, were cultured
using hMSC cells. DNA quantification after 12 and 72 h culture are plotted in Figure 8a.
The plot show that values of 13.9 ± 1.6 ng and 9.3 ± 1.4 ng were measured, respectively, for
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M-DCol-NfGel and M-NfGel after 72 h, indicating that at this time culture DNA values for
M-DCol-NfGel were significantly higher compared to NfGel (p < 0.05). These data suggest
that hMSCs grow faster on the M-DCol-NfGel. Figure 8b shows calcein AM staining images
of the hMSCs (live cells green stained cytoplasm) seeded on both matrices after the 12 and
72 h of culture. In good agreement with DNA quantification, not only higher number of
cells but also more widespread morphology were observed after 72 h on M-DCol-NfGel in
comparison with the M-NfGel matrix.
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Besides, the actin staining (Figure 9) demonstrates that cells were well spread on both
matrices, particularly for the M-DCol-NfGel where a well-organized actin cytoskeleton was
clearly observed within the first 12 h. The images show cells in different planes and some of
them are clearly placed inside of the matrix cavities. This observation helps to indicate that
the material porosity and interconnectivity is large enough for cells to migrate through.
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3.4.3. mESCs Viability

Figure 10 present the mESCs culture on the open macroporous M-DCol-NfGel matrix
and bare gelatin matrix control material M-NfGel, after 4 and 48 h. DNA quantification
results in Figure 10, indicate that after 48 h, M-DCol-NfGel matrices showed significant
DNA increases to 36.8 ± 8.9 ng, whereas no growth was measured for cells on M-NfGel. A
value of only 3.7 ± 1.1 ng, was measured for M-NfGel after 48 h culture.
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4. Discussion

In this work, a nanofibrillar gelatin-based biomaterial has been fabricated and success-
fully functionalized using D-periodic collagen nanofibers synthesized from atelocollagen.
The related macroporous material, M-DCol-NfGel, of ~140 µm interconnected cavities and
pore walls of nanofibrillar structure, has also been processed and proved reproducible in
the solid form, showing D-periodic features, being stable after hydration in wet media
and biocompatible for 3D cell culture. M-DCol-NfGel matrix has been obtained using a
processing route consisting of three-step procedure integration: monomeric atelocollagen
self-assembly, TIPS process and porogen leaching. The TIPS technique is an easy, scalable
and controllable procedure to obtain nanofibrous matrices [47,48], which is advantageous
in comparison with other processing methods such as electrospinning [49–51], as it does
not use toxic solvents. In this respect, electrospinning has been reported to cause collagen
triple-helix degradation due to the use of fluoroalcohol-based agents [52–56]. Tsai et al. [57]
reported that electrospinning of collagen results in the formation of denatured collagen
showing no significant differences with electrospun gelatin matrices in terms of either cell
attachment or proliferation of MG63 osteoblast-like cells. Besides, electrospinning usually
produces densely packed nanofibers, which hinder cell infiltration and the accumulation
of charge during the process limits the increase of thickness of the material piece [58].

Another interesting aspect of the presented material is the use of a toxin-free, DHT
physical cross-linking method. Prevalent chemical cross-linking processes can induce
cytotoxicity, inflammation, encapsulation, calcification and other unwanted effects [59,60].
Davidenko et al. [61] reported that carbodiimide cross-linking treatment may significantly
decrease the content of carboxylic groups on glutamate and aspartate amino acid residues
which can no longer interact with integrins leading to an important decrease of platelet
attachments on highly crosslinked collagen biomaterials. In this sense, this work showed
that DHT applied temperature and vacuum parameters preserve the material’s D-periodic



Biomimetics 2021, 6, 20 14 of 19

structure, as demonstrated by TEM, XRD and FT-IR, whilst achieving required matrix
stability and improved performance for cell culture.

Additionally, this work’s formulation using atelocollagen minimizes biomaterial
antigenicity and represents an important advantage of M-DCol-NfGel. Atelocollagen is
obtained after proteolytic elimination of telopeptides, which have been shown to trigger
most of the collagen immunogenic reactions [62]. Hence, the proposed synthesis, based
on highly purified atelocollagen monomers and gelatin, eliminates some of the important
drawbacks in the production of collagen biomaterials based on animal extracted polymeric
collagen such as the batch-to-batch variability and the risk of including impurities or
infectious agents. Moreover, performed characterization of DCol-NfGel and its macropore
counterpart, M-DCol-NfGel, confirms a robust D-periodic functionalization of the gelatin-
based material using minimal atelocollagen content of only 2.6 wt.%.

In fact, the MC3T3-E1 cells’ viability assays performed for functionalized DCol-NfGel,
confirm a significant 50% increase of DNA with respect to the bare gelatin material. In turn,
hMSCs and mESCs proliferation is also promoted in the M-DCol-NfGel functionalized
matrix, in comparison to the gelatin single-component M-NfGel. Phalloidin and DAPI
staining performed to hMSCs culture also indicate better spreading and well-organized
actin cytoskeleton in M-DCol-NfGel matrix. Besides, complementary data of extended
cell culture studies during 21 days (please see Appendix A) indicate that the matrices
are stable without indication of major material degradation. Further, immunostaining
for differentiation markers indicate production of discrete foci of osteocalcin and osteo-
pontin deposition for D-periodic functionalized material after 14 and 21 days of culture,
respectively, (Appendix A, Figure A1).

The viability promotion observed for the D-periodic functionalized matrices may
well be correlated to the presence of collagen triple helical structures which provide the
regular presentation of the integrin-binding amino acid sequence motif, GFOGER, along
the fibril surface at a repetitive distance of ~67 nm [63]. GFOGER interacts with cells via
the β1-containing integrins, α1β1, α2β1, α10β1 and α11β1 [61]. In this respect, hMSCs
express α2β1 and type I collagen promotes proliferation and osteogenesis of hMSCs via
activation of ERK and Akt through an integrin α2β1-independent pathway [64]. On the
other hand, hMSCs are able to recognize gelatin RGDs through expression of α5β1 and
αvβ3 [61,65]. Besides, α5β1 integrin has been shown to play an important role in hMSCs
migration and osteogenic differentiation, while upregulating αVβ3 integrin can negatively
regulate osteogenic differentiation [65]. In turn, mESCs express α2 and β1 integrin subunits
and α5β1, which is the major functional integrin receptor, expressed on the cell surface
of undifferentiated mouse ES-D3 cells [66,67]. Collagen I has been shown to regulate the
self-renewal of mESCs through α2β1 integrin and discoidin domain receptor 1, (DDR1) [68]
and to promote mESCs stemness and pluripotency when used in the feeder-free culture
system of a collagen-grafted polyethersulfone nanofibrous scaffold [69]. Pimton et al. [67]
indicated that the upregulation of α5β1 integrin and adhesion of ES-D3 cells to specific
ECM molecules are linked to early stages of mESC commitment to meso-endodermal
differentiation. Further, mESCs seeded in type I collagen scaffolds have shown not only
to induce osteogenic differentiation of ESCs, but also to prevent ESCs from producing
unwanted tumors when injected in vivo [70]. Other data indicating cell morphology and
cell cycle alteration by collagen structure have been reported by Koohestani et al. [71].
These authors, demonstrated that using non-polymerized (monomeric) and polymerized
(fibrillar) collagen, leiomyoma smooth muscle cells (LSMCs), had distinct morphologies
on the different collagen matrices and their basal as well as platelet-derived growth factor
(PDGF)-stimulated proliferation varied for these matrices.

Our results not only confirm D-periodic collagen structure relevance in ECM cell
recognition and cell-matrix interaction but also indicate that nanofibrillar gelatin function-
alization using a small content, 2.6 wt.%, of D-periodic collagen fibrils can significantly
improve cell response performance. The presented data could well then be interesting to
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other types of polymeric matrix applications, particularly for those of synthetic nature,
lacking natural cell recognition motifs.

This work presents a novel combination of techniques and synthesis strategies for
the fabrication of an open-macroporous, nanofibrillar, collagen-like biomaterial, M-DCol-
NfGel, which is suitable for cell culture in terms of stability for the wet culture media,
cell infiltration properties and biocompatibility. Also of importance are its advantages
concerning the precursor components safety and cost, the defined and reproducible formu-
lation composition and the use of full toxin-free processing. Future work to characterize
extended biodegradability and biocompatibility performance in vitro and in vivo, will
provide valuable information to undertake further material processing optimization.

5. Conclusions

D-periodic collagen nanofibrils, synthetically self-assembled from atelocollagen
monomers, were successfully incorporated into gelatin using TIPS processing to obtain
functionalized nanofibrous matrices resembling natural tissue ECM structures. A porogen-
leaching technique was also integrated to optimize higher macropore size as well as pore
interconnectivity. XRD, FT-IR and TEM techniques confirmed the resolution of D-periodic
collagen structure in final matrices after the processing, including DHT cross-linking treat-
ment. Applied D-periodic collagen fibril functionalization promotes MC3T3 cells, hMSCs
and mESCs viability and proliferation in vitro.

In summary, the presented fabrication strategy provides cost-effective, composi-
tionally controlled and toxin-free collagen-like biomaterials based on gelatin, with en-
hanced biomimicry and bioactivity, through incorporation of minimal amounts of self-
assembled atelocollagen.
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Appendix A

hMSCs Differentiation on M-DCol-NfGel Matrix and Control Material, M-NfGel: Osteocalcin
and Osteopontin Immunofluorescence

Cultivated hMSCs were fixed on the matrices using a solution of 4% formalde-
hyde (v/v) (F/1501/PB17, Fisher Chemical, Hampton, NH, USA) and 2% sucrose (w/v)
(S/8600/53, Fisher Chemical) in PBS after 14 and 21 days of incubation time. After washing
treatment with PBS, seeded matrices were incubated in permeabilizing buffer (sucrose,
NaCl, MgCl2, HEPES (10756254, Fisher BioReagents) and triton (T8787, Sigma-Aldrich) in
PBS). Then, the samples were incubated with 1% bovine serum albumin (BSA, 12841630,
Fisher BioReagents) in PBS and then, with anti-osteocalcin (sc-73464, Santa Cruz Biotech-
nology, Inc., Dallas, TX, USA) and anti-osteopontin (sc-21742, Santa Cruz Biotechnology,
Inc.) primary antibodies made in rabbit and diluted 1:50 in PBS/BSA containing phalloidin
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diluted 1:100. After 1 h incubation at 37 ◦C, the samples were washed thrice using 0.5%
Tween 20 in PBS. Then, samples were incubated with biotinylated anti-rabbit secondary
antibody made in horse and diluted 1:50 (BA-1100, Vector Laboratories) for 1 h at 37 ◦C in
darkness. After washing treatment, fluorescein isothiocyanate (FITC)-conjugated strepta-
vidin (SA-5001, Vector Laboratories diluted 1:50 in PBS/BSA was added for 30 min at 4 ◦C.
Finally, after washing treatment, the samples were mounted with Vectashield® with DAPI
(H-1200, Vector Laboratories) and the images were obtained using the Nikon Eclipse 80i
microscope (Nikon Instruments, Inc., Melville, NY, USA), Figure A1.
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immunoFigure 100. µm. The matrices’ ability to induce osteogenesis in the absence of additional induction media was 
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stained cells (actin (red), nucleus (blue) and osteocalcin/osteopontin (green)). After 14 days, osteocalcin deposits were 
visible for both M-NfGel and M-DCol-NfGel matrices but with more abundance on M-DCol-NfGel. After 21 days of 
culture, green fluorescence for osteocalcin deposit increased on both, but, again, notably on M-DCol-NfGel samples. Os-
teopontin was only observed in deposits at day 21, but only M-DCol-NfGel showed significant deposits. The scale bars 
indicate 100 µm. 
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Figure A1. hMSCs culture on M-DCol-NfGel matrix and control material, M-NfGel, after 14 and
21 days: (a) Osteocalcin immunofluorescence; (b) Osteopontin immunofluorescence, the scale bars
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indicate 100 µm. The matrices’ ability to induce osteogenesis in the absence of additional induction
media was studied using osteocalcin and osteopontin immunostaining after 14 and 21 days of cell
culture. The figure displays stained cells (actin (red), nucleus (blue) and osteocalcin/osteopontin
(green)). After 14 days, osteocalcin deposits were visible for both M-NfGel and M-DCol-NfGel
matrices but with more abundance on M-DCol-NfGel. After 21 days of culture, green fluorescence for
osteocalcin deposit increased on both, but, again, notably on M-DCol-NfGel samples. Osteopontin
was only observed in deposits at day 21, but only M-DCol-NfGel showed significant deposits.
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