1. Materials synthesis

Figure S1. ¹H-NMR spectrum of [(TPA)Zn(OH₂)](ClO₄)₂ (1) in CD₃OD

Figure S2. ¹H-NMR and ¹³C-NMR spectra of 6-methylpyridine-2yl pivalate (5) in CDCl₃

Figure S3. ¹H-NMR and ¹³C-NMR spectra of 6-(bromomethyl)pyridine-2-yl pivalate (6) in CDCl₃

Figure S4. ¹H-NMR and ¹³C-NMR spectra of 6-(((pyridin-2-ylmethyl)(pyridin-3-ylmethyl)amino)methyl)pyridin-2-ol (**9**) (TPA-OH) in CD₃OD

Figure S5. ¹H-NMR and ¹³C-NMR spectra of [(TPA-OH)Zn(OH₂)](ClO₄)₂ (2) in CD₃OD

Figure S6. FT-IR spectra of (1) and (2). Red: (1), Black: (2)

2. Absorbance change of (1) and (2)

Trial	A ₀	A _e	A ₀ -A _e	d(ln(A'-A _e))/dt	-Q factor	V_{int}	$k_{ m obs}$
(1) - 1	0.55956	0.008081	0.551479	-0.35327	-0.0734	0.0142998604	1692.291171
(1) - 2	0.27742	0.010168	0.267252	-0.26744	-0.0734	0.005246182416	620.8499901
(1) - 3	0.27768	0.01109	0.26659	-0.29554	-0.0734	0.00578304	684.383412
(1) - 4	0.27449	0.011543	0.262947	-0.28587	-0.0734	0.00551738	652.9443269
(1) - 5	0.28415	0.012756	0.271394	-0.26954	-0.0734	0.005369323	635.4228337
(2) - 1	0.49676	0.037881	0.458879	-0.28831	-0.0734	0.009710776	1149.204295
(2) - 2	0.28235	0.030796	0.251554	-0.36684	-0.0734	0.006773357	801.5807208
(2) - 3	0.28303	0.03236	0.25067	-0.35064	-0.0734	0.006451488	763.4896774
(2) - 4	0.28202	0.03291	0.24911	-0.31199	-0.0734	0.005704635	675.1047859
(2) - 5	0.28121	0.032542	0.248668	-0.31593	-0.0734	0.005766427	682.4174441

3. Conversion between observed and pH-independent rates

Total concentration of catalyst equals

$$[Zn_{tot}] = [Zn - OH^{-}] + [Zn - OH_{2}].$$

The observed rate constant is given by,

$$v_{init} = k_{obs}[Zn_{tot}][CO_2]$$

where v_{init} is the initial velocity measured. The pH-independent rate constant is

$$v_{init} = k_{ind} [Zn - OH^-] [CO_2]$$

where k_{ind} is the pH-independent form.

Combining the two equations yields,

$$k_{ind} = k_{obs} \frac{[Zn_{tot}]}{[Zn - OH^{-}]} = k_{obs} \left(\frac{[Zn - OH_{2}] + [Zn - OH^{-}]}{[Zn - OH^{-}]} \right) = k_{obs} \left(\frac{[Zn - OH_{2}]}{[Zn - OH^{-}]} + 1 \right)$$

The fraction of deprotonated species is obtained using the Henderson-Hasselbalch equation.

$$pK_a - pH = \log \frac{[Zn - 0H_2]}{[Zn - 0H^-]}$$

Therefore, the relationship between k_{ind} and k_{obs} is given by,

$$k_{ind} = k_{obs}(10^{pK_a - pH} + 1)$$