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Abstract: A unified description involving structural morphology and composition, dispersion of
optical constants, modeled and measured reflection spectra and photonic crystal characterization
is devised. Light reflection spectra by the cuticles of scarab beetles (Chrysina chrysargyrea and
Chrysina optima), measured in the wavelength range 300–1000 nm, show spectrally structured broad
bands. Scanning electron microscopy analysis shows that the pitches of the twisted structures
responsible for the left-handed circularly polarized reflected light change monotonically with depth
through the cuticles, making it possible to obtain the explicit depth-dependence for each cuticle
arrangement considered. This variation is a key aspect, and it will be introduced in the context of
Berreman’s formalism, which allows us to evaluate reflection spectra whose main features coincide
in those displayed in measurements. Through the dispersion relation obtained from the Helmholtz’s
equation satisfied by the circular components of the propagating fields, the presence of a photonic
band gap is established for each case considered. These band gaps depend on depth through the
cuticle, and their spectral positions change with depth. This explains the presence of broad bands in
the reflection spectra, and their spectral features correlate with details in the variation of the pitch
with depth. The twisted structures consist of chitin nanofibrils whose optical anisotropy is not large
enough so as to be approached from modeling the measured reflection spectra. The presence of a
high birefringence substance embedded in the chitin matrix is required. In this sense, the presence of
uric acid crystallites through the cuticle is strongly suggested by frustrated attenuated total reflection
and Raman spectroscopy analysis. The complete optical modeling is performed incorporating the
wavelength-dependent optical constants of chitin and uric acid.

Keywords: circular polarization; structural color; natural photonic material; photonic band gap;
photonic crystal

1. Introduction

Reflection of light by cuticles of scarab beetles has attracted the attention of researchers since
the beginning of the 20th Century, even more so after the circularly polarized nature of the reflected
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light was established [1]. Natural systems from bird feathers and butterfly wings to scarab cuticles,
displaying what is referred to as structural color, were previously considered throughout the 19th
Century by brilliant minds like the third and the fourth Lord Rayleigh [2,3] and Isaac Newton [4].
With the work of Robert Hook, optical microscopy contributes to a first approach to the structure
of some of these iridescent natural systems [5]. Regarding scarab beetles, detailed descriptions of
the self-assembled cuticular structures have been available since the use of electron microscopes [6].
Constructive interference between reflected light rays propagating through micron-sized structures
composed of organized nano-sized elements is responsible for the color of these natural systems.
Application of radiative transfer models has allowed characterization of the relationship between
cuticular structures and corresponding reflection spectra. For instance, the iridescent green and
purple colors of the elytra of the Japanese beetle Chrysochroa fulgidissima have been correlated with the
presence of corresponding multilayered structures through its cuticle [7]. In this case, successive layers
differ slightly in refractive index, and each one is assumed as optically homogeneous in the context of
the radiative transfer model used to calculate reflection spectra consistent with the observed colors
and linear polarization of the reflected light. Higher complexity optically anisotropic chitin-based
natural arrangements have been considered in the last few decades, since the pioneering work of
Neville and Caveney [8]. As in the cuticle of many scarab species, optical anisotropy is the result of
a twisted or helical structure where each layer of chitin nanofibrils is slightly rotated with respect
to the previous one until completion of several cycles throughout the cuticle; the thickness of these
helicoidal stacks is usually between 10 and 20 µm. The circular polarization of the reflected light is
determined by the chirality of the twisted structure. Most of the scarab beetles considered reflect
left-handed circularly polarized light [9]. These kinds of structures, at larger scales, have also been
found in crustaceans [10], in some fruits where the fibrils are made of cellulose [11], as well as in some
plants’ leaves [12]. The role played by the circularly polarized reflected light in aspects such as thermal
regulation, mating behavior, signaling, camouflage, etc., is a current theme of research [13,14], as well as
the development of methods to produce functional polymer-based or cholesteric materials with similar
twisted structures [15–17]. Regarding the twisted arrangements found through the cuticle of scarab
beetles, structures characterized by a single pitch value with a small variation of the pitch from a certain
depth through the cuticle and helicoidal arrangements with various pitches have been considered
in connection with the spectral properties of the reflected light [18,19]. Both spectrophotometric-
and ellipsometry-based analyses have been reported [20,21]. Several works have considered the
optical properties of the cuticle of Chrysina scarabs. Photometric and ellipsometric measurements were
reported by Goldstein for Chrysina resplendens, Chrysina clypealis and Chrysina gloriosa scarabs [22].
The silver-like appearance of Chrysina chrysargyrea has been qualitatively explained in terms of an
assumed chirped structure through its cuticle [23], with no modeling or measurements. The cuticle
surface of C. gloriosa has been studied by optical microscopy [24], and its polarizing properties
analyzed through ellipsometric measurements [25,26]. Calculated reflection spectra by cuticles of
Chrysina aurigans and Chrysina optima are reported [27], with no specification of the depth dependence
of the pitch and with no comparisons with experimental measurements. Co- and cross-polarized
measured reflection spectra by the cuticle of Chrysina resplendens have been compared with calculated
ones with the incorporation of a scaled depth dependence of the pitch [28]. A photonic crystal
characterization of the cuticle of Hoplia coerulea has been performed to correlate the presence of
fluorophores with the density of states available for the photons emitted by fluorescence [29].

In the context of our research work, scanning electron images have shown that scarabs of the
Chrysina genus are characterized by monotonously depth-dependent pitches, i.e., the spatial period
gradually changes with the depth throughout the cuticle. For each specific species and varieties
considered, when the depth dependence of the pitch is introduced in a radiative transfer model
appropriate to describe the propagation of electromagnetic radiation through anisotropic uniaxial
media, the calculated reflection spectrum is very similar to the measured one. This has been done for
the silver-like and red C. aurigans and for the golden- and silver-like C. chrysargyrea beetles [30–35],
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including a photonic crystal (PC) characterization of C. aurigans varieties. These works introduced for
the first time the explicit incorporation of a depth-dependent pitch in the radiative transfer formalism,
dispersion in the optical constants of the involved materials, together with a PC characterization
correlated with the presence of broad bands in the reflection spectra of these natural systems.

In this work, we consider the optical properties of anisotropic twisted arrangements found in the
cuticle of Chrysina scarab beetles through the application of Berreman’s radiative transfer formalism.
Sections 2 and 3 include details about the optical, morphological and composition characterization
of the elytra whose optical properties and PC behavior will be considered, for three scarab beetles of
the Chrysina genus: the golden-like C. chrysargyrea, the silver-like C. chrysargyrea and the silver-like
C. optima. Spectrophotometric measurements of light reflection and scanning electron microscopy
(SEM) were used to optically and morphologically characterize the cuticles of Chrysina scarab beetles.
Additionally, frustrated attenuated total reflection of infrared light and Raman spectroscopy were
used to carry out the compositional characterization of the elytra of C. optima specimens. Section 3
briefly describes the so-called 4 × 4 matrix approach, with some introductory applications focused
on synthetic structures with a single pitch, a pitch linearly dependent on the depth through the
cuticle and a pitch with a quasi-parabolic dependence on depth. The method followed to carry out
a PC characterization of helicoidal arrangements is also described in this section, with application
to a linearly graded arrangement and a structure with a quasi-parabolic dependence of the pitch on
depth. The modeling of the photometric and photonic characterization of the chiral structures in
nature includes graphics displaying both calculated reflection spectra and the depth dependence of
the photonic band gap (PBG), its local limits and the effective spectral limits of the reflection band.
Correlations between depth dependences of the band gaps and features of the reflection spectra
are discussed.

2. Materials and Methods

2.1. Specimens and Sample Preparation

This research was developed with the approval of the Institutional Biodiversity Commission of the
University of Costa Rica, resolution number 40. C. optima specimens used through this research were
captured alive in the Tapantí National Park rainforest in Costa Rica. They were collected according to
the permissions in the document “Resolución-SINAC-ACLAP-GMRN-INV-129-2016”. The collection
was performed during the new moon period between April and May in 2017 and 2018. The specimens
were attracted by means of a high intensity mercury lamp placed in from of a white screen faced
towards the hillside of the mountain. After collection, the scarabs were put in a freezer to avoid
degradation of the material. The C. chrysargyrea specimens were obtained through the material transfer
agreement, from the collection of the former National Institute of Biodiversity (INBio), document
number MTA-BP-001-11. Specimens were dried in a oven for preservation purposes.

Samples for SEM were prepared following the method reported in [35] to determine the pitch
of the elytra. For Raman spectroscopy and Fourier-transform infrared spectroscopy in frustrated
attenuated total reflection configuration (FTIR-ATR), samples were prepared from the elytra upper
surface of eight non-cured specimens carefully scraped with a steel blade to produce a fine micron-sized
powder. Two reference samples were used: a low humidity and high purity uric acid (>99%) purchased
from Fisher Scientific (Hampton, NH, USA) and a finely grained chitin powder extracted from shrimp
shells. Raman spectra were recorded with an Alpha300R confocal Raman microscope (WiTec, Ulm,
Germany) using a 785 nm excitation laser. Each spectrum was recorded with an integration time
of 500 ms and an average of 100 scans. The infrared spectra were measured with a Universal ATR
sampling accessory installed on a Frontier FIR/MIR spectrometer, both from Perkin Elmer (Waltham,
MA, USA). Resolution was set to 0.5 cm−1 for an average of 50 scans per sample. The powder samples
were covered with a gold foil and pressed against the diamond crystal, maintaining the same reading
in the pressure gauge for each sample.
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2.2. Visual appearance

Figure 1 shows pictures of representative specimens of the jewel scarabs (golden- and silver-like
C. chrysargyrea and C. optima) use in this study. Pictures where taken with a Nikon D7200 digital
camera and AF-S 105 f/2.8 lens (Nikon Corporation, Tokyo, Japan). Exposure for all the images
was normalized by spot-measuring the white-matte background to the side of the specimens and
setting it to 1.33 f/stops above the meter reading. This exposure setting was chosen so none of
the image RGB channels became oversaturated. The visual appearance of the scarabs is shown in
Figure 1A,D,G. Figure 1B,E,H shows photographs taken when the light reflected by the elytra passes
through a left-handed circular polarizer (LHCP) (HOYA PL-CIR, Hoya Corporation, Tokyo, Japan)
before reaching the objective of the camera, and a right-handed circular polarizer (RHCP) (HOYA Pro1
MC PL-C, Hoya Corporation) was used to take the pictures shown in Figure 1C,F,I. As previously
reported, the appearance of the scarabs when using a RHCP is determined by a background of
non-coherent reflected radiation associated with the presence of defects (deviations from the gradual
variation in the orientation of the chitin nanofibrils) through the chiral structure [31,33]. These defects
are not related to the presence of a ripple structure superimposed on the broad band of reflection
displayed for some of the Chrysina beetles like the golden C. aurigans and C. chrysargyrea [36]. When this
non-coherent component of the reflected radiation is partially removed by the LHCP, the appearance
of the cuticle is more intense. A visual comparison of the first two columns shows that most of the
reflected radiation is left-handed circularly polarized. The reflection spectra were measured using an
Avaspec 3648 fiber optic spectrometer (Avantes, Apeldoom, The Netherlands) in the wavelength range
300–1000 nm and using a halogen deuterium lamp AvaLight DHc (Avantes). A flat aluminum mirror
was used as a reflectance standard STAN-SSH (Ocean Optics, Winter Park, FL, USA) for normalization
of the measurements. An area of approximately 2 mm2 was illuminated with non-polarized normally
incident radiation. Details on the procedure used to measure the spectra and to ensure reproducibility
are reported elsewhere [30].
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Figure 1. Appearance and circularly polarized light reflection from elytra of three jewel scarabs of the
Chrysina genus. (A–C) Golden- and (D–F) silver-like C. chrysargyrea, and (G–I) silver-like C. optima
specimens. The visual appearance of (A) golden C. chrysargyrea, (D) silvery C. chrysargyrea, and (G)
silvery C. optima is shown on the left column. The middle column (B,E,H) shows photographs taken
with a LHCP between the illuminated elytra and the objective of the camera. A RHCP was used for the
photographs shown on the right column (C,F,I).
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3. Results and Discussion

3.1. Measured Reflection Spectra

Figure 2 depicts the corresponding reflection spectra through the ultraviolet (UV), visible and
near-infrared (NIR) wavelength ranges. The elytron of the golden C. chrysargyrea shows a spectrum
with a reflection band from ≈525 to 1000 nm (containing a ripple structure beyond 600 nm), and it
goes from 350 to 1000 nm for the silver-like scarabs whose spectra have a broad reflection band at
NIR wavelengths. It also shows a flattened shoulder just after the reflection edge. For the silvery
C. chrysargyrea, several peaks are depicted in the short wavelengths side of the visible range, with a
plateau for wavelengths between 540 and 610 nm. The spectrum of the C. optima has additionally two
broad peaks in the visible range. Similar measured spectra, in the wavelength range 450–1000 nm, have
been reported for these two scarab beetles [37]. The presence of shoulders or plateaus is a consequence
of a range of depths through the cuticle where the pitch is almost constant (see Section 3.5). Typically,
the reflections spectra gradually decrease when approaching 1000 nm in wavelength.
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C. chrysargyrea, and (C) silver-like C. optima scarabs illuminated with normally incident non-polarized
light. NIR: Near infrared; UV: Ultraviolet.

3.2. Scanning Electron Microscopy Analysis and Morphology of the Cuticle

Depth dependence of the apparent pitch was measured by SEM to characterize each twisted
structure in the cuticles of the beetles under study. This was previously reported for the C. chrysargyrea
scarabs [35]. Their apparent thicknesses are close to 11.5 and 10.9 µm for the golden and silvery
C. chrysargyrea scarabs, respectively. The apparent thickness of the C. optima’s elytron is the largest one,
≈17.2 µm. Following a similar method as described in [35] to determine how the pitch of the C. optima
changes with depth through the cuticle, Figure 3 shows a cut through the cuticle with the added violet
lines coinciding with those planes where the chitin nanofibrils are parallel to the cut. The plane of the
cut could be inclined with respect to the plane normal to the surface, with β as the angle of inclination.
Changes in the orientation of the chitin nanofibrils, every 180◦, can be correlated with the depth z
through the cuticle, and as a consequence of this, the discrete depth dependence of the apparent pitch
can be established. From this set of z-values, whose uncertainties are close to δz = 5 nm, a smoothed
curve is obtained and used to interpolate when applying Berreman’s formalism. Determination of
these parameters from SEM images allows us to depict the depth dependence of the apparent pitches
(Figure 4) corresponding to the cuticles of the scarabs shown in Figure 1. The depth dependence of
the golden-like C. chrysargyrea shows an extended quasi-parabolic behavior, and as commented on
before, this fact is directly correlated with the ripple-structured broad band displayed in its reflection
spectrum. The pitches of the silver-like beetles show small decreases near the surface of the structures,
followed by monotonously increasing values showing some shoulders for certain ranges of depth.



Biomimetics 2018, 3, 30 6 of 20

Biomimetics 2018, 3, x FOR PEER REVIEW  6 of 20 

 

 
Figure 3. Scanning electron microscopy image of a cross-section through the cuticle of a C. optima 
scarab. The added violet lines, which cover a depth close to 17.2 μm, indicate those planes where the 
chitin fibrils are parallel to the cut of the twisted structure. Scale bar: 5 μm. 

   

Figure 4. Depth dependences of the apparent pitches of the cuticles of (A) golden C. chrysargyrea, (B) 
silvery C. chrysargyrea, and (C) silvery C. optima scarab beetles. Maximum (PM) and minimum (Pm) 
values of the apparent pitches are indicated. 

3.3. Composition 

Chitin is a natural polymer with a low birefringence. Besides the twisted structure of chitin 
nanofibrils, the existence of a high birefringent substance embedded between the arrangement of 
chitin is required to approach the measured reflection spectra from modeling. The occurrence of 
crystallites of such a material through twisted structures of chitin nanofibrils in cuticles of Chrysina 
scarabs was established some time ago, particularly when considering C. resplendens and C. optima 
specimens. Our choice of uric acid for this strongly birefringent substance follows the original 
determinations of Caveney [38], who recognized the presence of absorption bands characterizing the 

Figure 3. Scanning electron microscopy image of a cross-section through the cuticle of a C. optima
scarab. The added violet lines, which cover a depth close to 17.2 µm, indicate those planes where the
chitin fibrils are parallel to the cut of the twisted structure. Scale bar: 5 µm.

Biomimetics 2018, 3, x FOR PEER REVIEW  6 of 20 

 

 
Figure 3. Scanning electron microscopy image of a cross-section through the cuticle of a C. optima 
scarab. The added violet lines, which cover a depth close to 17.2 μm, indicate those planes where the 
chitin fibrils are parallel to the cut of the twisted structure. Scale bar: 5 μm. 

   

Figure 4. Depth dependences of the apparent pitches of the cuticles of (A) golden C. chrysargyrea, (B) 
silvery C. chrysargyrea, and (C) silvery C. optima scarab beetles. Maximum (PM) and minimum (Pm) 
values of the apparent pitches are indicated. 

3.3. Composition 

Chitin is a natural polymer with a low birefringence. Besides the twisted structure of chitin 
nanofibrils, the existence of a high birefringent substance embedded between the arrangement of 
chitin is required to approach the measured reflection spectra from modeling. The occurrence of 
crystallites of such a material through twisted structures of chitin nanofibrils in cuticles of Chrysina 
scarabs was established some time ago, particularly when considering C. resplendens and C. optima 
specimens. Our choice of uric acid for this strongly birefringent substance follows the original 
determinations of Caveney [38], who recognized the presence of absorption bands characterizing the 

Figure 4. Depth dependences of the apparent pitches of the cuticles of (A) golden C. chrysargyrea,
(B) silvery C. chrysargyrea, and (C) silvery C. optima scarab beetles. Maximum (PM) and minimum (Pm)
values of the apparent pitches are indicated.

3.3. Composition

Chitin is a natural polymer with a low birefringence. Besides the twisted structure of chitin
nanofibrils, the existence of a high birefringent substance embedded between the arrangement of chitin
is required to approach the measured reflection spectra from modeling. The occurrence of crystallites
of such a material through twisted structures of chitin nanofibrils in cuticles of Chrysina scarabs was
established some time ago, particularly when considering C. resplendens and C. optima specimens.
Our choice of uric acid for this strongly birefringent substance follows the original determinations of
Caveney [38], who recognized the presence of absorption bands characterizing the UV spectrum of uric
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acid. Caveney’s slow extraction of uric acid, accompanied by loss of the metallic reflectivity, when using
70% alcohol or with 1% ammonia, is consistent with a polar and acidic substance (uric acid pKa1 = 5.4).
There are many reports of the occurrence of uric acid in insect cuticles. For example, it is present in
the white stripes of the armyworm Pseudaletia separata [39] and in the reflecting cuticle of the light
organ of fireflies [40]. However, exists some controversy with regard to Caveney’s chemical extraction
experiments performed in the 1970s that may not support this claim [7,41].

Initially, Raman and FTIR-ATR spectra were measured directly from the elytra for both non-cured
samples obtained from recently captured specimens and cured samples from a collection. Cured
samples showed a reduced Raman signal by a factor of 10 with respect to the fresh samples. In addition,
the spectra showed a broadening and changes in position of the vibration modes. The FTIR-ATR
spectra showed significant differences in water content (structural water embedded on the chitin
arrangement) and degradation of organic compounds. To minimize those effects, the elytra upper
surface of eight non-cured specimens was carefully scraped with a steel blade to produce a fine
micron-sized powder like that shown in the insets of Figure 5A. The two reference samples were
measured; chitin powder (red line) can be easily distinguished from that of the uric acid (blue line),
as shown in Figure 5B. The chitin and uric acid powder standards used are in excellent agreement
with previously reported studies [42,43]. Figure 5A shows two spectra measured from the powder
of C. optima cuticle (PCOC); the sample obtained from eight elytra specimens presented two distinct
particulates: (i) a white powder (lower-right inset in Figure 5A) that resembles chitin powder (inset in
Figure 5B); and (ii) a colored particulate (upper-left inset in Figure 5A) that appears more crystalline
than the other agglomerates judging from the narrow bands and strong signal measured in comparison
with the white crystals. There is a distribution of these types of crystals obtained from the elytra cuticle
as reported in [38]. Figure 5 shows the Raman bands for the PCOC sample at 497 (501)c, 630 (624)ac,
999 (897)c, 1002 (998)ac, 1043 (1060)c, 1045 (1037)ac, 1113 (1108)c, 1338 (1236)c, 1384 (1376)c, 1429 (1406)ac,
1607 (1596)ac and 1648 (1650)ac (in parenthesis, the position of the chitin (c) and uric acid (ac) standards;
all data in relative units of cm−1). The band spectra are a close match for those of the uric acid standard;
nonetheless, many of these vibration modes are also present in many other ring compounds [42].
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Figure 5. Spectral dependence of the Raman scattering intensity. (A) Raman spectra of white
(lower-right inset) and colored (upper-left inset) powders obtained by scraping of the cuticles of
C. optima specimens. (B) A reference spectrum of uric acid is shown together with the spectrum of
chitin powder obtained from shrimp shells (inset). a.u.: Arbitrary units.

Because the PCOC sample contains at least one known component, chitin, and an unknown
number of other organic compounds, it was not possible to obtain an exact matching of the vibration
modes with respect to the standards. Moreover, an exact reconstruction of the spectra from the
standards is not possible due to the lack of information regarding the nature of the environment in
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which the molecules are embedded. The position of the vibration modes may vary depending on the
chemical environment and composition of the samples. From the Raman analysis, we concluded that
it is likely that PCOC may contain a uric acid-type compound and, thus, we will use the term “uric
acid” to refer to it.

Additionally, absorbance measurements were performed by FTIR-ATR. Figure 6A shows the
measured infrared absorbance spectrum of the two standards, uric acid and chitin; both coincide in
their spectral details with those reported in the literature [44,45]. For wavenumbers between 500 and
1800 cm−1, both display absorption peaks with overlapping spectral positions. From 1800 to 2800 cm−1,
the light absorption by chitin is negligible [46], with a decreasing absorption tail approaching 2800 cm−1.
The full spectrum of the PCOC measured under the same conditions is also shown. At≈3000 cm−1, uric
acid presents a stretching vibration mode for the N–H bond [47] that it is not present in chitin. There are
no vibration modes of chitin at this spectral position, and the perpendicular stretching vibration mode
for the N–H bond is reported in the vicinity of 3264 cm−1 [44,47], as indicated in Figure 6A. Figure 6B
shows the absorption spectra of the uric acid standard, chitin powder standard, the PCOC sample
and three different homogeneous mixtures of uric acid and chitin (standards) for volume fractions
of uric acid of 0.500, 0.250 and 0.125. In the range 2400–3600 cm−1, the absorbance contributions of
uric acid and the natural polymer can be distinguished. At ≈3000 cm−1, the chitin standard does
not present a vibration mode different from the pure uric acid, as shown in Figure 6B. The PCOC
sample shows, in the vicinity of 3000 cm−1, a strong absorbance that resembles the convolution of
chitin and uric acid. The additional measurements in the infrared strongly suggest the presence of a
uric acid-type compound, in agreement with the Raman spectra. Without a careful chemical extraction,
it is not possible to confirm that the compound is pure uric acid. However, from the vibration spectra
presented, it is possible to conclude that the compound is a ring compound very closely associated
with uric acid.
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Figure 6. Spectral dependence of the infrared absorbance by chitin, uric acid, and powder from
C. optima cuticle. (A) Infrared absorption of samples of chitin powder, uric acid and powder from the
cuticle of a C. optima specimen (PCOP). (B) Infrared absorbance within a smaller wavenumber range,
including the absorption of chitin samples containing different volume fractions of uric acid (Fua).

A key point of this discussion is the birefringence nature of the compound associated with the
metallic-like structural color of these beetles [30–35], which should be deposited within the chitin
structure. There are many reports of doping or functionalized uric acid [48–52], but not all of them
present a birefringence [48]. The chemical extraction of the PCOC sample was attempted by using the
method suggested by Caveney [38]. The method was shown to be an extremely slow reaction, and
limitations were found regarding a sufficient amount of mass to perform a nuclear magnetic resonance
(NMR) analysis. This will be a subject of future investigations, in the case that a sufficient amount
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of sample is produced for analysis. By using the absorbance values at 3000 cm−1 and by assuming
that the uric acid-type compound has a mass density equal to the pure uric acid, we calculated the
average volume fraction for the cuticle of a C. optima specimen by linear regression as Fua ± ∆Fua =
0.17 ± 0.01. We neglected any other source of error in this estimation, because of the difficulty of
assessing this in terms of statistical methods; that is, the limitations in the preparation of more samples
for comparison due to the lack of specimens. This value will be used in the context of Berreman’s
formalism [53] to evaluate the average values of the ordinary and extraordinary refractive indices of
the structure, as well as its effective birefringence. It is important to mention that the PCOC was taken
from non-cured samples obtained from recently captured specimens, and the amount of water present
inside the structure is evident because of the increase in the absorbance at the end of the spectral range
(Figure 6B). Furthermore, the use of the calculated volume fraction (Fua = 0.17) on the calculation of the
reflection spectrum allows us to obtain a good fitting with the measured one (see Figure 2C and Figure
13A). This fact can be used to assess the quality of the method followed to determine the volume
fraction of uric acid. The only drawback of this method is the difficulty in obtaining sufficient “fresh”
samples for other species.

3.4. Modeling Synthetic Reflection Spectra with Berreman’s Formalism

Regarding the modeling of photometric measurements, Berreman’s formalism is suitable to
describe the propagation of electromagnetic radiation through uniaxial anisotropic media [53]. In this
approach, a plane parallel anisotropic structure, whose thickness is H, is divided into successive thin
layers, each one of thickness h. The h-value is set small enough to ensure numerical convergence in the
reflection spectra: H = Nh, with N the number of thin layers. The continuous tangential components
of the electric and magnetic fields at successive interfaces of these thin layers are related through the
layer transfer-matrix P = exp(−iko∆h), where ko = 2π/λ is the wavenumber of the incident radiation, λ

its wavelength and with the elements of Berreman’s propagation ∆ matrix depending on the angle of
incidence (ϕ), the refractive index of the medium covering the structure (nc), the refractive index of the
substrate beneath the chiral structure (ns), the chirality of the helical arrangement (γ), the extraordinary
and ordinary refractive indices (ne and no, respectively) or the respective dielectric functions (εe = ne

2

and εo = no
2), as given elsewhere [35]. The birefringence is given by ∆n = ne − no and the average

refractive index is nav = (ne + no)/2. The ∆ matrix also depends on the angle φ specifying the orientation
of the polarizable units: cholesteric macromolecules or chitin nanofibrils, for instance. This angle
depends on the pitch P through the relation φ = 2πz/P, where P can be a constant (P = Po) or dependent
on z, the depth through the twisted arrangement measured from its illuminated interface (P = P(z)).
Our computational implementation of this approach follows the formulation of Wöhler et al. [54] to
evaluate the layer transfer-matrices and that of Brink et al. [19] to compute the co- and cross-polarized
complex amplitude reflection coefficients for circularly polarized light [55]: rLL and rRR, and rLR

and rRL, respectively; and the corresponding reflections: RLL = |rLL|2, RRR = |rRR|, RLR = |rLR|2

and RRL = |rRL|2. Under non-polarized incident radiation, the total reflection RT is calculated as
follows: RT = (RLL + RLR)/2 + (RRL + RRR)/2. This means that when doing the measurements and the
calculations, there are no polarizers between the reflecting surface and the objective of the sensor
receiving the reflected light. In the Wöhler approach, successive layer transfer-matrices are evaluated
from the eigenvalues of Berreman’s propagation ∆ matrix.

We will apply Berreman’s formalism following a gradual procedure, in terms of how the pitch
depends on depth through the cuticle, going from the simplest case to those found in nature. In this
regard, our results can be compared with the literature on synthetic structures. On the other hand, this
approach allows us to show the correlation of some of the optical, structural and PC properties with
features of the reflection spectra.

First, we consider the evaluation of the reflection spectrum of a single-pitch cholesteric
right-handed liquid crystal (γ = 1) with the following specification: Po = 330 nm, H = 16Po, ∆n = 0.40
and no = 1.5 (ne = no + ∆n). The sample is normally illuminated (ϕ = 0) with non-polarized radiation, and
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the calculated total reflection spectrum is shown in Figure 7A. This system, with a high birefringence,
has been considered by Hong et al. [56] with their calculations performed by Berreman’s formalism,
as well as a finite element method. A very good agreement of our results with those reported
(see Figure 4 in [56]) is provided, with coincidence in the number of peaks and their amplitudes at both
sides of the reflection band. The optical band gap is centered at λo = navPo = 560 nm, with nav = 1.70 as
the average refractive index and bandwidth of ∆λ = ∆nPo = 132 nm.
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Figure 7. Reflection by chiral structures when normally illuminated with non-polarized light. (A) Total
reflection spectrum of a cholesteric liquid crystal with the following specification: Po = 330 nm, H = 16Po,
∆n = 0.40 and no = 1.5 [56]. (B) Reflection spectrum of a linearly graded left-handed twisted cholesteric
liquid crystal, whose pitch is given by P(z) = Pm (1 + az/H) with a = 0.458, H = 24Pm, Pm = 240 nm,
∆n = 0.40, and no = 1.5. Normal illumination of non-polarized radiation is assumed.

For wavelengths within the optical band gap, 50% of the incident radiation is reflected as
right-handed circularly polarized light. The larger the birefringence, the higher the top of the reflection
band, which approaches 50%, and the wider its width (see Figure 3 in [57]). Our second example
corresponds to a linearly graded left-handed pitch (γ = −1) given by P(z) = Pm (1 + az/H), with Pm

as the minimum value of the pitch, a = (PM − Pm)/Pm = ∆P/Pm, where PM is the maximum value of
the pitch (chirped structure). The following values are assumed: Pm = 240 nm, PM = 350 nm, a = 0.458,
H = 24Pm, ∆n = 0.4 and no = 1.60. By assuming normally non-polarized incident radiation, Figure 7B
shows the calculated broad band total reflection spectrum. This is in agreement with the spectrum
shown in Figure 6 in [56], which was calculated for a right-handed helical arrangement. The graded
pitch widens the reflection band. Both reflection spectra, the reported and the calculated, must coincide
for non-polarized incident light, although their circular polarizations correspond to those of the chiral
structures. The values of λo and ∆λ indicated in the figure were calculated as explained below, in the
context of the PC characterization of the helicoidal stack.

3.5. Photonic Crystal Characterization of Twisted Structures with Graded Pitches

In this section, the link between Berreman’s formalism and a PC characterization of the twisted
structure is introduced by considering two chiral arrangements with assumed depth dependences of
the pitches. A chiral twisted structure behaves like one-dimensional PC for that incident light whose
circular polarization coincides with the chirality of the arrangement. At least for sufficiently thick
structures, no photons with this chirality will be transmitted through the arrangement, for energies
within the spectral location of the reflection band. As we have reported in previous works [31,33],
when the pitch depends on the depth z through the arrangement, the spectral position of the PBG also
depends on depth, i.e., both the spectral limits of the local band gap λ − = λ −(z) and λ + = λ +(z)
depend on z. This fact explains why the reflection band is significantly broader than the PBG. For a
linearly graded pitch, application of the formalism devised in [34,35], with the dispersion relation



Biomimetics 2018, 3, 30 11 of 20

obtained from Hemholtz’s wave equation satisfied by the two orthogonal left- and right-handed
circularly polarized components of the propagating electric field, gives for the spectral limits of
the PBG:

λ ±(z) =
√

ε

Pm
[P(z)]2

√
1− K2

[1∓
√

1− (1− K2)(1 + Γ)]
, (1)

where ε = (εe + εo)/2, Γ = [P(z)∆P/πPmH]2 and K = (εe − εo)/(εe + εo). The z-dependent spectral
position of the PBG is λo(z) = [λ+(z) + λ−(z)]/2, and its local width is ∆λ(z) = λ+(z) − λ−(z).
The effective width of the reflection band is obtained from the minimum value of λ−(z) and the
maximum of λ+(z), i.e., min[λ−(z)] ≡ λmin and max[λ+(z)] ≡ λmax. The center of the reflection band
is at λo = (λmin + λmax)/2, and its effective width is ∆λ = λmax − λmin. For a helicoidal arrangement
with a linearly graded pitch, the reflection band is characterized by the following limits:

λmin =
√

εPm

√
1− K2

[1 +
√

1− (1− K2)(1 + Γm)]
, λmax =

√
ε

P2
M

Pm

√
1− K2

[1−
√

1− (1− K2)(1 + ΓM)]
, (2)

where ΓM = (∆PPM/πHPm)
2 and Γm = (∆P/πH)2. The pitch values are of the order of tenths of a

micrometer, and the thickness of the structures is around a few tens of micrometers. As a consequence
of this, Γm � 1 and ΓM � 1. The values of λmin and λmax can be approximated from the previous
Equation (2) and the spectral position of the center of the reflection band, as well as its effective
width becomes:

λo =
neP2

M + noP2
m

2Pm
, ∆λ =

neP2
M − noP2

m
Pm

, (3)

with λmin = noPm and λmax = nePM
2/Pm. Equation (3) is the extended version of those equations

valid for a single pitch structure (λo = navPo and ∆λ = ∆nPo, respectively), when considering chiral
chirped arrangements. It is conceptually erroneous to apply the equations λo = navPo and ∆λ = ∆nPo

when considering helical structures with graded pitches, as reported in [58], where λo was estimated
from navPo to show that the depth-dependent pitch values obtained for the cuticle of silver-like
C. chrysargyrea scarabs, based on the analysis of SEM images, are too small to justify the presence of
a reflection band extending towards the NIR [35,58]. In these cases, the correct way to explain the
effective width of the reflection band is by application of Equations (4)–(6) to obtain the minimum
value of λ− and the maximum value of λ+ for a specific depth dependence of the pitch. Namely,

Q(z) = q(z)
[

1− z
P(z)

dP
dz

]
, (4)

ε
(ω±

c

)2 1
Q2 =

1±
√

1− (1− K2)(1 + Γ2/Q4)

1− K2 , (5)

Γ =
q(z)
P(z)

[
2z

P(z)

(
dP
dz

)2
− 2

(
dP
dz

)
− z

d2P
dz2

]
, (6)

where q(z) = 2πγ/P(z), c is the speed of light in vacuum, and ω = 2πc/λ is the angular frequency
of the incident radiation whose wavelength is λ, as described in [35]. When we apply Equation
(3) to the linearly graded structure considered in Section 3.4, the following results are obtained:
λo = 702.5 nm and ∆λ = 636.8 nm, in good agreement with the reflection spectrum shown in Figure 7B.
With no approximations, by application of Equation (1) or following the method reported in [35], the
corresponding values are: λo = 702.0 nm and ∆λ = 634.0 nm. Figure 8 shows the depth dependence of
the local PBG ∆λ(z), its depth-dependent spectral limits λ+(z) and λ−(z) and its spectral position.
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Figure 8. Depth dependence of the photonic band gap (∆λ(z)), its spectral limits (λ+(z) and λ−(z)) and
central position (λo(z)). The spectral limits of the reflection band (λmin and λmax) are also indicated.

The pitch in cuticles of some Chrysina scarab beetles has shown a predominantly quasi-parabolic
depth dependence with a linear behavior in the deeper helicoidal layers (see Figure 6A in [35]).
The minimum value of the pitch corresponds to the vertex of the parabola, with the maximum
value close to the illuminated surface of the structure. With the aim of generating a pitch with these
characteristics, the parabolic section is calculated from P(z) = Pm + C (z − zo)2, with zo = αH (with α < 1)
and C = ∆P/(αH)2 to ensure that P(z = 0) = PM. From z1 = µH (with α < µ < 1), a linear dependence
holds: P(z) = A + B(z − zo) with B = 2C(z1 − zo) to match the slopes at z1 and A = Pm + C(z1 − zo)2

− B(z1 − zo) to ensure continuity of the P(z) function at z = z1.The following input values were used:
Pm = 210 nm, PM = 350 nm, H = 18Pm, no = 1.60, ∆n = 0.40. The values α = 0.5 and µ = 0.60 were
assumed. Figure 9A shows the depth dependence of the pitch that we use to evaluate the spectral
reflectance displayed in Figure 9B, which displays a broad structured reflection band from 282 to
918 nm. From Equation (1), with the application of Equations (4)–(6), the PC characterization depicted
in Figure 10 is obtained. The visual silvery appearance of this hypothetical structure depends on Bragg
reflection occurring in layers between a 0.5 and a 2.25 µm depth, as can be deduced from the analysis
of the PC behavior shown in Figure 10.
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Color coordinates, evaluated with the standard procedure established by the Commission 
Internationale de l’Éclairage (CIE), which is based on the use of the color-matching functions as 
commented elsewhere [32,59] and by assuming the AM1.5 solar spectrum (which corresponds to a 

Figure 9. Dependence of pitch on depth z and corresponding reflection spectrum of a chiral structure.
(A) Quasi-parabolic depth dependence of a helicoidal structure. Maximum (PM) and minimum
(Pm) values of the pitches are indicated. (B) Reflection spectrum of the structure by assuming
normally incident non-polarized light. The reflection band is centered at λo = 600 nm, and its width is
∆λ = 636 nm.
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Color coordinates, evaluated with the standard procedure established by the Commission
Internationale de l’Éclairage (CIE), which is based on the use of the color-matching functions as
commented elsewhere [32,59] and by assuming the AM1.5 solar spectrum (which corresponds to a solar
zenith angle of 48.2◦), are x = 0.337 and y = 0.335 with a luminous reflection Y = 42.2. The corresponding
RGB values are: R = 190, G = 169, and B = 164. The deeper layers contribute to the NIR reflection.

The reflection band displays a ripple structure for wavelengths between 370 and 620 nm, which is
produced by Bragg reflections at two ranges of depth: from the top of the structure to 0.8 µm of depth
and from ≈1.9 to 2.6 µm of depth. For depths between ≈0.8 and 1.9 µm, the PBG is in the ultraviolet
range, being responsible for the shoulder or narrow reflection band spectrally located between the
reflection edge and the beginning of the ripple structure. The presence of this shoulder is determined by
Bragg reflections at layers close to a 1.4 µm depth, where there is a range of depths with quasi-constant
PBG. The presence of the ripple structure is determined by enhanced Bragg reflection due to a graded
pitch with a parabolic or quasi-parabolic dependence on depth through some extended section of the
elytron. Chiral chirped arrangements do not display any ripple structure in their reflection spectra.

3.6. Optical Characterization of the Cuticle of C. chrysargyrea Scarabs

This section is focused on modeling the reflection spectra by the elytra of both the golden-
and silver-like C. chrysargyrea beetles. The correlation between optical properties and the cuticle’s
morphology has been investigated during the last few years by several research groups, involving
samples taken from beetles of the Chrysina genus. For example, the optical properties of seven species
of scarab beetles (C. macropus, C. peruviana, C. argenteola, C. resplendens, C. woodii, C. gloriosa, and
C. chrysargyrea) have been considered through ellipsometry measurements [21]. Our main purpose
when modeling the reflection spectra will be to reproduce the main spectral features displayed in
the optical measurements performed with normally incident non-polarized radiation. According
to Equation (1), λmin is proportional to Pm. The minimum value of the pitch is correlated with the
spectral position of the reflection edge. When using Berreman’s formalism to calculate reflection
spectra, with γ = −1, the spectral positions of the reflection edge at short wavelengths and of the
main reflection peaks are numerically sensitive to the angle of inclination (β). Moreover, this angle
modifies the depth dependence of the pitch from apparent to real values through the relation P(z)
→ P(z)/cosβ [35]. In this way, we optimized the β-value, obtaining 26◦ and 20◦ for the golden and
the silvery C. chrysargyrea, respectively. With these β-values, the thicknesses of the twisted structures
are 12.7 and 11.6 µm for the golden and silvery scarabs, respectively. The corresponding number
of pitches is the same for both chiral structures, i.e., 29. The use by Finlayson et al. of a scaled
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depth-dependent pitch in their simulations of the co- and cross-polarized light reflections by the
cuticle of a C. resplendens scarab can be alternatively interpreted as an implicit geometrical correction
through a β-angle close to 25◦ [28]. Application of Berreman’s method required the optical constants
of chitin and uric acid [60,61], incorporating their wavelength dependence. For the substrate of
the chiral structure, we have assumed ns = nav. An optically homogenous layer of wax covers the
structures whose refractive index nc is calculated from the model reported in [62]. The calculations
were performed with N = 3 × 104. The optimized volume fractions of uric acid are the same for
both scarabs: Fua = 0.40, to obtain, as much as possible, similar relative heights of the main reflection
peaks to those measured. The birefringence of chitin is small (∆nc = 0.035 [63]) as compared with
the birefringence of uric acid (∆nua = 0.31 [50]). The heights of the peaks in the calculated reflection
spectra are determined by the effective birefringence. The presence of flattened shoulders or plateaus
in the reflections’ spectra is an indication of high effective birefringence values. We use this fact to
optimize the volume fraction of uric acid, to approach, as much as possible, the main spectral features
displayed in the measured reflection spectra. The calculated total reflection spectra are shown in
Figure 11 for the two C. chrysargyrea scarabs, which were considered in a previous study [35]. Only
β and Fua are used as fitting parameters. Here, we report a better fitting of the reflection spectra,
particularly that of the silvery C. chrysargyrea at short wavelengths, as well as the PC characterizations,
which were not included previously. The primary reflection by the waxy coating of the cuticle, which
is around 3% at short visible wavelengths, was not included in the displayed calculated reflection
spectra. Comparing Figure 11A,B with the corresponding experimental measurements reported in
Figure 2A,B, we observed some similarities in the spectra with respect to the main features: spectral
position of the first reflection peak or shoulder, ripple structure or plateau around the middle of the
reflection band, and decreasing values when approaching the NIR. Figure 11 shows the width of the
reflection band (∆λ) centered at λo, whose values were calculated as explained in Section 3.5. Figure 12
shows the behaviors with depth through the cuticle of the local PBGs (∆λ(z)), of its limit (λ−(z) and
λ+(z)), and the limits of the effective width of the reflection bands (λmin and λmax). From Figure 12A,
we conclude that the visual golden appearance of the C. chrysargyrea is due to Bragg reflections at
layers of the cuticle whose depths are between 1.7 and 8.0 µm: the yellow contribution is produced by
reflections at depths between 2.5 and 7.0 µm, and the red component arises from reflections between
1.7 and 2.5 µm, and 7.0 and 8.0 µm. The layers located close to the surface, up to 1.7 µm, and those
from 8.0 µm to the bottom of the structure are responsible for the NIR reflection.
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Figure 11. Calculated total reflection spectra of cuticles of (A) golden-like C. chrysargyrea and
(B) silver-like C. chrysargyrea illuminated with non-polarized normally incident light. NIR: Near
infrared; UV: Ultraviolet.
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Figure 12. Variation with depth through the cuticle of the local photonic band gap (∆λ(z)) and of
its limits (λ+(z) and λ−(z), solid blue lines), for the two photonic crystals considered and correlated
with the cuticles of (A) golden C. chrysargyrea and (B) silvery C. chrysargyrea scarabs whose calculated
reflection spectra are displayed in Figure 11. The red line indicates the central position of the photonic
band gap, λo. NIR: Near infrared; UV: Ultraviolet.

The reflection spectrum shows that the UV, violet, blue, bluish and green light are not reflected.
This fact agrees with the information provided by the PC diagram in Figure 12A, where the minimum
of the effective reflection band (λmin = 513 nm) is above the mentioned spectral range. Regarding the
silver-like C. chrysargyrea, there is a small fraction of UV light reflected by superficial layers, and all
visible tones are reflected with the bluish colors emerging from layers beginning with the surface up to
1.5 µm (see Figure 12B). The green and yellow colors are due to Bragg reflections in layers between
1.5 and 6.5 µm in depth. The next micrometer in depth produces the red contribution, and the NIR
reflected light emerges from layers located from 7.5 to 11.5 µm. Similar correlations, showing how to
change the spectrum and corresponding color with the number of pitches contributing to the reflection,
was performed for C. aurigans scarabs [33].

3.7. Optical Characterization of the Cuticle of C. optima Scarabs

The total reflection spectrum by the cuticle of a C. optima specimen has also been measured
for normally incident non-polarized radiation (see Figure 2C). Three main peaks are distinguished,
with some superimposed irregular spectral structure. A similar spectrum, in the wavelength range
450−1000 nm, has been previously reported [64]. The monotonous depth dependence of the pitch is not
incorporated in the modeling of the reflection spectrum by these authors. Using the depth-dependent
pitch shown in Figure 4C, the reflection spectrum of the chiral structure has been calculated, with β = 10◦

and with the average volume fraction of uric acid previously estimated as described in Section 3.3
(Fua = 0.17). The thickness of the structure is H = 17.5 µm, and the number of pitches is 40.5. Figure 13A
shows the main three reflection peaks, with two smaller peaks between those spectrally located in the
visible range. The spectral positions of the main peaks and those of the measured ones match very well.
The fraction of uric acid estimated from the infrared absorbance spectra leads to peak heights close to the
observed ones. The calculated spectrum was obtained by assuming a normal distribution in the depth
dependence of the pitch around the mean value displayed in Figure 4C. The standard deviation was set
to 5 nm, which is equal to the uncertainty in the determinations of z- and P(z)-values from SEM images.
The relations between heights of the reflection peaks have been improved in the fitting by assuming a
pitch dependence of the uric acid volume fraction, according to the assumed relation fua = C/P(z) with
the average volume fraction given by Fua = C/Pav. Then, fua = FuaPav/P(z) with the average value of
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the pitch evaluated from Pav = (Pm + PM)/2cosβ with Pm = 250 nm and PM = 424 nm (see Figure 4C).
The minimum value of fua is 0.14, close to the back side of the structure, and the maximum value is 0.23,
close to the illuminated surface. The mechanism involved in the incorporation of uric acid crystallites
through the protein–chitin matrix of the chiral structure is basically unknown. The high birefringence
required to approach the measured reflection spectra from modeling indicates that the orientation
of the crystallites is not at random. The protein–chitin matrix is probably permeated by liquid uric
acid, perhaps containing nanocrystals, being conducted throughout the submicron-sized pore canals
distributed across the chiral structure and nearly perpendicular to the planes containing the oriented
chitin nanofibrils. This uric acid could be conducted from each pore canal to the interstitial space
between chitin nano-fibril, where it could grow to form oriented larger crystals. The larger the pitch
of the structure is, the larger the available space between planes of chitin nanofibrils. This means that
as the pitch increases with depth, it would be expected to have larger embedded uric acid crystallites.
Beyond a certain size, around 10 nm, the larger the size of the crystallites, the larger the amount of
space free of uric acid, i.e., the space between crystallites. Consequently, the volume fraction of uric
acid will decrease as the pitch of the structure increases. It is based on this analysis that we assumed an
inverse relation between the volume fraction of uric acid and the spatial period or pitch.
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band gap (Δλ(z)) and its limits (λ+(z) and λ−(z)), for the photonic crystal correlated with the cuticle of 
C. optima scarab. The limits of the reflection band, λmin and λmax, are also indicated. Labels 1, 2, and 3 
correlate the spectral positions of the reflection peaks with the local depth dependence of the pitch. 
(C) Photonic crystal characterization in the last micrometer of the twisted structure. NIR: Near 
infrared; UV: Ultraviolet. 

  

Figure 13. Reflection spectrum and photonic crystal characterization of the cuticle of the C. optima
scarab. (A) Calculated total reflection spectra of the cuticles of C. optima illuminated with non-polarized
normally incident light. (B) Variation with depth through the cuticle of the local photonic band
gap (∆λ(z)) and its limits (λ+(z) and λ−(z)), for the photonic crystal correlated with the cuticle of
C. optima scarab. The limits of the reflection band, λmin and λmax, are also indicated. Labels 1, 2, and 3
correlate the spectral positions of the reflection peaks with the local depth dependence of the pitch.
(C) Photonic crystal characterization in the last micrometer of the twisted structure. NIR: Near infrared;
UV: Ultraviolet.

According to the PC diagram in Figure 13B, the reflection edge is displayed at λmin = 388 nm.
The PBG is displayed up to λmax = 1209 nm, as shown in Figure 13C, which depicts the PC
characterization in the last micrometer of the twisted structure. The effective width of the reflection
band is then ∆λ = 821 nm. In this case, a novel feature is observed: the PBG disappears for thicknesses
between 17.06 and 17.17 µm, and for wavelengths between λmax = 1209 and λmin,2 = 1270 nm. This
λmin,2 becomes the spectral edge of a secondary PBG. The first reflection peak, labeled 1 within the
violet-blue colors (Figure 13B), is due to the localized quasi-parabolic dependence of the pitch through
the superficial layers whose depths are from the illuminated surface up to 1.8 µm in depth. The second
peak, labeled 2 and with a maximum in the yellowish colors, is associated with the shoulder displayed
in the depth dependence of the pitch for depths between 3.0 and 5.5 µm. The broader structured peak
in the NIR, labeled 3, is due to the shoulder of the pitch’s depth dependence for z-values between 8
and 13 µm.
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4. Conclusions

The optical properties of cuticles of Chrysina scarab beetles have been considered from
spectrophotometric measurements and modeled with Berreman’s formalism, which incorporates
the anisotropy in the optical constants of the materials: the natural polymer chitin nanofibrils and
the uric acid high birefringent embedded crystals. In addition to the optical constants with their
wavelength dependences, variations with depth of the pitches characterizing the chiral structures
found through the cuticles have been provided to the model. This dependence has been obtained
from analysis of SEM images of cross-sections of the cuticles. Fourier-transform infrared and Raman
spectroscopies were used to characterize the composition of the cuticles, particularly to corroborate,
with a high degree of certainty, the presence of uric acid in the cuticle of C. optima. With only one or
two fitting parameters (uric acid volume fraction and inclination angle), the main spectral features of
the measured total reflection spectra are reproduced from the application of the mentioned radiative
transfer matrix formalism, when considering reflection spectra by cuticles of golden C. chrysargyrea,
silvery C. chrysargyrea, and silvery C. optima scarab beetles. A method described previously in [35] has
been devised to characterize the PC behavior of the twisted structures, for that circular polarization
component matching the chirality of the arrangement. Using this method, the PBG is obtained as a
function of the depth through the cuticle, its spectral limits, as well as the limits of the broad reflection
band displayed both in the measured reflection spectra and in the calculated ones. We expect that the
developed methodology reported in this article can be used to predict the optical properties of other
natural systems with chirality and simulated or synthetized functional chiral arrangements.
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