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Abstract: With the advent of nanotechnology, by looking further deep down into the molecular level,
today, we are able to understand basic and applied sciences even better than ever before. Not only has
nanoscience and nanotechnology allowed us to study the composing structures of materials in detail,
it has also allowed us to fabricate and synthesize such nanostructures using top-down and bottom-up
approaches. One such field, which has been significantly influenced by the dawn of nanotechnology
is biomimetics. With powerful spectroscopic and microscopic tools presenting us with images like
double nanostructured pillars on the lotus surface for superhydrophobicity, the conical protuberances
of moth eye demonstrating anti-reflection properties and nanostructured spatulae of gecko feet for
high adhesivity, we are now able to fabricate these structures in the lab with properties showing
close resemblance to their natural counterparts. Here, we present a review of various nanostructures
that exist in nature, their fabrication techniques and some of their promising future applications. We
hope this review will provide the reader with a basic understanding of what biomimetics is and how
nanotechnology has significantly influenced this field.
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1. Introduction

Biomimetics or biomimicry is one of the most intriguing fields of the contemporary world.
In layman terms, it means the transfer and implementation of abstract principles and concepts from
living nature to fulfil our requirements of obtaining better materials and efficient machinery. From the
designing of aircraft by studying the flight of birds [1] to manufacturing photonic integrated circuits
by studying wing patterns of a butterfly [2], the field of biomimicry has always caught man’s attention.
The solution to some of the most complex material fabrication problems and the design of system
models already exist in nature and can be duplicated by looking more closely at the structures and
patterns present in nature. This is what biomimetics does. It involves the study of how nature works, its
models, various processes by which those models are executed and the different elements constituting
the model.

Delving deep into the history of the subject, it has been a remarkable journey for bioinspired
studies. From the old records of Leonardo Da Vinci studying bird flight [3], to the progress made
by Otto Lilienthal by deriving inspiration from white stork flight to make objects fly that are heavier
than air [4], biomimetics have come a long way since it first originated. Designing electronic circuits
like the Schmitt trigger by studying nerve propagation in squids, the fabrication of novel materials
with properties like self-healing [5], self-cleaning and superhydrophobicity [6], the synthesis of
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super glues and adhesives [7] and anti-reflection coating technologies [8] are all a fruitful result
of biomimetics research.

In this review, we will be focusing on the nanostructures present in nature that have inspired the
design and synthesis of novel materials. The points that we consider in this review are: (1) the
biomimetic material does not contain any part directly obtained from nature and is artificially
fabricated; and (2) the nanoscale must be regarded as the base while designing such a biomimetic
material. To further elaborate on these points, here, we exclude the studies where natural moieties were
altered in some way to make them function according to our needs, and this procedure was referred to
as biomimetic approach. An example of this method includes functionalization of deoxyribonucleic
acid (DNA) for obtaining novel properties [9]. Additionally, we also exclude studies where the design
as a whole was influenced from any natural models or processes and was not directly inspired from
nanostructures of its material. For example, we exclude the design of planes being inspired by bird
flight (relating to differences in air pressure and movement of wings) [1], research in the diving
behavior of animals to study diving in humans and other similar studies. It should also be noted that
the biologically inspired nanostructures we review here are listed in no particular order; nor is this a
complete list of such structures. As more nanostructures are being studied and incorporated into the
literature, new biomimetic materials are being fabricated which will continue to have a major impact
on human applications.

2. Role of Nanotechnology and Nanostructures in Biomimetics

It was only with the advancement in the field of nanotechnology that we were able to study the
nanostructures present in nature. Since most of the wonders of nature take place at the molecular level,
i.e., in the nanoscale, only when powerful analytical techniques like scanning tunneling microscopy
(STM) [10] and atomic force microscopy (AFM) [11] were developed, were we able to look closely at the
spectacular working of natural materials. For example, we were able to mimic gecko feet to fabricate
materials in the lab with the dual characteristics of superhydrophobicity, as well as high adhesivity
towards water [12], but only after their nanostructured spatulae were studied. Another famous example
is that of a lotus leaf [13], which has been used to synthesize self-cleaning, superhydrophobic surfaces.
This again happened only when double nanostructured pillars present on the surface of a lotus leaf
were studied and mimicked. This superhydrophobic property is rightly called the “lotus effect”.
Thus, we are now able to synthesize bioinspired materials in the lab by using various top-down and
bottom-up nanomaterial synthesis techniques. The top-down approach involves consecutive cutting
or slicing of bulk material to obtain smaller and smaller particles until nanosized particles are obtained
(e.g., mechanical ball milling); whereas the bottom-up approach involves self-assembly of small
precursor particles to obtain the desired nanomaterial (e.g., processes involving chemical synthesis).
Examples relevant to the field of biomimetics include fabricating structures mimicking gecko feet by
plasma enhanced chemical vapor deposition [14], chemical synthesis of artificial antennas—using
bis(phenylethynyl)anthracene (BPEA), borondipyrromethene (BDPY) and zinc tetraarylporphyrin
(ZTAP)—and reaction centers (using porphyrin, fullerene and carotenoid) for mimicking the process of
photosynthesis in the lab [15] and utilizing the roller nanoimprint fabrication technique for fabricating
moth eye-like conical protuberances [16]. Thus, in a nutshell, the development of sophisticated tools
and techniques to uncover the secrets of nanostructures and their synthesis methods is what has led
to tremendous progress in the field of nanotechnology, and this was responsible for contributing a
substantial amount of progress in biomimetics, thus realizing its full potential.

3. Different Types of Biomimetic-Inspired Nanomaterials and Their Synthesis

Although there are a number of nanomaterials that have been artificially synthesized by
mimicking the nanostructures present in nature, we will cover here some of the most important
materials with great future application potential. We begin by looking at the double nanostructured
pillars on the surface of a lotus leaf showing superhydrophobicity and study their design pattern
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for artificial synthesis. This is followed by the study of nanostructured spatulae of gecko feet and
their dual characteristic of superhydrophobicity and high water adhesivity. We then look at how the
biological wound healing process is mimicked to follow a synthetic self-healing process for producing
self-repairing materials. Next, we jump over to flora, studying the process of photosynthesis in detail
and its mimicry for the generation of hydrogen fuel. Going back to the animal kingdom once again,
we look at the nanostructures of moth eye, butterfly wings and frog toe pads. Simultaneously, we also
look at some of the fabrication techniques for these nanostructures and their potential applications.

3.1. The Lotus Effect

Superhydrophobicity is based on the concept of contact angle and roll-off angle. For a surface to
be called superhydrophobic, the contact angle (θ) between the water droplet and the surface should be
as high as possible, and the roll-off angle (α) should be as low as possible, as shown in Figure 1a,b.
Any rough surface can become wet in two ways. Firstly, if the liquid droplet penetrates completely into
the rough surface to reach its troughs, it is known as homogeneous wetting; see Figure 1c. Secondly,
if the troughs of the rough surface have any other fluid or air trapped inside them, then there is
heterogeneous wetting; see Figure 1d.

Figure 1. Water droplet on a rough surface. (a) Contact angle (θ); (b) Roll-off angle (α); (c) Homogeneous
wetting; (d) Heterogeneous wetting. Adapted with permission from [17]. Copyright 2004, American
Chemical Society.

The type of wetting is a major contributing factor to the superhydrophobicity of the material.
It has been found [17] that the lotus leaf follows a heterogeneous type of wetting. The reason why
nature prefers heterogeneous wetting over homogeneous wetting is because in the former, the wet
area is always less as compared to the latter, as shown in Figure 1c,d. This ensures that the contact
angle for a water droplet on the surface of a lotus leaf following the heterogeneous wetting regime is
greater and not lower, as in the case of the homogeneous wetting regime. This makes for an easier
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roll-off of the water droplet from the lotus leaf and, thus, has a lower roll-off angle. The type of wetting
plays such an important role in superhydrophobicity that if water is made to condense in the troughs
of a lotus leaf [18], the surface of the leaf starts demonstrating a homogeneous wetting character, thus
becoming hydrophilic with a contact angle much lower than 90◦.

Barthlott and Neinhuis [19] first collected data on how dirt-contaminated lotus leaves self-cleaned
themselves due to their superhydrophobic characteristics. It was years later that the researchers found
that it was the effect of surface roughness and the wetting regime of the lotus leaf surface that resulted
in the self-cleaning effect. Furthermore, it was found [20] that the surface roughness of a lotus leaf
was due to multiple nanostructured pillars (Figure 2a) (with sizes in the range of 200 nm to 1 µm)
on its surface. Figure 2b illustrates a drop of mercury on the surface of a lotus leaf. Thus, it was
now possible to fabricate a design that would mimic the superhydrophobic behavior of a lotus leaf.
A double-pillared structure design as shown in Figure 3 is found to be best suitable for fabricating
superhydrophobic self-cleaning surfaces by greatly amplifying the contact angle.

Figure 2. Lotus effect. Scanning electron microscopy (SEM) images of (a) double nanostructured pillars
on the surface of a lotus leaf and (b) composite mercury drop on top of the rough surface of a lotus
leaf making a large contact angle. Adapted with permission from [20]. Copyright 2004, American
Chemical Society.

Figure 3. Biomimetic design inspired from the double nanostructured pillars on the surface of a lotus leaf.
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The double pillared nanostructures can be artificially fabricated using the soft lithographic
imprinting technique [21]. In this method, the lotus leaf is used as a natural template, and a liquid
polymer is cast on the surface of this lotus leaf. When solidified, this polymer layer is peeled off
to form a negative template. Another layer of the same or a different polymer is then cast on this
negative template and peeled off in a similar fashion to transfer the nanostructures, mimicking the
surface morphology of the lotus leaf on this second layer. Many polymers like poly(dimethylsiloxane)
(PDMS) [22,23], poly(vinyl chloride) (PVC) [24] and poly(ethylene oxide) (PEO) [25] have been used to
form negative templates and thus, superhydrophobic surfaces.

Much work has been done in the field of superhydrophobic surfaces in the last decade.
However, still, we do not see them readily available in the market. This is because, although
superhydrophobic surfaces have been fabricated in the lab with very high contact angles and very low
roll-off angles, these are not durable enough to be commercialized. They are susceptible to dynamic
impact, mechanical deterioration, environmental and chemical degradation and organic or bacterial
contamination. Moreover, the tests that are conducted for durability by different researchers are
also not standardized and, thus, fail to support industrial-level manufacturing of superhydrophobic
surfaces. Inevitably, today, the area of interest in this field is the fabrication of superhydrophobic
surfaces with high durability [26]. Furthermore, as these coatings are implemented in areas where
they are subjected to various kinds of environments, additional properties like anticorrosion,
antifouling, self-healing capabilities, UV-B blocking, flame retardancy and oil repellency are actively
researched [27,28].

3.2. Gecko Feet

Gecko lizards are found throughout the world in places with warm climates. They are of particular
importance due to their feet, which allow them to climb any surface whether smooth or rough, inverted
or vertical, without any problem. This characteristic feature of gecko feet results from their unique
microstructured setae (3–7 µm in diameter and 20–70 µm in length), which are keratinous hairs
present in millions on the surface of their feet, and each seta is further subdivided into hundreds of
nanostructured spatulae (100–200 nm in diameter). The setae are superhydrophobic in nature, making
a contact angle of 160◦ with water [29]. However, it has also been found that not only these setae
showed superhydrophobicity, but also an adhesive property towards water. This is a very unique
dual characteristic behavior of gecko feet, which make them superhydrophobic, as well as highly
adhesive towards water at will. The adhesion property is temperature-dependent as observed by
Niewiarowski et al. [30], who found that adhesion of gecko feet towards a water droplet was halved at
32 ◦C than at 12 ◦C.

Figure 4 demonstrates the microstructures and nanostructures present on the surface of gecko
feet and their characteristic features in detail. The inset to the left of Figure 4a shows a drop
of water almost perfectly spherical in shape on the foot of an anesthetized gecko revealing its
superhydrophobic character, whereas the inset to the right demonstrates how a water droplet clinches
to the surface of the gecko foot even when it is turned 90◦, showing its highly adhesive behavior
towards the droplet. Figure 4b–d shows scanning electron microscopy (SEM) images of setae and
spatulae, whereas Figure 4e,f illustrates the schematic as to how setae and spatulae are responsible for
providing a superhydrophobic, as well as highly adhesive dual character to gecko feet. Autumn and
Hansen [31] first demonstrated the superhydrophobicity of setae by isolating them on a glass substrate
and mimicking the arrangement as shown in Figure 4e. However, to demonstrate its highly adhesive
behavior due to the very large number of nanopillared spatulae coming in contact with the water
droplet, the arrangement as shown in Figure 4f can be used.
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Figure 4. High-adhesion superhydrophobic surface of gecko feet. (a) Gecko lizard; the inset on
the left shows the superhydrophobic character, and the inset on right shows the highly adhesive
characteristic of gecko feet; (b) Scanning electron microscopy (SEM) image of the gecko foot at
low magnification; (c) High magnification image of the gecko foot with visible microstructured
setae; (d) nanostructured spatulae branching out from single seta in a high resolution SEM image;
(e) Schematic of the superhydrophobic character of gecko setae with the water droplet; (f) Schematic
of the highly adhesive character of gecko setae with the water droplet. Reproduced from [32] with
permission of The Royal Society of Chemistry.

Such a high adhesive force of gecko feet is said to be the result of van der Waals interactions [29,33]
as in the case of solid–solid adhesion, but here, it is between the water droplet and the numerous
nanopillared spatulae. It has also been speculated that the actual contact area between the water
droplet and spatulae is much larger than we predict [34], which provides the gecko feet with this kind
of highly adhesive behavior. The role of capillary-induced adhesion also cannot be ruled out [35].

Liu et al. [32] fabricated superhydrophobic, as well as highly adhesive polyimide films with
densely packed microclusters and nanopillars mimicking gecko feet via anodic aluminum oxide (AAO)
templates. A value of about 66 ± 3 µN was obtained for the adhesion force between liquid–solid (i.e.,
water droplet–polyimide film) measured using the highly sensitive microelectromechanical balance
system. Qu and Dai [14] mimicked gecko feet using vertically aligned single-walled carbon nanotubes
(VA-SWCNTs), which they synthesized using the plasma enhanced chemical vapor deposition
(PE-CVD) technique and a fast heating process. The micro- and nanostructures mimicking gecko feet
fabricated using this technique also demonstrated excellent thermal and electrical properties making it
possible for them to be used at higher temperature (∼125◦ as compared to scotch tape and super glue)
and in semiconductor devices, respectively.

More recently, inspired from the self-cleaning capabilities of gecko feet without the use of water,
focus has been shifted to the fabrication of artificial dry self-cleaning membranes [36]. Furthermore,
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due to their highly adhesive nature, gecko feet-inspired mimics have demonstrated their use for
the pick up and drop off microparticles, which has further led to the manufacturing of complex
micropatterns. This property of gecko feet-inspired artificial adhesives is now being used in many
potential applications like in micromanipulation for the fabrication of microelectromechanical systems
(MEMS) and in biomedical devices [37].

3.3. Self-Healing

The skin that covers the body of all vertebrates is composed of two main layers: the epidermis
(outer layer) and the dermis (inner layer) [38]. In case we sustain an injury, these two layers of
skin tear apart or are removed, exposing internal body tissues to the environment. This sets in the
natural process of wound healing by our body, which forms the basis of our next biomimetic approach.
To grasp the concept of self-healing in materials, it is essential to discuss the process of wound healing
in belief, which is done next.

The wound healing process takes place in three steps: (i) hemostasis or blood clotting and
inflammation; (ii) proliferation or tissue growth; and (iii) maturation or tissue remodeling [39].
Hemostasis is the cessation of blood flow at the site of injury to prevent blood loss. This happens
by first sticking of blood platelets at the injury site, which then takes an amorphous shape to further
promote clotting. Simultaneously, a chemical response is generated and sent, activating fibrin, which
glues all of these platelets together to form a clot that stops the blood flow [40,41]. After this, the white
blood cells engulf all of the bacteria and pathogens along with dead and damaged cells that are present
at the injured site by a process known as phagocytosis [42]. This happens during the inflammation
phase. In the next step, i.e., proliferation, new blood vessels form [43] along with the structural support
provided by extracellular matrix [44]. Epithelial cells proliferate, as well providing cover for the newly
formed tissue [45], and finally, wound contraction ensures decreased wound size. In the third and last
step, collagen is realigned along wound boundaries, and unneeded cells undergo programmed cell
death or apoptosis. Figure 5 presents a pictorial representation of the wound healing process.

Figure 5. Skin wound healing. Hand abrasion (a) on the day of injury; (b) three days after injury;
(c) 17 days after injury; and (d) 30 days after injury.

Inspired by the self-healing capabilities of the human body, we are on our way to create smart
materials that are able to self-heal based on a process similar to wound healing. Figure 6 shows
demonstrates similarities between the two processes of biological wound healing and synthetic
self-healing. As can be seen from the figure, the two processes are strikingly similar in nature.
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Figure 6. Similarities between the biological wound healing process and the synthetic
self-healing process.

In synthetic self-healing, the first step is an actuation or triggering mechanism, which takes place
if a crack develops. This is followed by a second step in which the material is transferred to the affected
site leading to a third and final step of carrying out the repair operation of the affected area as per the
healing mechanism applied. There are a number of healing mechanisms that can be implemented as
discussed in subsequent paragraphs. It is also worth noting that not only humans and animals, but
plants [46] also demonstrate self-healing capabilities by fighting against infection from pathogenic
plants and preventing themselves from desiccation [47], i.e., extreme dryness.

Different types of materials like polymers and their composites [48], cementitious materials [49],
ceramics [50] and metals [51] are being actively researched to provide them with self-healing
capabilities. For example, smart polymeric materials possessing self-healing capabilities are being
synthesized in three different ways, namely: capsule-based healing, vascular self-healing and the
intrinsic approach to self-healing [48]. Various other techniques are continuously being discovered for
materials to have self-healing properties.

In the capsule-based healing approach, the healing agent is packed in tiny capsules. As the crack
or damage propagates and reaches these encapsulations, they rupture, releasing the healing agent into
the crack, which repairs the damage. This is however a one-time repair mechanism, as once ruptured,
the capsule is useless if the crack reappears at the same spot. In the vascular self-healing process,
hollow tubes and capillaries are filled with healing agent and are connected in a network. This system
of healing agent-containing capillaries can form one-, two- or three-dimensional networks, and their
density depends on the amount of cracks, which can develop in the material over time. Once a crack
propagates to these channels, the capillaries break, releasing the healing agent and repairing the crack.
A major advantage to this approach is that it is a multiple time healing process. If a crack reappears at
the same spot, capillaries releasing the healing agent can once again repair the crack. Empty capillaries
from previous repair cycles can be refilled with healing agent externally or from other capillaries
connected in the network. In the intrinsic type self-healing, there is no healing agent, rather a latent
characteristic of the material, which promotes self-healing. This characteristic can be attributed to
the chemical bonding within the material and physical interactions in the crack interfaces. Intrinsic
self-healing is based on reversible reactions, like hydrogen bonding, ionic interactions, reversible
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polymerization, etc. Yet, an external trigger is often required, like heat, mechanical stress and electrical
stimulus, to initiate the self-healing process [52]. Since reversible reactions are involved, this type of
healing can occur many times at the same spot in case a crack appears. Figure 7 shows the self-healing
process using the capsule-based approach.

Figure 7. Self-healing in polymeric materials using the capsule-based approach.

In more recent studies, research is no longer focused on the refilling of gaps after crack
development. Rather, emphasis is laid on self-healing capabilities of the various functionalities of the
material [53]. These include self-repair of properties like resistance, conductivity and charge carrier
mobility in conductors, emission, reflectivity and absorption in optoelectronic materials and various
functions of novel films and coatings, like superhydrophobicity, flame resistance, surface energy,
aesthetics and superamphiphobicity. Moreover, advanced trigger systems are also being researched,
like stimulus by chemical, thermal, electrochemical, mechanical or photochemical impetus, as against
the conventional crack propagation. In the coming years, hybrid self-healing materials will be the
center of attention, which will involve an amalgamation of self-repairing capabilities for different
properties of the material.

3.4. Photosynthesis

Photosynthesis is the process by which plants use carbon dioxide, water and energy to synthesize
glucose, the building blocks of plants, and give away oxygen as the by-product. This process is
represented by the equation as given below:

6 CO2 + 6 H2O
Light−−−→ C6H12O6 + 6 O2

Understanding the process of photosynthesis provides us with better insight into the working
of plant mechanisms and helps us to reap fruitful results by its biomimicry. Subsequent paragraphs
describe the process of photosynthesis in brief [54].

To carry out the photosynthetic process, plants obtain carbon dioxide from the atmosphere; water
is derived from the ground through roots; and energy is obtained from the sun. Light from the sun
contains photons from a wide range of the electromagnetic spectrum, but for plants, only photons
in the range of the visible spectrum (400–700 nm) are required. To capture these photons, plants
have special pigments called chlorophylls. The color of this pigment is a result of the light reflected.
For example, reflecting green and yellow wavelengths of light and absorbing blue and red wavelengths
are what give plants their characteristic yellowish-green color. The blue and red wavelengths of light
are sufficient to provide the required energy to plants for photosynthesis.

Inside autotrophs, i.e., self-feeding plants, photosynthesis is carried out in special structures of
the plant cell called chloroplasts. Photosynthesis is a two reaction set mechanism: (i) light-dependent
reactions [55] and (ii) the Calvin cycle [55], as depicted in Figures 8 and 9, respectively. Chloroplasts
contain small disc-like structures called thylakoids [56], which are surrounded by colorless fluid stroma.
Light-dependent reactions occur in thylakoid, whereas light independent reactions or the Calvin cycle
occur in stroma. Thylakoid converts light energy from the sun to chemical energy, which ultimately
drives the synthesis of glucose. Each thylakoid contains a pair of photosystems called photosystem-I
and photosystem-II, which work together to achieve this goal. These photosystems contain chlorophyll
molecules, which capture incoming photons of light, thereby exciting their electrons to a higher state.
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These excited electrons are emitted and channeled to a single chlorophyll molecule called the reaction
center chlorophyll. Photons strike both photosystems simultaneously.

Figure 8. Light-dependent photosynthesis reactions demonstrating the mechanisms of photosystem-I
(PSI), the cytochrome b6f complex, photosystem-II (PSII), ferredoxin-NADP+ reductase (FNR) and
ATP synthase. ADP: Adenosine diphosphate; ATP: Adenosine triphosphate; NADP+/NADPH:
Nicotinamide adenine dinucleotide phosphate.

In photosystem-II, the reaction center transports the excited electrons via an electron transport
chain. The electron transport chain is a group of proteins situated on the thylakoid membrane. In case
the photosystem-II loses any excited electrons, they are replaced by a process called photolysis in
which water is oxidized to produce free electrons and oxygen gas as a by-product. The high energy
electrons in the electron transport chain are used to pump hydrogen ions from the stroma to the
thylakoid via the cytochrome b6f complex enzyme. This develops a concentration gradient between the
stroma and thylakoid membrane, which is used to power a protein called ATP synthase that converts
adenosine diphosphate (ADP) to adenosine triphosphate (ATP). The low-energy electrons remaining in
the electron transport chain are pushed to photosystem-I where they are re-energized and again carried
via a second electron transport chain to ferredoxin-NADP+ reductase (FNR), an enzyme that mediates
the transfer of electrons from reduced ferredoxin to nicotinamide adenine dinucleotide phosphate
(NADP+) for production of NADPH.

The ATP and NADPH molecules produced and released continuously in the stroma during
these light-dependent reactions power the Calvin cycle, which is a set of light-independent reactions
reducing carbon dioxide to produce carbohydrate glyceraldehyde 3-phosphate (G3P). The Calvin
cycle is a three-step process consisting of: (i) carbon fixation; (ii) reduction; and (iii) regeneration of
ribulose-1,5-bisphosphate (RuBP). During carbon fixation, one molecule of CO2 combines with one
molecule of RuBP to produce two molecules of 3-phosphoglycerate (PGA). Then, during the reduction,
one molecule of ATP reduces one molecule of PGA to one molecule of 1,3-bisphosphoglycerate
(1,3-BPG), which is further reduced by a single molecule of NADPH to one molecule of G3P. Thus,
a single turn of the Calvin cycle produces two molecules of G3P. When the cycle runs three times,
it produces six G3P molecules, five of which are used for the regeneration of RuBP in the third and
final step of the Calvin cycle. The remaining G3P molecules once accumulated are then used to form
glucose, glycerol and fatty acids.

Two molecules of G3P form one molecule of glucose 6-phosphate, which can get rid of its
phosphate to combine with fructose and form sucrose. Thus, it take six turns for the Calvin cycle to
produce one glucose molecule. Glucose 6-phosphate is also used to synthesize starch and cellulose.
This completes our description of the process of photosynthesis as it is carried out in nature.
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Figure 9. The Calvin cycle. Phase 1: Carbon fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase
(RuBisCO); Phase 2: Reduction; Phase 3: Regeneration of ribulose-1,5-bisphosphate.

To bring about artificial photosynthesis in the lab, we need various components, like: (i) antennas
that have the capability to capture incoming photons of light; (ii) a reaction center where all electrons
pile up to be transported by an electron transport chain; and (iii) some kind of electron transport
mechanism, which would lead to the development of the potential gradient for pumping protons.

It is now possible to synthesize artificial antennas that can harvest light [15]. These when linked
with reaction centers are able to convert the excitation energy of photons to chemical potential by
generating a long-lived charge separation. If however, the charge separation is short-lived, the potential
energy of photons, which has been stored, does not last long enough to be harvested, thereby rendering
the reaction center redundant. Artificial reaction centers when incorporated in a lipid bilayer of an
artificial vesicular setup are responsible for generating transmembrane proton motive force by acting
as light-driven proton pumps. This proton gradient generated is used by the ATP synthase enzyme to
synthesize ATP, which is the desired high energy biofuel molecule.

To fabricate a model mimicking the photo-induced electron transfer mechanism or an artificial
reaction center, we require an electron donor/acceptor chromophore, which is able to absorb visible
light and can be bonded to another electron donor/acceptor moiety for generating the necessary
charge generation. One such system can be designed using molecules of porphyrin, fullerene and
carotenoid, as shown in Figure 10. Porphyrin, being less stable, mimics the chlorophyll present in
plants. Fullerene (C60) behaves as the electron acceptor. Porphyrin (P) and fullerene when bonded
covalently provide electronic coupling, which mimics the photo-induced electron transfer mechanism
of the natural reaction center.

When excited by a photon of light, porphyrin and fullerene form a P+–C –
60 charge separation

pair, which recombines in 478 ps. This time interval is too short to harvest stored potential energy
generated by this charge separation. To increase this time interval, electronic coupling between the
two moieties should be weakened, which can be done by increasing the distance between donor and
acceptor molecules, thus obtaining slow charge recombination. This is where carotenoid (C) plays its
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role. When carotenoid is linked covalently to porphyrin on another side, it completes the artificial
reaction center model by overcoming the charge separation problem. Carotenoid increases the charge
recombination time by 1000-fold to around 57 ns [57] acting as an electron donor in the process. When a
photon strikes and charge separation occurs (C–P+–C –

60), instead of recombining, this charge separation
state forms another intermediate with carotenoid (C+–P–C –

60), which then recombines very slowly,
thus allowing the stored potential energy to be harvested.

Figure 10. The molecular structure of an artificial reaction center, showing its constituent molecules
porphyrin, fullerene and carotenoid.

To successfully mimic photosynthesis, however, only artificial reaction centers are not enough.
They should work in combination with artificial antennas to fully develop a working model of
an artificial photosynthetic system. An ideal artificial antenna would be able to absorb light and
immediately transfer the electrons to constituent chromophores for generating charge separations.
Sunlight is absorbed mostly by antenna systems and not reaction centers. Thus, it is extremely
important to have excellent antenna systems to increase the efficiency of a lab-made, artificial
photosynthetic system as much as possible. As natural photosynthesis can occur in a wide range
of environmental and weather conditions, there are a number of antenna morphologies that exist
in nature.

One such type of artificial antenna morphology is illustrated in Figure 11 [58]. In this model,
bis(phenylethynyl)anthracene (BPEA), boron-dipyrromethene (BDPY) and zinc tetraarylporphyrin
(ZTAP) act as primary light absorbing components. BPEA absorbs strongly at around 450 nm, which
represents the blue region of the electromagnetic spectrum; BDPY absorbs at 513 nm, which is close
to green; and ZTAP absorbs at 418 nm (Soret region), and also at 557 nm and 598 nm, corresponding
to the orange and red wavelengths of the electromagnetic spectrum, respectively. Thus, this model
absorbs photons from almost the entire visible spectrum of light, which is usually the case with natural
antenna systems. This antenna unit can then be attached to a charge separation unit like fullerene [57],
which is a part of the artificial reaction center, thus completing the artificial photosynthetic system.

As an example of a working model of the proton pump [59], artificial reaction centers involving
carotenoid–porphyrin–quinone and independent quinone molecules can be incorporated in the lipid
bilayer, such that the quinone (Q) of carotenoid–porphyrin–quinone, being hydrophilic in nature, faces
the external side of the lipid bilayer, whereas carotenoid being hydrophobic faces the inside of the
membrane. The pump follows a mechanism of redox loop, in which, when excited by light, the reaction
center forms a charge separation state C+–P–Q– . The quinone anion (Q– ) of the artificial reaction
center reduces independent quinone molecules to semiquinone anions, which can then grab a proton
from the outside aqueous environment, becoming neutral themselves in the process. These neutral
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semiquinone molecules travel freely in the lipid bilayer, where, upon encountering the carotenoid
ion (C+), they get reconverted into quinones, thereby releasing the proton in the interior side of the
lipid bilayer. Many such carotenoid–porphyrin–quinone and quinone molecule pairs can transfer
many protons simultaneously from the exterior of lipid bilayer membrane to its interior surface, thus
generating a proton gradient, required for the synthesis of ATP.

Figure 11. The molecular structure of an artificial antenna model, showing its constituent light
absorbing molecules bis(phenylethynyl) anthracene (BPEA), boron-dipyrromethene (BDPY) and zinc
tetraarylporphyrin (ZTAP).

Although we are now able to successfully fabricate artificial antennas and reaction centers to
mimic the process of photosynthesis in the lab, there is always room for improvement. If we need
more efficient hydrogen fuel generators, we have to increase the amount of light that is harvested by
increasing the number of artificial antennas or by designing them more efficiently. This will ensure
an increase in the amount of potential energy stored. Furthermore, the stored energy should be
available to harvest for a longer duration of time, which can be achieved by increasing the charge
separation period.

Some recent studies are a step in this direction. Artificial reaction centers based on porphyrin
have been developed, which showed properties very similar to natural reaction centers of purple
bacteria [60]. The charge separation distance in the reaction center of purple bacteria is around
7.0 Å, which was very closely mimicked in the artificial reaction center with a center-to-center
distance of 6.2 Å. The electron-transfer reaction distances were also close, indicating the similarity
between the electron-transport properties of the natural and artificial reaction centers. Moreover,
the primary and secondary charge separation and recombination times were also strikingly similar,
expect for the secondary charge recombination time, which was on a microsecond time-scale instead
of the millisecond time-scale of the natural counterpart. Yet, further improvement is expected in the
coming years. Other more advanced methods are now being researched, which involve the use of
semiconducting photoelectrodes [61] or photobioelectrochemical systems with enzymatic cathodes and
photoanodes [62] for mimicking photosynthesis and for fabricating photosynthetic systems on a
large scale.
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3.5. Moth Eyes

Another interesting type of nanostructure for bioinspiration are the eyes of a moth insect.
Bernhard [63], first in 1967, observed a unique characteristic of these nocturnal flying insects,
where they played a game of camouflage with their predators by reducing reflection of light from their
corneas. Later it was discovered that this anti-reflecting behavior was due to the regular arrangement
of conical protuberances, which covered the entire surface of their eye. This anti-reflection property can
be mimicked in the lab if the spacing between protuberances is much less than the incident wavelength
of light, whereas the depth is significantly larger. A similar principle is applicable in acoustics as in the
case of anechoic chambers. For fabricating artificial moth eye-like structures, this spacing between
protuberances and the depth was found to be around 200 nm. Figure 12a depicts conical protuberance
nanostructures of the moth eye.

The height of these conical protuberances (d) shares a special relationship with the incident
wavelength (λ) of light, which is responsible for developing the anti-reflection property mimicking the
moth eye. The principle was first given by Rayleigh. When d is extremely small, as compared to λ, the
surface is sharp and shows maximum reflectance. As d increases, it is accompanied by a decrease in
reflectance levels, with a minimum value of zero attained at d/λ = 0.4. If we further keep on increasing
the height d of these conical protuberances, we obtain successive maxima and minima of reflectance
levels, none though reaching a value as high as when d was extremely small as compared to λ. When d
reaches a value that is very large as compared to λ, we obtain practically zero reflectance. This behavior
has been demonstrated in Figure 13. Thus, to obtain anti-reflecting properties in the visible spectrum,
we have to make conical protuberances with a height greater than or equal to 250 nm [64].

Figure 12. Anti-reflective structures of the moth eye and fabrication of biomimetic moth eye
structures. Scanning electron microscopy (SEM) images of (a) various views of Attacus atlas moth
eye demonstrating the conical protuberances on its surface and (b) similar views of the negative
mold of moth eye produced using perfluoropolyether (PFPE), which can then be used to fabricate
artificial moth eye-like nanostructures using the soft imprint lithographic method. Scale bars: first
row images = 100 µm, second row images = 5 µm, and third and fourth row images = 500 nm.
Reproduced from [65] with permission of The Royal Society of Chemistry.
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Figure 13. Computed dependence of the reflectance levels in fabricated moth eye-like structures on the
ratio of the height of conical protuberances with the incident wavelength of light (d/λ). Adapted with
permission from Macmillan Publishers Ltd: Nature [64], copyright 1973.

To fabricate moth eye-like nanostructures artificially, the soft imprint lithographic technique
can be used to generate a negative mold with materials like perfluoropolyether (PFPE), as shown in
Figure 12b, which can then be used to generate another positive mold that mimics the morphology
of the eye surface. Another method, based on a bioinspired templating technique, allows us to
fabricate anti-reflection coatings on single crystalline silicon substrate. In doing this, a silica colloidal
crystal-polymer nanocomposite is fabricated using spin coating, in which polymer is etched with
oxygen plasma, Si is etched with SF6 reactive ion etching (SF6 RIE) and silica is etched with hydrofluoric
acid to obtain silicon nipple arrays mimicking moth eye [66]. Figure 14 demonstrates this fabrication
technique. A slightly altered route is followed by Linn et al. [67] to fabricate similar nanostructures.
A third method involves fabrication using the roller nanoimprint technique [16]. Here, a master layer
containing nanoscale structures is pressed sequentially on a UV-sensitive resist which has been spin
coated on a silicon substrate. This UV-sensitive resist acts as an etching mask when moth-eye like
patterns are transferred to the substrate using inductively coupled plasma etching or reactive ion
etching to form conical protuberances.

The anti-reflective properties of the bioinspired moth eye-like structures have recently been
demonstrated to possess numerous potential applications, for example in eyeglasses, flat-displays,
solar panels, etc. They have been shown to increase the efficiency of both perovskite, as well as
organic solar cells. In one study, mesoporous TiO2 film mimicking moth eye-like nanostructures were
prepared using the lithography, nanoimprinting and PDMS stamping technique, which increased the
power conversion efficiency by ≈11% as against conventional perovskite solar cells [68]. In another
study, organic polymers were used to prepare moth eye-mimicking organic solar cells [69], which are
economical and may one day solve our energy crisis by providing solar energy-converted electricity
efficiently to our homes and offices. In yet another study, moth eye-based filters were tested for
various optical properties, like wavefront quality, transmission and the light scattered, by deploying
them in infrared instruments at normal and at cryogenic temperatures for ground- and space-based
applications [70].
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Figure 14. Schematic diagram for fabricating moth eye-like conical protuberances on silicon substrate
using the templating technique for anti-reflection properties. Reproduced from [66] with the permission
of AIP Publishing. RIE: Reactive ion etching.

3.6. Butterfly Wings

Nature works in sophisticated ways, and time and again, it is proven by studying it closely.
For example, even small insects like butterflies exhibit highly complicated physical properties by
possessing unique optical characteristics. The wings of a butterfly demonstrate high or low reflectivity
at particular wavelengths of light while simultaneously diffusing reflected light in a wide angular
spectrum. These properties are extremely important for their survival via camouflage, for mating
and for marking territorial boundaries. Biomimeticians are particularly interested in the iridescence
property of butterfly wings, which causes them to change color when viewed from different angles,
sometimes even making the wing look metallic [71]. This property is a direct result of the micro- and
nano-structural composition of butterfly wings as discussed in subsequent paragraphs.

Butterflies are of particular interest for studying nanostructures because they have a rich
diversity of scales coating their wings that bring about beautiful colors and patterns (see Figure 15).
The arrangement of scales follows an overlapping roof tile pattern with a scale density of
200–600 per mm2 depending on the species. Apart from the simple roof tile pattern, scales further
possess voids, complicated groove shapes and stratification, which allow them to display complex
optical effects, like light scattering, diffraction and interference [72]. It is interesting to note that
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color is usually linked with chromophore pigments, which are responsible for chemically displaying
the color, but in the case of butterfly wings, various optical phenomena of light taking place on
physically-patterned scales are responsible for color generation [2] (see Figure 15c).

Figure 15. Color-mixing phenomenon displayed by Papilio palinurus butterfly wings resulting from the
concavities across the surface of the wing scales. (a) P. palinurus butterfly with a wingspan of 100 mm;
(b) Scanning electron microscopy (SEM) image showing the overlapping roof tile pattern of scales
on the butterfly wing surface; (c) Transmission electron microscopy (TEM) image showing a cross
section through one concavity on a P. palinurus butterfly scale and color-mixing mechanism; (d) Optical
micrograph showing repeated structures of lamellae and reticulum forming arrays to display colors [72].
Scale bars: (b) 5 µm, (c) 1 µm, and (d) 10 µm.

By looking more closely at these scales, it can be observed that on a single wing, they are present in
the thousands and have dimensions of about 200 µm in length and 50 µm in width. The wings consist
of two sets of scales with an alternate row arrangement, a set of long scales acting as covers, which
overlap and hide a set of shorter ground-level scales. A raised grid of longitudinal quasi-parallel ridges
(lamellae) constituting the upper surface of the scale run along its complete length with a spacing of
about 2.5 µm. Fine tubes forming a net-like latticework (reticulum) cover the spacing between two
adjacent lamellae. These lamellae and reticulum, forming arrays of repeated structures, work together
to provide the observed characteristic colors of butterfly wings.

To fabricate butterfly wing-like structures in the lab, several techniques have been reported
in the literature. Conformal evaporated film by rotation (CEFR) is one such specialized physical
vapor deposition method [73]. It involves thermal evaporation of chalcogenide glasses constituted
of materials like GeSbSe, to form collimated vapor flux in a low pressure chamber, which provides
a covering over a biotemplate. The biotemplate is rotated in a complex manner such that vapor flux
material forms a uniform coating on its surface. Glass composition of GeSbSe is selected due to its
excellent optical and mechanical properties. Another method used for fabricating artificial butterfly
wings is a three-step dipping process [74]. In doing this, wings undergo an initial pre-treatment
process, after which they are dipped in a closed vessel-containing precursor solution of zinc oxide.
They are then taken out, dried and further treated at high temperature to remove the wing template
and obtain a ceramic surface morphology mimicking the butterfly wings.

Other methods used to fabricate artificial butterfly wings include deposition of silicate minerals
in the inner spaces of wing scales by chemical vapor deposition to form a thick coating of about
100–150 nm on its surface, to obtain silicified butterfly wings [75]. The sol–gel technique to fabricate
highly ordered structures of lead lanthanum zirconate titanate (PLZT) mimicking butterfly wings
uses dip coating [76]. Titanium dioxide-, tin dioxide (SnO2)- and silicon dioxide (SiO2)-based wing
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morphology uses the sonochemical method followed by a calcination process [77]. Butterfly wings
react readily to external stimuli, like temperature and humidity. Needless to say, biomimetic structures
inspired by butterfly wings have recently found application in a number of sensors, like temperature
and infrared sensors, vapor and solvent sensors and pH sensors [78].

3.7. Frog Toe Pads

The adhesive systems used by various animals have intrigued researchers to investigate the
dynamic mechanisms of adhesion. Studies show that the reason adhesive forces occur is due to a bond
formed between the animal and the surface, which opposes the gravitational pull of the Earth [79]. In
Section 3.2, we already saw the dual characteristic of superhydrophobicity and the high adhesivity of
gecko feet towards wet surfaces. However, other structural adaptations need to be studied as adhesion
in animals can occur in multiple ways. In fact, there are four different adhesion mechanisms that we
can observe in animals, namely gluing, suction, wet adhesion and dry adhesion [80]. Echinoderms
(sea urchins and starfish) use gluing for attachment and locomotion, whereas suction is used by
disk-winged bats by reducing internal pressure. In dry adhesion, the formation of intermolecular/van
der Waals forces between the animal and the surface leads to adhesion. As a result, geckos have the
ability to climb smooth vertical surfaces and run on ceilings. Wet adhesion observed in amphibians,
ants and grasshoppers results from the combined forces of surface tension and viscosity produced by
the fluid layer between the pad and the substrate.

In amphibians, adhesive toe pads can be found in seven families of frogs, including torrent or
tree frogs and arboreal salamanders. The toe pads are comprised of columnar epithelial cells with
regular hexagonal microstructures of about 10 µm in diameter. These are separated from each other at
their tips by 1 µm-wide channels [81]. Figure 16 depicts the hexagonal microstructures and separation
channels. The channels consist of mucous-secreating glands, forming a thin layer between the pad
and the substrate. Earlier researchers presumed that mucous acts as glue with which the animal is
able to stick itself to the substrate [82]. After years of intensive research, it was evident that a visible
meniscus lies at the area of contact between the pad and the substrate [83], and the shear forces of
toe pad responsible for adhesion were also found to be velocity dependent [84]. Further, the sticking
ability of frogs was observed to decrease in the case of wet toes [85], but at the same time, fresh water
frogs demonstrated capabilities to climb on wet rocks with water flowing over the substrate [86].

Figure 16. Adhesive surface of the frog toe pad. (a) Immature White’s tree frog (Litoria caerulea) with
snout to vent length of approximately 40 mm; (b) Low resolution scanning electron microscopy (SEM)
image of the whole pad of a juvenile frog; (c) Medium resolution SEM image showing the mucous
pore and (mainly) hexagonal epithelial cells separated by channels at their distal ends; (d) High
resolution SEM image showing the presence of nanostructures on the surface of the epithelial cells [81].
Reproduced with permission from The Journal of Experimental Biology.
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With the recent development of microscopic techniques like SEM, transmission electron
microscopy (TEM) and AFM, it has been found that the top of the toe pad epithelial cells is not
flat, but comprised of a dense array of nanopillars, which are 300–400 nm both in diameter and height.
These nanopillars come in direct contact with the substrate producing considerable shear force and are
responsible for the adhesive characteristic of the frog toe pad via wet adhesion. Figure 17 illustrates
the nanopillars resting on top of hexagonal microstructures along with a higher magnification view of
the separation channels.

Figure 17. Nanostructural features of the frog toe pad. (a) High resolution scanning electron microscopy
(SEM) image of a large number of hexagonal nanostructures forming an array on the external surface
of the epithelial cell; (b) High resolution transmission electron microscopy (TEM) image of one of the
channels that separates adjacent epithelial cells along with the side view of nanostructures, which
themselves are separated by even narrower channels. The inset shows similar nanostructures on the
toe pad of the hylid tree frog Scinax rubber [81]. Reproduced with permission from The Journal of
Experimental Biology.

Not much has been done to mimic the frog toe pad structure, partly due to its complicated
design, which needs to be studied further in order to be fabricated in the lab. However, in one
study similar structures were fabricated having different microstructured surface designs using
photolithography [87]. Polydimethylsiloxane being a soft elastomer and with a Young’s modulus
of 2 MPa lying in close proximity with the frog toe pad (∼5 MPa) was the preferred choice as the
fabricating material [81]. Figure 18 demonstrates the hexagonal micropillared arrays with flat, T-shaped
and concave surface designs along with their dimensional profiles obtained using confocal microscopy.
In more recent studies, the frog toe pad structure has been used to inspire the design of safety razors [88]
and surgical graspers [89]. Polyvinyl siloxane (PVS) was the preferred material choice for designing
the hexagonal toe pad-like surface texture of safety razors. The razors thus developed gave almost
double sliding friction as against the presently available disposable safety razors when tested on
lubricated human skin. In the case of the surgical grasper, hexagonal micropillared patterns fabricated
using PDMS were compared to the jaw of currently sold surgical graspers. The biomimetic structure
exhibited stronger and more stable friction on the surface of soft tissue while incurring minimal
damage or deformation of tissue.
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Figure 18. Biomimetic hexagonal surface textures. Scanning electron microscopy (SEM) images of
polydimethylsiloxane (PDMS) arrays of hexagonal micropillars (15–19 µm diameter) terminated with
(a) flat tips, (b) T-shaped tips (10 µm height, 3 and 5 µm channel width) and (c) concave tips (3 µm
height, 5 µm channel width). Scale bars correspond to 2 µm. Below, the corresponding profiles of
pillars as obtained with confocal microscope are shown [87].

4. Future Perspectives and Applications of Biomimetics

It is fascinating to think about the future with many bioinspired materials going from the lab scale
to bulk production for practical applications. Superhydrophobic materials fabricated by studying the
lotus leaf will find potential applications in automobile glasses, building windows, textiles, paints and
emulsions. Materials inspired by the dual characteristics of gecko feet can be used as mechanical hands
for separating a water droplet from a less adhesive superhydrophobic surface [90]. Being adhesive to
wet surfaces, these have also influenced the design of biodegradable bandages, which tend to solve
the problem of bandage fixation on wet and moving tissues [91,92]. Another important application is
the use of dry adhesive treads inspired from gecko feet in wall climbing robots [93].

Self-healing materials ensure more sturdy and durable construction materials for infrastructure,
as well as space applications. They also provide improved defense materials as in the case of body
armor. Successfully mimicking the process of photosynthesis will have many potential applications,
like in sensor design, hydrogen fuel generation by water splitting, molecular level optoelectronics
and photonics. Hydrogen is regarded as the fuel of tomorrow, and with artificial photosynthesis,
hydrogen can be generated by splitting water and producing oxygen as a by-product. Developing this
technology as quickly as possible to work efficiently will prove to be a real gift for mankind,
eliminating our dependence on exhaustive fuels and preventing environmental pollution. Moth
eye increases our understanding about anti-reflecting surfaces. Solar cells currently reflect back 30% of
absorbed light. An anti-reflecting coating on their surface will tremendously increase their efficiency.
Moreover anti-reflection coatings over automobile glasses, windows and everyday use glassware will
provide their own unique advantages.

Bioinspired artificial butterfly wings can be used as photonic crystals, i.e., optical materials with
distinctive features. These will find potential applications in color-changing inks, paints, glasses, high
or low reflectivity surfaces and materials possessing light confinement properties. Due to such novel
characteristics, these crystals can be used as building material for nano- and microscale devices, like
UV light-emitting diodes. Frog toe pads are widely researched for their application in tire treads.
Their hexagonal microstructures have been mimicked on tires [94]. Tires have also been designed with
different patterns, for example channels mimicking frog toe pad nanostructures have been placed in
between tire treads. These channels provide a solid grip on wet roads, by allowing water/snow to
flow through these channels, resulting in an intimate surface to tire contact. Another application can
be found in the design of non-slippery footwear.
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These are some of the numerous applications that will owe their origin to the field of biomimetics.
A few years down the line, artificially fabricated bioinspired nanostructures will be implemented in
more and more products to obtain novel applications. These materials are shaping our future in a very
exciting way.

5. Conclusions

In this review, we focused on how nanoscience and nanotechnology proved to be a boon for
carrying out advancements in the field of biomimetics. It is evident how important it was to look
closely at nanostructures present in nature to successfully mimic them in the lab. This was only
made possible by the development of various microscopic and spectroscopic tools for nanotechnology.
We then discussed the nanostructures of lotus leaf, gecko feet, moth eye, butterfly wings and frog
toe pads and studied the natural processes of biological wound healing and photosynthesis. Along
with this, for each type of nanostructure and natural process, the techniques used for their artificial
fabrication were also discussed. Then, some of the novel applications of these bioinspired materials
have been mentioned and how these are changing the shape of our future. Finally, it is important to
emphasize that nature will always keep on surprising us, if we keep on looking closely and understand
its working. We should be continuously on the lookout to study more natural processes and structures
to develop more unique materials that can be life-changing. For example, we have not yet been able to
synthesize silk artificially in the lab without involving spiders or silkworms. Then, as is always said,
nature does it best.
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