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Abstract

Accurately predicting the compressive strength of high-performance concrete (HPC) is
critical for ensuring structural integrity and promoting sustainable construction practices.
However, HPC exhibits highly complex, nonlinear, and multi-factorial interactions among
its constituents (such as cement, aggregates, admixtures, and curing conditions), which
pose significant challenges to conventional predictive models. Traditional approaches
often fail to adequately capture these intricate relationships, resulting in limited prediction
accuracy and poor generalization. Moreover, the high dimensionality and noisy nature of
HPC mix data increase the risk of model overfitting and convergence to local optima during
optimization. To address these challenges, this study proposes a novel bio-inspired hybrid
optimization model, AP-IVYPSO-BP, which is specifically designed to handle the nonlinear
and complex nature of HPC strength prediction. The model integrates the ivy algorithm
(IVYA) with particle swarm optimization (PSO) and incorporates an adaptive probability
strategy based on fitness improvement to dynamically balance global exploration and
local exploitation. This design effectively mitigates common issues such as premature
convergence, slow convergence speed, and weak robustness in traditional metaheuristic
algorithms when applied to complex engineering data. The AP-IVYPSO is employed to
optimize the weights and biases of a backpropagation neural network (BPNN), thereby
enhancing its predictive accuracy and robustness. The model was trained and validated on
a dataset comprising 1030 HPC mix samples. Experimental results show that AP-IVYPSO-
BP significantly outperforms traditional BPNN, PSO-BP, GA-BP, and IVY-BP models across
multiple evaluation metrics. Specifically, it achieved an R2 of 0.9542, MAE of 3.0404, and
RMSE of 3.7991 on the test set, demonstrating its high accuracy and reliability. These results
confirm the potential of the proposed bio-inspired model in the prediction and optimization
of concrete strength, offering practical value in civil engineering and materials design.

Keywords: bio-inspired optimization; high-performance concrete; adaptive probability
strategy; ivy algorithm; particle swarm optimization; backpropagation neural network

1. Introduction
With the rapid pace of urbanization and ongoing infrastructure development, high-

performance concrete (HPC) has found widespread application in high-rise buildings [1],
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bridge engineering [2], nuclear power plants [3], and other sectors due to its excellent
mechanical properties, durability, and workability [4,5]. Among the various performance
indicators, concrete compressive strength is a critical factor influencing the safety and
durability of engineering structures [6–8]. Accurate prediction of the compressive strength
of HPC not only ensures structural safety and durability but also optimizes material
utilization, reduces waste, and advances sustainable development within the construction
sector. Traditionally, compressive strength has been determined through experimental
methods. However, this approach is not only time-consuming and costly but also affected
by environmental factors and human error, making it challenging to meet the dual demands
of both efficiency and accuracy in engineering design [9]. Consequently, the development of
an efficient, stable, and highly accurate compressive strength prediction model has become
a focal point of research in civil engineering and materials science [10–12].

In addressing the challenge of predicting concrete strength, various modeling ap-
proaches have been proposed, including multiple linear regression (MLR) [13,14], decision
tree (DT) [15,16], support vector machine (SVM) [17,18], and other statistical and machine
learning models [19]. However, due to the inherent nonlinearities and multivariate coupling
in concrete materials, these methods often struggle to fully capture the complex nonlinear
relationships between inputs and outputs, leading to limited prediction accuracy [20]. In
contrast, artificial neural networks (ANN) [21], particularly backpropagation neural net-
works (BPNN) [22–25], have been widely used in concrete performance prediction because
of their strong nonlinear modeling capabilities and adaptability.

Despite the advantages of BPNN in terms of modeling accuracy, their training pro-
cess relies on the gradient descent optimization method, which is prone to local minima
and sensitive to the initialization of weights and network architecture [26]. This sensi-
tivity can adversely affect the model’s predictive accuracy, training efficiency, and its
convergence speed [27]. To mitigate these limitations, researchers have explored inte-
grating various intelligent optimization algorithms with BPNN to optimize weights and
thresholds, thereby enhancing the model’s global search capability and generalization
ability. FZ El-Hassani et al. [28] developed a GA-optimized BPNN model for thyroid
disease diagnosis, effectively addressing local minima and slow convergence issues. F
Ma et al. [29] applied a GA-optimized BPNN to forecast regional logistics demand, im-
proving prediction accuracy and reducing iteration times. A Abdurrakhman et al. [30]
proposed a PSO-optimized adaptive BPNN model to predict and optimize the output
power of biogas-fueled generators, achieving high accuracy and effective parameter tuning.
Z Wang et al. [31] proposed an XGBoost-assisted OTDBO-BPNN for predicting HPC com-
pressive strength, which achieved superior accuracy by enhancing DBO’s global search
and convergence performance through four strategic improvements. In addition, recent
research has demonstrated the effectiveness of combining deep learning and 3D point cloud
technologies to enhance the performance of intelligent optimization models in human–
machine interaction and rehabilitation engineering [32,33], providing further insight for the
development of hybrid intelligent frameworks in civil engineering contexts. Meanwhile,
recent studies have also emphasized the significance of co-optimizing neural networks
using adaptive evolutionary algorithms [34] and the increasing industrial relevance of
hybrid nature-inspired population-based optimization methods [35], further supporting
the rationale of our proposed hybrid framework.

Inspired by biomimetic principles, where natural systems often balance global explo-
ration with local exploitation to adapt efficiently to complex environments [36,37], this
paper introduces a novel BPNN model optimized using an adaptive probability hybrid ivy
algorithm (IVYA) [38] and particle swarm optimization (PSO) [39] based on fitness improve-
ment (AP-IVYPSO). The IVYA, drawing inspiration from the natural growth process of ivy
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plants, mimics biological behaviors to perform efficient local search, while PSO simulates
the social behavior of bird flocking for global search. By combining these biomimetic algo-
rithms, the proposed model effectively balances exploration and exploitation, addressing
challenges faced by traditional optimization techniques.

The proposed model leverages the global search capabilities of PSO and the local
search characteristics of the IVYA. By employing a fitness-based adaptive probability
strategy, the model dynamically adjusts the update rules of PSO and IVYA, improving the
accuracy, stability, and generalization ability of concrete strength predictions. To evaluate
the model’s effectiveness, experiments were conducted using a publicly available concrete
dataset and compared with traditional models such as BPNN, PSO-BP, GA-BP, and IVY-BP.
The results show that the AP-IVYPSO-BP model outperforms these models across various
evaluation metrics, particularly in enhancing the robustness and prediction accuracy of the
model. The main contributions of this paper can be summarized as follows:

• We introduce a new hybrid algorithm, AP-IVYPSO, which combines the IVYA and
PSO, and incorporates an adaptive probability strategy based on fitness improvement.
This biomimetic-inspired approach strikes a balance between global search capability
and local search efficiency, effectively addressing the challenges faced by single opti-
mization algorithms—such as getting stuck in local optima, slow convergence, and
instability—when dealing with complex nonlinear problems.

• Through comparison experiments with 10 widely recognized optimization (PSO,
IVYA, HFPSO, HJSPSO, BOA, WOA, GOOSE, PSOBOA, NSM-BO, and FDB-AGSK.)
algorithms on 26 benchmark test functions, AP-IVYPSO demonstrates exceptional
optimization capability and high stability.

• When applied to optimize a BP neural network, AP-IVYPSO effectively overcomes the
local optima issue typically faced by traditional gradient descent methods, significantly
improving the stability of the model. In comparison to existing prediction models,
the AP-IVYPSO-BP model outperforms in multiple evaluation metrics (R2 = 0.9542,
MAE = 3.0404, and RMSE = 3.7991), further validating the superior performance of
the proposed approach.

The remainder of this paper is organized as follows: Section 2 introduces the funda-
mentals of BPNN, PSO, and the IVYA. Section 3 presents the construction and parameter
optimization mechanism of the AP-IVYPSO-BP model; Section 4 details the experimental
setup, performance evaluation, and comparison with baseline models. Section 5 presents
the concluding remarks of this study and delineates prospective directions for subsequent
research endeavors.

2. Materials and Methods
2.1. BP Neural Network

In recent years, the BPNN, as a classical multilayer feedforward neural network,
has been widely applied in nonlinear modeling, regression prediction, and classifica-
tion tasks [40,41]. Its primary strength stems from effectively capturing intricate nonlin-
ear relationships and its strong generalization capability with a relatively interpretable
model structure.

BPNN is generally composed of three fundamental parts: a layer for input, one or
several hidden layers, and a layer for output, with interconnections defined by adjustable
weights. During training, the network processes input data through forward propagation
to produce outputs and then applies error backpropagation to iteratively adjust the weights
and biases based on the difference between predicted and expected values. This learning
mechanism enables the model to progressively minimize prediction errors and extract deep
correlations among input features.
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Although the use of gradient descent during training may lead to local optima, BPNN
remain popular due to their structural flexibility and adaptability. To further improve
convergence speed and prediction accuracy, recent studies have integrated BPNNs with
intelligent optimization algorithms, resulting in hybrid models with enhanced robustness
and global search capabilities.

In this study, the BP neural network is utilized as the foundational model for predicting
concrete strength. Instead of relying on the traditional BP backpropagation training method,
its weights and biases are optimized through an external global search using a swarm
intelligence algorithm.

Each candidate solution Xi represents an initial set of network parameters. The swarm
intelligence algorithm iteratively adjusts these parameters to minimize the prediction
error on the validation dataset. This approach mitigates common issues associated with
conventional training techniques, such as local minima and vanishing gradients.

2.2. PSO Algorithm

PSO, introduced by Kennedy and Eberhart in 1995, is a population-based metaheuristic
inspired by the collective behavior observed in bird flocks and fish schools during foraging.
By exchanging information among individuals within a population, the algorithm efficiently
balances exploration of the global search space and exploitation of promising local regions
to address complex optimization problems [42,43].

In PSO, each individual—referred to as a particle—represents a candidate solution and
is characterized by its position vector Xi = [xi1, xi2, xi3, . . . , xiq, . . . , xiU] and velocity vector

Vi =
[
vi1, vi2, vi3, . . . , viq, . . . , viU,

]
, where i= 1, 2, . . . N, N denotes the population size,

q = 1, 2, . . . , U, and U denotes the problem dimensionality. At each iteration, a particle’s
trajectory is updated based on three fundamental influences:

(1) Inertia term: This retains a particle’s previous velocity, aiding in the continuation of
its current search direction and contributing to global exploration.

(2) Cognitive term: This component reflects the particle’s own experience, guiding its
movement toward its personal best position Pbest,i.

(3) Social term: Representing collective intelligence, this steers particles toward the
globally best-known position Gbest discovered by the swarm.

In the searching phase, each particle’s location is affected by its personal best position
within its vicinity Pbest,i and the overall best position found by the swarm Gbest of the
entire population.

The formulas for updating the particle’s position and velocity are presented in
Equation (1) and Equation (2), respectively.

Xk+1
i = Xk

i + Vk+1
i , (1)

Vk+1
i = ωVk

i + c1ξ1

(
Pbest,i − Xk

i

)
+ c2ξ2

(
Gbest − Xk

i

)
, (2)

where ω denotes the inertia weight that regulates the trade-off between exploration and
exploitation, k denotes the current iteration index, and k = 1, 2, . . . , T, T is the maximum
number of iteration. The parameters c1 and c2 are cognitive and social acceleration coef-
ficients, while ξ1 and ξ2 are uniformly distributed random numbers in the range [0, 1],
introducing stochasticity into the search process. The termination condition is defined as
reaching the maximum number of iterations, ensuring a balance between convergence
quality and computational efficiency.
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In the task of predicting concrete compressive strength, PSO is employed to optimize
the parameters of the BP neural network. Each particle represents a set of initial parameters
for the BP network, with the particle’s trajectory in the search space reflecting the path taken
to find the optimal network weights and biases. Each particle’s position vector encodes a
set of weights and biases for the BP neural network, and the population consists of several
particles that co-evolve within the search space. PSO dynamically adjusts each particle’s
velocity and position based on both its individual best position and the global best position,
guiding the entire population towards a more optimal solution. The search space is defined
by the complex, non-convex space of network parameters, and the fitness function is
evaluated using the RMSE on the validation set. Through the iterative particle search
process, an optimal set of network parameters can be identified more rapidly, improving
prediction accuracy and enhancing the model’s robustness.

Figure 1 illustrates the operational workflow of the PSO algorithm.

Figure 1. Schematic representation of the PSO algorithm’s workflow.

2.3. Ivy Algorithm

The IVYA is an optimization method based on swarm intelligence, drawing inspiration
from the adaptive and exploratory nature of vine plants in the natural world. Vines exhibit
dynamic behaviors such as climbing, stretching, and expanding as they seek vital resources
like sunlight and nutrients. This biological strategy provides a conceptual foundation
for tackling global optimization problems. The IVYA emulates several phases of ivy
development, including propagation, vertical climbing, and lateral spreading [40]. The
algorithm consists of the following four primary stages:

(1) Population Initialization. At the outset, a population of potential solutions is gener-
ated. Let N denote the number of individuals and U denote the dimensionality of
the optimization problem. Each individual i − th is represented as a U-dimensional
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vector: Ii = (Ii1, . . . , IiU), where i ∈ {1, 2, . . . , N} and N denotes the population size.

The entire ivy population is given by
→
I = (I1, . . . , Ii, . . . , IKpop). The initial positions

of the individuals are randomly determined within the defined search boundaries
using Equation (3):

Ii = Imin + U(0, 1)⊙ (Imax − Imin), i = 1, . . . , N, (3)

where U(0, 1) denotes a U-dimensional vector containing random numbers uniformly
distributed between 0 and 1 and ⊙ represents the Hadamard product between two
vectors. The search boundaries are defined by Imin and Imax, which represent the
lower and upper bounds of the decision space, respectively.

(2) Controlled Growth Dynamics. The population evolves in a structured manner that
mimics ivy growth. The rate of growth GV is assumed to vary over time, described
via a differential Equation (4):

dGV(t)
dt

= ψ · GV(t) · φ(GV(t)), (4)

where ψ is a velocity factor, φ is a nonlinear correction term, and GV is the current
growth rate. Individual updates are defined using Equation (5):

∆GVi(t + 1) = U(0, 1)2 ⊙ (N (0, 1)⊙ ∆GVi(t)), (5)

where GVi(t + 1) and GVi(t) are the growth variations at successive time steps and
N (0, 1) is a Gaussian-distributed random vector.

(3) Sunlight-Driven Adaptation. In nature, vines grow directionally towards light sources,
often attaching to structures that support upward movement. This phototropic ten-
dency is captured in the IVYA by encouraging individuals to improve based on
their best-performing neighbor. The optimal peer Iii for individual Ii is chosen using
Equation (6):

Iii =

{
Is
j−1, if Ii = Is

j and j > 1
Ii, if Ii = Ibest

, (6)

where the variable j represents the index of individual Ii in the population sorted by
fitness from best to worst, with j ∈ {1, 2, . . . , N}. The selection procedure is as follows:

• Sort the population according to fitness values in descending order, producing a sorted
sequence Is

1, Is
2, . . . , Is

N.
• Find the position j of individual Ii in this sorted list.
• If j > 1, the optimal peer Iii is the immediate better-ranked neighbor Is

j−1.

• If j = 1, meaning Ii is the current best individual Ibest, then Iii = Ibest itself.

This selection ensures that each individual learns from the nearest superior peer in the
fitness ranking, mimicking the natural tendency of vines to grow towards more favorable
structures.

The new state of individual Ii is calculated with Equations (7) and (8):

Inew1
i = |K(1, U)| ⊙ (Iii − Ii) + Ii + K(1, U)⊙ ∆GVi, i = 1, 2, 3, . . . , K, (7)

∆GVi =

{
Ii ⊗ (Imax − Imin), Iter = 1
U(0, 1)2 ⊙ (N (0, 1)⊙ ∆Gvi), Iter > 1

, (8)
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where |K(1, U)| represents a vector with absolute values of the normal distribution compo-
nents, enhancing diversity and exploration in the search space.

To replicate this behavior, the algorithm allows each individual Ii to identify and refer
to the nearest neighbor Iii with superior fitness as a guide for its own evolution process.
This mechanism, which mimics the natural tendency of vines to grow toward favorable
conditions, is illustrated in Figure 2.

Figure 2. The individual Ii selects the nearest and most influential neighbor Iii within the population.

The last primary stage is as follows:

(4) Growth behavior and evolutionary adjustment. Once an individual Ii has explored
the global space and located its closest high-quality neighbor Iii it proceeds to align
its search direction toward the current global best solution Ibest. This phase empha-
sizes exploiting the local region around Ibest to refine the solution, as formulated in
Equations (9) and (10).

Inew
i = Ibest ⊙ (U(0, 1) +N (0, 1)⊙ ∆GVi), (9)

∆GVnew
i = Inew

i ⊗ (Imax − Imin), (10)

In this study, the IVYA is employed to optimize the initial weights and biases of
the BP neural network, thereby enhancing the accuracy of the network’s prediction of
concrete compressive strength. In practice, each IVYA individual is represented as a
vector, which encodes a complete set of neural network weights and bias parameters. The
population consists of multiple such individuals, and the search space is defined by the high-
dimensional, non-convex error function space associated with the BP network parameters.
IVYA efficiently explores this complex space through mechanisms such as simulating vine
extension, selecting growth nodes, and perturbing local solutions. In each iteration of the
algorithm, a new growth node is generated, corresponding to a new configuration of neural
network parameters, which is then used to construct the corresponding BP model and
assess its prediction performance on both the training and validation datasets. The fitness
function is defined as the root mean square error (RMSE) on the validation set, with the
goal of minimizing this error to improve the network’s generalization ability. This approach
effectively mitigates common challenges in neural network training, such as vanishing
gradients and local optima.

The search process is terminated when the maximum number of iterations is reached.
Figure 3 illustrates the procedural flow of the ivy algorithm.
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Figure 3. Schematic representation of the ivy algorithm’s workflow.

3. Construction and Parameter Optimization Mechanism of the
AP-IVYPSO-BP Model

This section presents a detailed description of the construction and parameter opti-
mization mechanism of the AP-IVYPSO-BP model. To address the challenges faced by
traditional BPNN, including issues of local optima and low convergence efficiency dur-
ing training, this paper introduces an AP-IVYPSO to optimize the BPNN. The proposed
model integrates the global search capabilities of PSO with the local search features of the
IVYA. Unlike simple hybrid strategies that alternate update steps or linearly weight two
algorithms, the AP-IVYPSO model adaptively switches between PSO and IVYA based on a
fitness-driven probability function. This mechanism ensures seamless cooperation between
the fast exploration of PSO and the refined exploitation of IVYA. Through an adaptive
probability mechanism based on fitness improvement, the model dynamically adjusts the
update strategies of PSO and IVYA. The strategy mimics the natural adaptation behavior
observed in vine plants exposed to sunlight, which selectively grows towards better envi-
ronmental conditions—an inspiration that guides this adaptive optimization framework.
This combination effectively enhances the accuracy, stability, and generalization ability of
concrete compressive strength prediction.

Specifically, in addressing the typical regression problem of predicting concrete
strength, the BP network’s training process is redefined as a parameter optimization
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problem, where the AP-IVYPSO algorithm directly updates the parameters within the
network architecture through iterative adjustments.

3.1. Implementation Mechanism of AP-IVYPSO

To improve the dynamic balance between global search capability and local refinement
ability in complex engineering problems, this paper introduces an intelligent optimization
algorithm based on an adaptive probability-guided mechanism, named AP-IVYPSO. The
method incorporates an adaptive probability control mechanism into the core iteration pro-
cess, dynamically adjusting the tendency of individuals to select search strategies at various
stages. This facilitates the complementary coordination between the global exploration
ability of PSO and the local fine search capability of the IVYA. By guiding the switching
of search strategies at different stages of the evolutionary process, AP-IVYPSO effectively
enhances both the global convergence performance and the local convergence accuracy of
the algorithm. As a result, it achieves adaptive adjustment of the search direction and a
seamless integration of multi-stage search behaviors. The method demonstrates excellent
adaptability and robustness, making it particularly suitable for solving complex, nonlinear,
and multimodal engineering optimization problems.

3.1.1. Adaptive Probability-Guided Mechanism

In the AP-IVYPSO algorithm, the core idea is to dynamically determine whether
the current individual will use the PSO update strategy or the IVYA update strategy in
each iteration, based on an adaptive probability control mechanism. This mechanism is
calculated using the Equation (11):

Padapt = exp
(
−5t

T

)
, (11)

where t is the current iteration number and T is the maximum number of iterations. exp(x)
represents the natural exponential function, which is the exponential function with the
base of the natural constant e ≈ 2.71828. The term 5t

T represents the position of the current
process in the iteration. Multiplying by 5 is used to control the rate of decay, which likely
refers to how quickly the influence of certain parameters reduces over time in the algorithm.

Each individual generates a random number U(0, 1) during the iteration and selects
the search strategy based on the following rule:

• If U(0, 1) < Padapt, the PSO update strategy is selected;
• Otherwise, the IVYA update strategy is chosen.

The function of this mechanism is as follows:

• Early iterations (t ≪ T): at this stage, Padapt ≈ 1, indicating that individuals are
more likely to adopt the PSO strategy, which enhances global search capabilities by
exploring a wider solution space.

• Later iterations (t ≈ T): at this stage, Padapt ≈ 0, at which point the algorithm shifts to
using the IVYA strategy, emphasizing local refinement and fine-tuning of solutions.

The core innovation of this mechanism is that it quantifies the trade-off between global
and local search through a decaying probability function. Early in the optimization, a high
Padapt favors PSO, enabling the swarm to explore broadly and avoid premature convergence.
As the search progresses, Padapt decreases, making IVYA more likely to dominate, which
improves fine-tuning and convergence precision.

This approach is grounded in adaptive optimization theory, where dynamically ad-
justing exploration and exploitation according to convergence state is a proven strategy for
avoiding local optima in multimodal problems.
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3.1.2. Global Search Strategy with PSO

When the condition U(0, 1) < Padapt is met, individual i will adopt the standard
PSO strategy to update its position and velocity, as specified in Equations (1) and (2).
This strategy is guided by the individual’s best historical experience and the global best
information from the entire population, offering strong global search capabilities and
parallel information sharing.

During the early iterations, with a high value of Padapt, individuals are more likely to
adopt the PSO strategy. This encourages the population to quickly expand the search space,
avoid local optima, and enhance both the global exploration ability and search diversity
of the algorithm. At this stage, the algorithm can gather richer search information on a
global scale, which provides a solid foundation for the later local search phase. This leads
to improved overall optimization efficiency, allowing the model to refine solutions more
effectively in subsequent stages.

3.1.3. Local or Global Search Strategy with IVYA

When U(0, 1) > Padapt, the individual adopts the IVYA strategy, with its search
behavior guided by the “vine disturbance mechanism” to achieve either local development
or global exploration.

First, an adaptive disturbance threshold is generated as Equation (12):

β1 = 1 + U(0, 1)2, (12)

where U(0, 1) refers to a random number uniformly distributed in the interval [0, 1]. If the
current individual’s fitness fi is less than β1Gbest, the individual is considered to be in a
potentially optimal region, and a local search is performed as Equation (13):

Xnew
i = Xi + |N (0, 1)| ⊙ (Xj − Xi) +N (0, 1)⊙ GVi, (13)

where Xj refers to another individual randomly selected from the population and N (0, 1)
represents a standard normal random variable.

Otherwise, global search is performed as Equation (14):

Xnew
i = Gbest ⊙ (U(0, 1) +N (0, 1)⊙ GVi), (14)

This strategy effectively balances exploration and exploitation. Under the control of
the adaptive probability mechanism, the algorithm adjusts the search behavior at different
stages of the optimization process, using more local search behavior in promising areas
and broader global search behavior when exploring new regions. This adaptive mecha-
nism ensures that the algorithm can efficiently explore the solution space while avoiding
local optima.

The IVYA’s role here is crucial: its vine disturbance mechanism simulates a localized
perturbation process where solutions ‘grow’ along promising paths but with stochastic
fine-scale adjustments. This is particularly important to compensate for PSO’s tendency to
converge prematurely in high-dimensional, separable search spaces.

Moreover, the IVYA search contributes both local and global search modes. If the
solution is near a potential optimum, the local mode is triggered to exploit it further. If
the solution is suboptimal, global search provides a chance to escape poor regions. This
behavior, governed by the disturbance threshold β1, ensures search robustness across
various fitness landscapes.
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3.1.4. GV Update and Greedy Selection Mechanism

The vine disturbance variable GV controls the search disturbance amplitude in the
IVYA strategy, and its update mechanism is given by Equation (15):

GV = GV · (U(0, 1)2 · N (0, 1)) (15)

This update rule mimics the natural mutation and contraction behavior observed
in vine growth, enabling the search process to be dynamically adjusted. By introducing
controlled randomness, this mechanism enhances the algorithm’s capability to escape
local optima. The update procedure involves checking and correcting the new position to
ensure it stays within predefined boundaries, evaluating its fitness based on the objective
function, and then applying a greedy selection mechanism. If the new position’s fitness is
better than the current one, it replaces the old solution. Furthermore, if it outperforms the
individual’s historical best or the global best solution, the respective records are updated
accordingly. This approach guarantees effective evolution of the population each generation
while maintaining diversity, which is essential for preventing premature convergence and
improving overall search performance.

3.1.5. Time Complexity Analysis

The overall time complexity of the AP-IVYPSO algorithm proposed in this paper can
be estimated based on its iterative structure. Let N represent the population size, U the
problem dimension, and T the maximum number of iterations. In each iteration, every
individual performs either a PSO or IVY update operation, determined by an adaptive
probability strategy aimed at improving fitness. Both update operations involve vector
calculations of dimension U and a single evaluation of the objective function.

The primary computational costs per generation include updating the position and
velocity of each individual, perturbing the vine variable GV, and calculating the fitness
for all individuals. Assuming that the complexity of evaluating the objective function is
O(U), the computational complexity for each iteration is O(N ·U). Therefore, the total time
complexity for the entire algorithm is given by Equation (16):

O(T · N · U) (16)

This complexity increases linearly with the number of iterations, population size, and
problem dimension, which ensures good scalability for practical engineering optimiza-
tion problems. Notably, this paper balances algorithm performance with computational
efficiency. In the experiments, the population size N is consistently set to 30, which helps
ensure the algorithm achieves high computational efficiency while maintaining its opti-
mization capabilities.

3.2. Performance Testing of AP-IVYPSO

To validate the performance and effectiveness of AP-IVYPSO, this study selected 26
widely used benchmark test functions [44–47], which include 15 single-peak test functions
(f1–f15) and 11 multi-peak test functions (f16–f26). Single-peak test functions have a single
global optimum and relatively simple search spaces. The detailed information about the test
functions can be found in Table 1. The optimization process mainly focuses on evaluating
the algorithm’s convergence speed and accuracy. With no local optima to interfere with the
search, single-peak functions are ideal for testing the algorithm’s local search capability
and convergence stability.
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Table 1. Details of the 26 test functions.

s/n Category Function Name Formula Range f*
min

f1 Unimodal Sphere f1(x) =
dim
∑

i=1
x2

i [−100, 100] 0

f2 Unimodal Schwefel 2.22 f2|x| =
dim
∏
i=1

|xi |+
dim
∑

i=1
|xi | [−10, 10] 0

f3 Unimodal Schwefel 1.2 f3(x) =
dim
∑

i=1

(
i

∑
j=1

xj

)2

[−100, 100] 0

f4 Unimodal Schwefel 2.21 f4(x) = max
i

{|xi |}, 1 ≤ i ≤ dim [−100, 100] 0

f5 Unimodal Step f5(x) =
dim
∑

i=1
(0.5 + xi)

2
[−100, 100] 0

f6 Unimodal Quartic f6(x) =
dim
∑

i=1
ix4

i + rand [−1.28, 1.28] 0

f7 Unimodal Exponential f7(x) =
dim
∑

i=1
(exi − xi) [−10, 10] 0

f8 Unimodal Sum power f8(x) =
dim
∑

i=1
x2

i [−1, 1] 0

f9 Unimodal Sum square f9(x) =
dim
∑

i=1
ix2

i [−10, 10] 0

f10 Unimodal Rosenbrock f10(x) =
dim−1

∑
i=1

(
(xi − 1)2 + 100(xi+1 − x2

i )
2
)

[−5, 10] 0

f11 Unimodal Zakharov f11(x) =
(

dim
∑

i=1
0.5ixi

)2

+
dim
∑

i=1
x2

i +

(
dim
∑

i=1
0.5ixi

)4

[−5, 10] 0

f12 Unimodal Trid f12(x) =
dim
∑

i=1
(1 − xi)

2 −
dim
∑

i=2
xi xi−1 [−5, 10] 0

f13 Unimodal Elliptic f13(x) =
dim
∑

i=1
(106)i/(dim−1)x2

i [−100, 100] 0

f14 Unimodal Cigar f14(x) = 106
dim
∑

i=2
x2

i + x2
1 [−100, 100] 0

f15 Fixed Rastrigin f15(x) =
dim
∑

i=1

(
10 − 10cos(2πxi) + x2

i

)
[−5.12, 5.12] 0

f16 Multimodal NCRastrigin f16(x) =
dim
∑

i=1

(
10 − 10cos(2πxi) + x2

i

)
, yi =

{
xi , if xi ≤ 0.5
xi − 1, otherwise [−5.12, 5.12] 0

f17 Multimodal Ackley f17(x) = e−1
dim
∑

i=1
cos(2πxi) + 20e

−0.2

√
1

dim
∑dim

i=1 x2
i + 20 + e [−50, 50] 0

f18 Multimodal Griewank f18(x) = 1 −
dim
∏
i=1

cos
(

xi√
i

)
+

1
4000

dim
∑

i=1
x2

i [−600, 600] 0

f19 Fixed Alpine f19(x) =
dim
∑

i=1
|0.1xi + xisin(xi)| [−10, 10] 0

f20 Multimodal Penalized 1

f20(x) = π
dim

{
∑dim−1

i=1 (yi − 1)2
[
1 + 10sin2(πyi+1)

]
+ 10sin2(πy1) +(ydim − 1)2

}
+

∑dim
i=1 u(xi , 10, 100, 4), yi = 1 + xi+1

4 , u(xi , a, k, m) =

 k(xi − a)m , xi > a
0, − a ≤ xi ≤ a
k(−xi − a)m , xi < −a

[−100, 100] 0

f21 Multimodal Penalized 2

f21(x) =
dim−1

∑
i=1

(xi − 1)2
[
1 + sin2(3πxi+1)

]
+ 0.1

{
sin2(3πx1) + (xdim − 1)2[1 +

sin2(2πxdim)]}+
dim
∑

i=1
u(xi , 5, 100, 4)

[−100, 100] 0

f22 Fixed Schwefel f22(x) =
dim
∑

i=1
xisin(

√
|xi |) [−100, 100] 0

f23 Multimodal Lévy f23(x) =
dim
∑

i=1
(xi − 1)2[1 + sin2(3πxi+1)]+sin2(3πx1) + (xdim − 1)2[1 + sin2(2πxdim)] [−10, 10] 0

f24 Multimodal Weierstrass
f24(x) =

dim
∑

i=1

(
kmax
∑

k=0
akcos(2πbk(0.5 + xi))

)
− dim

(
kmax
∑

k=0
akcos(πbk)

)
, a = 0.5,

b = 3, kmax = 20
[−0.5, 0.5] 0

f25 Fixed Solomon f25(x) = 1 + 0.1

√
dim
∑

i=1
x2

i − cos

(
2π

√
dim
∑

i=1
x2

i

)
[−100, 100] 0

f26 Fixed Bohachevsky f26(x) =
dim
∑

i=1

(
3x2

i − 0.3cos(3πxi)
)

[−10, 10] 0

In contrast, multi-peak test functions feature multiple local optima and one or more
global optima, creating a more complex search space structure. These functions test the
algorithm’s ability to escape from local optima and assess its global search performance,
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making them useful for evaluating the algorithm’s robustness and exploration capabilities
in complex environments.

By testing both single-peak and multi-peak functions, we can comprehensively
measure the algorithm’s performance across different problem types. Additionally,
the 30 independent runs of AP-IVYPSO were compared with the results of eight other
widely recognized, high-performance optimization algorithms: PSO, IVYA, HFPSO [48],
HJSPSO [49], BOA [50], WOA [51], GOOSE [52], PSOBOA [53], NSM_BO [54], and
FDB_AGSK [55]. The parameter configurations for each algorithm can be found in Table 2.
Three numerical evaluation metrics were used: the best fitness value, the average value,
and the standard deviation, with the formulas described as Equation (17) through (19):

Best = min
1≤i≤R

fi, (17)

Avg =
∑R

i=1 ( fi)

R
, (18)

Std =

√
1

R − 1∑R
i=1 ( fi − Avg)2, (19)

where R represents the number of runs, set to 30 in this case. The maximum number of
iterations for the algorithms is set to 500.

Table 2. Parameter settings of 11 algorithms.

Algorithm Parameter Algorithm Parameter

ALL Max iteration = 500; Agents = 30; Runs = 30 BOA a = 0.1; p = 0.6; c0 = 0.01

AP-IVYPSO C1 = C2 = 2.0; Vmax = 0.1; alpha = 0.2
ωmax = 0.9; ωmin = 0.4 WOA a = linear decrease from 2 to 0;

C = [0, 2]; a2 = linear decrease from − 1 to − 2
PSO C1 = C2 = 2; V = (−6, 6); w = (0.2, 0.9) GOOSE SWmin = 5; SWmax = 25; coe_min = 0.17

IVY beta1 = [1, 1.5); GV = [0, 1] PSOBOA
p = 0.6; powerexponent = 0.1
senso − ry_modality = 0.01

HFPSO C1 = C2 = 1.49445; Vmaxcoef = 0.1;
alpha = 0.2; beta0 = 2; gamma = 1; m = 2; NSM-BO

pxgminitial
= 0.03; scab = 1.25; scsb = 1.3

rcpp = 0.0035; tsgs_factor_max = 0.05

HJSPSO Cmin = 0.5; Cmax = 2.0; Wmin = 0.4;
Wmax = 0.9; Bta = 0.1 FDB-AGSK

KFpool = [0.1, 1.0, 0.5, 1.0];
KRpool = [0.2, 0.1, 0.9, 0.9]

All experiments were performed on a Windows 10 operating system, equipped with a
32 GB of RAM and Intel (R) Core (TM) i9-14900KF processor (3.10 GHz), using the Matlab
R2023a environment.

3.2.1. Numerical Results Analysis

Table 3 presents the best fitness values and rankings achieved by AP-IVYPSO and
the other eight algorithms across 26 test functions. AP-IVYPSO achieved the best fitness
value on 21 (f1–f4, f6, f8–f20, f24–f26) test functions, demonstrating its strong accuracy and
local search capability. However, on functions f22 and f23, it ranked 10 and 4, respectively,
indicating average performance.

Table 4 shows the average fitness values, standard deviations, and rankings of AP-
IVYPSO and the other eight algorithms across 26 test functions. AP-IVYPSO achieved
the best average fitness value on 23 (f1–f6, f8–f21, f24–f26) test functions, highlighting its
excellent global search capability and stability. On f7, f22, and f23, however, it ranked 8,
8, and 6, respectively, reflecting average performance compared to the best-performing
algorithms on these functions.
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Table 3. Best fitness and ranking of AP-IVYPSO and other algorithms.

Func. Metrics AP-IVYPSO PSO IVY HFPSO HJSPSO BOA WOA GOOSE PSOBOA NSM-BO FDB-AGSK

f1 Best 0 2.143 0 1.6538 × 10−5 6.3891 × 10−45 7.5933 × 10−11 5.9355 × 10−88 0.0109 1.9073 × 10−61 0.0004 7.4370 × 10−94

Rank 1 11 1 8 6 7 4 10 5 9 3
f2 Best 0 6.213 0 0.006 1.7830 × 10−24 2.8236 × 10−8 5.7347 × 10−55 110.4415 2.7886 × 10−29 0.0011 2.0686 × 10−63

Rank 1 10 1 9 6 7 4 11 5 8 3
f3 Best 0 71.8221 0 2.5028 1.7817 × 10−16 5.2076 × 10−11 277.7414 1.9139 2.2011 × 10−59 0.0589 281.0804

Rank 1 9 1 8 4 5 10 7 3 6 11
f4 Best 0 2.1369 0 0.0966 1.8662 × 10−19 2.6513 × 10−8 5.8994 0.1737 2.9378 × 10−31 3.3914 2.0974 × 10−6

Rank 1 9 1 7 4 5 11 8 3 10 6
f5 Best 0.0037 0.9778 2.2433 3.8506 × 10−6 0.5192 6.5074 0.0809 0.0122 7.0291 0.0009 1.5393

Rank 3 7 9 1 6 10 5 4 11 2 8
f6 Best 3.4874 × 10−5 40.0583 9.3677 × 10−5 0.0301 0.0008 0.0017 0.0018 0.2424 0.0005 0.1606 7.2595 × 10−5

Rank 1 11 3 8 5 6 7 10 4 9 2
f7 Best 7.1751 × 10−66 0 3.3691 × 10−33 7.1751 × 10−66 1.0082 × 10−64 8.4738 × 10−13 7.1751 × 10−66 8.2315 × 10−66 2.9324 × 10−13 7.1751 × 10−66 7.1751 × 10−66

Rank 2 1 9 2 8 11 2 7 10 2 2
f8 Best 0 0.0086 0 6.3555 × 10−14 8.6067 × 10−113 1.1827 × 10−13 4.2612 × 10−116 2.5647 × 10−5 7.7022 × 10−72 5.4193 × 10−24 1.8839 × 10−149

Rank 1 11 1 8 5 9 4 10 6 7 3
f9 Best 0 20.5078 0 1.7088 × 10−5 2.6389 × 10−48 7.5159 × 10−11 1.4417 × 10−78 0.1856 1.1040 × 10−60 1.3930 × 10−5 1.9045 × 10−105

Rank 1 11 1 9 6 7 4 10 5 8 3
f10 Best 25.6917 1256.7495 26.9908 26.6159 25.3748 28.8438 27.4877 134.8309 28.9915 38.9212 28.7173

Rank 2 11 4 3 1 7 5 10 8 9 6
f11 Best 0 194.2087 0 2.5069 × 10−5 1.6487 × 10−47 7.6444 × 10−11 4.9707 × 10−78 0.1711 3.0846 × 10−59 3.6457 1.8917 × 10−103

Rank 1 11 1 8 6 7 4 9 5 10 3
f12 Best 0.6667 90.0749 0.6667 0.6667 0.6667 0.9718 0.6669 1.0268 0.9985 0.6905 0.6686

Rank 2 11 1 4 3 8 5 10 9 7 6
f13 Best 0 7.3733 × 10−31 0 3.7490 × 10−43 5.6779 × 10−177 4.7441 × 10−22 0 1.7220 × 10−7 1.0862 × 10−62 0 0

Rank 1 9 1 8 6 10 1 11 7 1 1
f14 Best 0 3.1468 × 10−19 0 5.8483 × 10−28 8.0021 × 10−118 1.0286 × 10−16 2.9238 × 10−121 4147.5965 2.9735 × 10−58 0 1.4151 × 10−164

Rank 1 9 1 8 6 10 5 11 7 1 4
f15 Best 0 1.4621 × 10−26 0 2.4789 × 10−28 3.9173 × 10−162 4.6394 × 10−22 2.4224 × 10−151 0.0013 7.8454 × 10−63 0 3.9790 × 10−207

Rank 1 9 1 8 5 10 6 11 7 1 4
f16 Best 0 116.392 0 56.7134 0 1.4211 × 10−12 0 151.8816 1.7053 × 10−13 17.9185 0

Rank 1 10 1 9 1 7 1 11 6 8 1
f17 Best 0 174.1291 0 56 36.9823 126.8702 0 259.005 3.0749 × 10−12 9.0496 0

Rank 1 10 1 8 7 9 1 11 5 6 1
f18 Best 4.4409 × 10−16 2.7332 4.4409 × 10−16 0.001 3.9968 × 10−15 2.8218 × 10−8 4.4409 × 10−16 17.4731 4.4409 × 10−16 1.6501 3.9968 × 10−15

Rank 1 10 1 8 5 7 1 11 1 9 5
f19 Best 0 0.1477 0 1.1175 × 10−5 0 8.7103 × 10−12 0 0.045 0 0.1929 0

Rank 1 10 1 8 1 7 1 9 1 11 1
f20 Best 0 4.7182 0 0.0081 2.4683 × 10−26 9.4059 × 10−11 2.6009 × 10−55 7.2385 6.1770 × 10−22 0.0003 9.3253 × 10−66

Rank 1 10 1 9 5 7 4 11 6 8 3
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Table 3. Cont.

Func. Metrics AP-IVYPSO PSO IVY HFPSO HJSPSO BOA WOA GOOSE PSOBOA NSM-BO FDB-AGSK

f21 Best 0.0003 0.0524 0.0031 1.9709 × 10−8 0.008 0.8402 0.005 3.1567 0.9718 1.0872 × 10−07 0.0196
Rank 3 8 4 1 6 9 5 11 10 2 7

f22 Best 2.5661 1.05 2.6862 2.9258 × 10−7 0.1515 2.5055 0.1836 0.011 2.4301 0.011 0.1103
Rank 10 7 11 1 5 9 6 2 8 3 4

f23 Best 0.24 5.9907 1.0393 0.2439 0.2986 12.2412 0.1273 0.6291 15.6423 0.0465 0.0027
Rank 4 9 8 5 6 10 3 7 11 2 1

f24 Best 0 1.5995 0 2.2204 × 10−16 0 4.2802 0 14.0717 0.0005 0 0
Rank 1 9 1 7 1 10 1 11 8 1 1

f25 Best 0 1.5919 0 0.8955 0.0995 0.8955 0.0995 1.5919 0.0995 4.8752 0.0995
Rank 1 9 1 7 5 8 3 10 6 11 4

f26 Best 0 20.5778 0 1.0702 × 10−5 0 7.0600 × 10−11 0 5.7812 0 0.0002 0
Rank 1 11 1 8 1 7 1 10 1 9 1

Paired rank +/=/− 24/0/2 7/18/1 22/1/3 20/4/2 25/0/1 16/8/2 25/0/1 22/3/1 17/5/4 17/7/2
Avg. rank 1.73 9.35 2.58 8.69 4.62 8.04 4.00 9.35 6.08 6.15 3.62

Overall rank 1 10 2 9 5 8 4 10 6 7 3

Table 4. Average fitness, standard deviation, and ranking of AP-IVYPSO and other algorithms.

Func. Metrics AP-IVYPSO PSO IVY HFPSO HJSPSO BOA WOA GOOSE PSOBOA NSM-BO FDB-AGSK

f1 Avg. 0 2.2242 0 2.7201 × 10−5 1.6815 × 10−45 2.4795 × 10−73 2.1691 × 10−94 24.3628 7.6307 × 10−11 8.1448 × 10−2 1.8042 × 10−60

Std. 0 1.1192 0 1.9166 × 10−5 5.4431 × 10−45 1.0646 × 10−72 1.1247 × 10−93 72.7317 5.9056 × 10−12 0.1366 3.8616 × 10−60

Rank 1 10 1 8 6 4 3 11 7 9 5
f2 Avg. 0 4.3059 0 5.0487 × 10−3 3.6512 × 10−24 1.6646 × 10−50 1.6909 × 10−61 311755.5169 2.2675 × 10−08 3.3658 × 10−3 3.2835 × 10−29

Std. 0 1.0453 0 3.2921 × 10−3 1.2900 × 10−23 5.2406 × 10−50 4.1066 × 10−61 1700375.092 7.0180 × 10−09 4.1626 × 10−3 3.8575 × 10−29

Rank 1 10 1 9 6 4 3 11 7 8 5
f3 Avg. 0 84.3157 0 1.084 9.3012 × 10−13 436.7661 398.6451 2.392 5.3594 × 10−11 3.685 7.4448 × 10−60

Std. 0 25.1033 0 0.7504 2.6931 × 10−12 150.0621 192.5733 0.875 7.2579 × 10−12 3.4865 3.1965 × 10−59

Rank 1 9 1 6 4 11 10 7 5 8 3
f4 Avg. 0 1.9148 0 0.1389 2.4045 × 10−20 4.7568 4.051 0.2214 2.7187 × 10−08 2.5511 7.9000 × 10−31

Std. 0 0.2904 0 5.9634 × 10−2 5.9800 × 10−20 2.984 3.7145 9.8125 × 10−2 2.6012 × 10−09 0.6179 8.1858 × 10−31

Rank 1 8 1 6 4 11 10 7 5 9 3
f5 Avg. 3.2141 × 10−3 2.1385 0.4415 2.6084 × 10−6 0.1802 8.7297 × 10−2 0.5135 1.0139 × 10−2 5.3699 5.0195 × 10−3 6.291

Std. 1.0477 × 10−3 0.8369 0.4196 1.3344 × 10−6 0.1579 5.1211 × 10−2 0.3403 3.3982 × 10−3 0.6426 1.5448 × 10−2 0.6757
Rank 2 9 7 1 6 5 8 4 10 3 11

f6 Avg. 8.3694 × 10−5 13.6561 7.6814 × 10−5 1.8698 × 10−2 1.5350 × 10−03 2.7534 × 10−3 1.0183 × 10−3 0.1333 2.0667 × 10−03 0.1027 2.0759 × 10−4

Std. 7.0251 × 10−5 11.6369 9.4172 × 10−5 8.0492 × 10−3 6.1941 × 10−04 2.9686 × 10−3 2.0364 × 10−3 6.3191 × 10−2 6.6445 × 10−04 3.7157 × 10−2 1.2431 × 10−4

Rank 2 11 1 8 5 7 4 10 6 9 3
f7 Avg. 1.5811 × 10−62 0 3.6996 × 10−32 7.1751 × 10−66 2.1876 × 10−64 7.1751 × 10−66 7.1751 × 10−66 1.2778 × 10−65 5.7664 × 10−10 7.1751 × 10−66 3.7060 × 10−10

Std. 4.8221 × 10−62 0 1.3245 × 10−31 3.2167 × 10−81 4.4300 × 10−64 3.2167 × 10−81 3.2167 × 10−81 2.1948 × 10−65 2.3165 × 10−9 3.2167 × 10−81 1.8506 × 10−9

Rank 8 1 9 2 7 3 4 6 11 5 10
f8 Avg. 0 0.1845 0 1.3148 × 10−13 1.0941 × 10−115 3.9508 × 10−112 2.1483 × 10−148 1.4983 × 10−5 8.2880 × 10−14 4.9084 × 10−20 7.1843 × 10−71

Std. 0 0.1404 0 2.5209 × 10−13 4.1900 × 10−115 1.3697 × 10−111 1.1765 × 10−147 1.0298 × 10−5 5.2208 × 10−14 2.5907 × 10−19 1.9871 × 10−70

Rank 1 11 1 9 4 5 3 10 8 7 6
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Table 4. Cont.

Func. Metrics AP-IVYPSO PSO IVY HFPSO HJSPSO BOA WOA GOOSE PSOBOA NSM-BO FDB-AGSK

f9 Avg. 0 24.6964 0 5.8998 × 10−5 8.5050 × 10−46 3.1248 × 10−75 2.8005 × 10−96 1.1455 7.2583 × 10−11 0.1602 3.3952 × 10−59

Std. 0 10.5308 0 4.1394 × 10−5 2.8022 × 10−45 1.5279 × 10−74 1.4385 × 10−95 0.839 7.1158 × 10−12 0.617 7.8186 × 10−59

Rank 1 11 1 8 6 4 3 10 7 9 5
f10 Avg. 25.7396 968.8295 26.7298 34.2495 26.657 27.9368 28.7227 52.7595 28.9095 74.3919 28.9655

Std. 0.295 430.3186 0.7416 20.3032 0.6231 0.4449 5.4142 × 10−2 50.1432 2.5496 × 10−2 61.2205 2.0377 × 10−2

Rank 1 11 3 8 2 4 5 9 6 10 7
f11 Avg. 0 104.1111 0 2.8299 × 10−5 3.8794 × 10−46 7.1179 × 10−75 4.5743 × 10−99 0.1626 6.7352 × 10−11 4.3200 × 10−2 2.7784 × 10−59

Std. 0 47.2141 0 1.9534 × 10−5 1.4895 × 10−45 2.8523 × 10−74 1.5075 × 10−98 6.0467 × 10−2 5.9932 × 10−12 0.1679 4.4222 × 10−59

Rank 1 11 1 8 6 4 3 10 7 9 5
f12 Avg. 0.6667 188.7117 0.6667 0.7436 0.6667 0.6669 0.7692 2.6967 0.9714 4.0598 0.9945

Std. 7.9805 × 10−8 111.3023 6.4798 × 10−8 0.1496 5.7002 × 10−7 1.5067 × 10−4 0.117 2.3149 7.2435 × 10−3 4.2141 4.7855 × 10−3

Rank 1 11 2 5 3 4 6 9 7 10 8
f13 Avg. 0 7.4583 × 10−26 0 6.9712 × 10−35 2.0885 × 10−175 0 0 3.8853 × 10−4 7.8267 × 10−22 0 1.8237 × 10−60

Std. 0 2.0498 × 10−25 0 3.1468 × 10−34 0 0 0 5.6794 × 10−4 3.9371 × 10−21 0 6.9177 × 10−60

Rank 1 9 1 8 6 1 1 11 10 1 7
f14 Avg. 0 6.2909 × 10−18 0 9.9752 × 10−25 3.3824 × 10−121 4.7568 × 10−108 3.0927 × 10−148 1424.1393 3.8701 × 10−17 0 9.4288 × 10−56

Std. 0 1.9893 × 10−17 0 3.2933 × 10−24 1.2320 × 10−120 1.8377 × 10−107 1.6939 × 10−147 1800.3152 4.8754 × 10−17 0 3.6693 × 10−55

Rank 1 9 1 8 5 6 4 11 10 1 7
f15 Avg. 0 1.5805 × 10−23 0 2.4574 × 10−23 1.6178 × 10−160 9.1804 × 10−129 4.5201 × 10−182 1.3062 × 10−2 8.1037 × 10−19 0 4.5225 × 10−62

Std. 0 5.2171 × 10−23 0 1.2322 × 10−22 5.4692 × 10−160 4.0309 × 10−128 0 3.7231 × 10−2 3.2740 × 10−18 0 1.3610 × 10−61

Rank 1 8 1 9 5 6 4 11 10 1 7
f16 Avg. 0 160.4583 0 55.2544 0.758 0 1.8948 × 10−15 160.4137 19.6471 12.1124 1.5460 × 10−10

Std. 0 29.6627 0 23.9875 4.1516 0 1.0378 × 10−14 41.0324 59.2622 5.3807 7.9237 × 10−10

Rank 1 11 1 9 6 1 4 10 8 7 5
f17 Avg. 0 173.302 0 60.7 20.4006 0 0 180.996 99.7438 8.5838 1.0908 × 10−7

Std. 0 34.9327 0 18.9303 10.6438 0 0 44.8631 83.3625 2.7231 4.2793 × 10−7

Rank 1 10 1 8 7 1 1 11 9 6 5
f18 Avg. 4.4409 × 10−16 2.6323 4.4409 × 10−16 0.1419 3.9968 × 10−15 3.5231 × 10−15 2.8126 × 10−15 8.8537 2.7313 × 10−8 0.8815 4.4409 × 10−16

Std. 0 0.3714 0 0.4423 0 2.4210 × 10−15 2.1546 × 10−15 7.4732 2.1311 × 10−9 0.6703 0
Rank 1 10 1 8 6 5 4 11 7 9 1

f19 Avg. 0 0.1393 0 1.4138 × 10−2 0 2.1449 × 10−2 0 254.9518 1.0409 × 10−11 0.2475 0
Std. 0 5.2798 × 10−02 0 1.8405 × 10−2 0 5.6326 × 10−2 0 215.8963 8.5551 × 10−12 0.3513 0

Rank 1 9 1 7 1 8 1 11 6 10 1
f20 Avg. 0 5.0555 0 1.3143 × 10−2 3.1090 × 10−25 7.7033 × 10−39 2.4542 × 10−61 6.5153 9.4890 × 10−9 8.4556 × 10−4 3.4163 × 10−19

Std. 0 2.4515 0 1.1284 × 10−2 3.7341 × 10−25 4.2193 × 10−38 1.1818 × 10−60 2.5439 1.7541 × 10−8 7.7548 × 10−4 1.8447 × 10−18

Rank 1 10 1 9 5 4 3 11 7 8 6
f21 Avg. 2.6129 × 10−4 6.4649 × 10−2 1.8404 × 10−2 0.0276 3.4536 × 10−3 2.4664 × 10−2 1.6021 × 10−2 3.5507 0.5319 1.7249 × 10−2 0.8967

Std. 9.6524 × 10−5 9.1396 × 10−2 1.5129 × 10−2 6.0465 × 10−2 4.3030 × 10−3 7.8161 × 10−2 1.3305 × 10−2 1.0116 0.1661 3.9212 × 10−2 0.1935
Rank 1 8 5 7 2 6 3 11 9 4 10

f22 Avg. 2.4622 0.5032 2.8295 4.0291 × 10−3 0.3516 0.1426 0.1419 1.0274 × 10−2 2.841 7.7291 × 10−3 2.8331
Std. 0.9841 0.2057 0.4535 5.3853 × 10−3 0.258 7.9898 × 10−2 0.1008 7.5354 × 10−3 0.2182 1.1225 × 10−2 0.2424

Rank 8 7 9 1 6 5 4 3 11 2 10
f23 Avg. 0.6783 6.2706 1.2216 0.3475 0.3146 0.5131 0.2782 0.7417 11.7537 4.5073 × 10−2 16.2517

Std. 0.6903 3.2296 1.1141 1.05 0.3326 0.9707 0.3892 0.5245 2.3392 6.6888 × 10−2 2.4806
Rank 6 9 8 4 3 5 2 7 10 1 11
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Table 4. Cont.

Func. Metrics AP-IVYPSO PSO IVY HFPSO HJSPSO BOA WOA GOOSE PSOBOA NSM-BO FDB-AGSK

f24 Avg. 0 4.9842 2.4961 × 10−6 0.1789 0 0 0 10.3472 0.874 3.1999 × 10−3 5.4261 × 10−5

Std. 0 4.2589 1.3672 × 10−5 0.6958 0 0 0 5.5363 2.2389 1.1460 × 10−2 1.1400 × 10−4

Rank 1 10 5 8 1 1 1 11 9 7 6
f25 Avg. 0 1.879 0 0.9452 9.9496 × 10−2 0.1824 9.2863 × 10−2 1.6019 0.8031 5.9099 0.0995

Std. 0 0.5026 0 0.3394 1.9179 × 10−8 0.1457 0.1137 0.4884 0.1906 2.0133 1.9888 × 10−6

Rank 1 10 1 8 4 6 3 9 7 11 5
f26 Avg. 0 22.0237 0 0.3632 0 0 0 5.3291 7.5784 × 10−11 0.4015 0

Std. 0 5.5998 0 0.6823 0 0 0 2.1236 6.8529 × 10−12 0.912 0
Rank 1 11 1 8 1 1 1 10 7 9 1

Paired rank +/=/− 24/0/2 8/19/1 22/0/4 20/3/3 18/5/3 18/5/3 24/0/2 26/0/0 20/3/3 23/0/3
Avg. rank 1.81 9.38 2.54 6.92 4.50 4.69 3.77 9.31 7.92 6.65 5.88

Overall rank 1 11 2 8 4 5 3 10 9 7 6
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3.2.2. Convergence Curve Analysis

Appendix A.1 presents the convergence curves of the proposed AP-IVYPSO-BP algo-
rithm and comparison algorithms, showing how the average fitness values of the bench-
mark test functions change with the number of objective function evaluations. This provides
a more comprehensive representation of the optimization process and overall performance
of each algorithm. The x-axis indicates the number of objective function evaluations (with
a maximum of 15,000), while the y-axis displays the average fitness values obtained from
30 independent runs, thereby minimizing the random fluctuations that could arise from a
single trial.

The figure reveals that the AP-IVYPSO algorithm exhibits faster convergence and
superior average performance across 18 test functions (f1–f4, f8–f9, f11, f13–f20, and f24–f26),
highlighting its robust global optimization capability. However, on functions f5, f7, f22, and
f23, certain comparison algorithms achieved better optimization results, suggesting that
these algorithms also demonstrate strong adaptability to specific problem instances.

3.2.3. Friedman Ranking and Wilcoxon Signed-Rank Test

To comprehensively evaluate the performance of the proposed AP-IVYPSO algorithm
on 26 test functions, the Friedman test was employed to rank the nine algorithms. Based on
the Friedman test scores, AP-IVYPSO achieved the lowest average rank (1.8587), securing
first place and demonstrating the best overall performance. IVY and FDB-AGSK followed
in second and third place, respectively. The traditional PSO was ranked 10, while GOOSE
ranked the lowest, in 11 place. These ranking results further validate the significant
advantage of the AP-IVYPSO algorithm in terms of optimization quality and stability. The
Friedman ranking of each algorithm is shown in Table 5.

Table 5. Friedman ranking of each algorithm.

Algorithm Scores Rank

AP-IVYPSO 1.8587 1
PSO 9.2135 10
IVY 2.6871 2

HFPSO 6.7202 8
HJSPSO 4.4745 4

BOA 4.6521 5
WOA 5.8786 6

GOOSE 9.236 11
PSOBOA 7.931 9
NSM-BO 6.6456 7

FDB-AGSK 3.7476 3

To further validate the significant advantage of the proposed AP-IVYPSO algorithm
on multiple benchmark test functions, the Wilcoxon signed-rank test was performed for
paired comparisons between AP-IVYPSO and the other eight comparison algorithms. The
significance level for the test was set to α = 0.05. The results showed that the p-values
between AP-IVYPSO and all other algorithms were smaller than the significance level of
0.05. This indicates that, in statistical terms, there are significant differences between AP-
IVYPSO and all the comparison algorithms, further confirming the superior optimization
performance of the proposed algorithm. The Wilcoxon signed-rank test results for AP-
IVYPSO and the other eight algorithms are displayed in Table 6.
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Table 6. Wilcoxon signed-rank test results for AP-IVYPSO and the other eight algorithms with
α = 0.05.

Algorithm p-Value Significant

AP-IVYPSO-PSO 0.00005 Yes
AP-IVYPSO-IVY 0.01088 Yes

AP-IVYPSO-HFPSO 0.00187 Yes
AP-IVYPSO-HJSPSO 0.0105 Yes

AP-IVYPSO-BOA 0.00117 Yes
AP-IVYPSO-WOA 0.01614 Yes

AP-IVYPSO-GOOSE 0.00003 Yes
AP-IVYPSO-PSOBOA 0.00679 Yes
AP-IVYPSO-NSM-BO 0.00051 Yes

AP-IVYPSO-FDB-AGSK 0.02367 Yes

In conclusion, AP-IVYPSO has shown outstanding performance across all comprehen-
sive tests, proving itself to be a powerful algorithm.

3.3. BPNN Model Parameter Optimization

The AP-IVYPSO-BP model utilizes a feedforward neural network for predicting con-
crete compressive strength. The network consists of an input layer, two hidden layers, and
an output layer. The basic structural diagram of the AP-IVYPSO-BP model is shown in
Figure 4. The input layer includes features related to the concrete mix, while the output
layer predicts the compressive strength of the concrete. The network’s weights and biases
are optimized using the AP-IVYPSO algorithm to enhance the accuracy of the predictions.

Figure 4. Basic structure diagram of AP-IVYPSO-BP model.

The network is trained by minimizing the mean squared error (MSE) between the
predicted values and the actual values. The AP-IVYPSO algorithm is used iteratively to
optimize the weights and biases of the network, with each particle’s position representing
a specific set of neural network parameters.

The algorithm begins by initializing the positions and velocities of the particle swarm
and evaluating each particle’s fitness based on the performance of the neural network
on the training set. The AP-IVYPSO algorithm then optimizes the model through an
adaptive probability mechanism based on fitness improvement. In each optimization
iteration, the particle positions are updated according to the probabilities of the PSO
or IVYA strategies. The optimization process continues until the maximum number of
iterations is reached or a convergence criterion is satisfied. Once the optimization is
complete, the optimal parameters identified are used to initialize the BPNN. The network
is then trained on the training set using the backpropagation algorithm, which aims to
minimize the prediction error.

The reason for choosing AP-IVYPSO to optimize the BPNN lies in the complemen-
tary nature of the two algorithms: PSO enables efficient global exploration of the neural
network’s high-dimensional weight space, while IVYA introduces precise local search ad-
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justments through its disturbance mechanism. This helps fine-tune the network parameters
for better predictive accuracy.

Moreover, the AP-IVYPSO’s adaptive switch strategy ensures that early optimization
focuses on avoiding poor minima, while later optimization emphasizes convergence around
strong solutions. This is highly suitable for training BPNNs, which are known to suffer
from poor initialization and gradient-based convergence issues.

3.4. Summary

The AP-IVYPSO-BP model integrates the global search ability of PSO and the local
optimization capabilities of IVYA. By utilizing the adaptive probability mechanism, the
model dynamically selects the most suitable optimization strategy, effectively balancing
global and local search efforts. This balance significantly enhances the accuracy and stability
of concrete compressive strength predictions. The next section will discuss the experimental
setup, performance evaluation, and comparisons with benchmark models.

4. Experimental Evaluation and Result Interpretation
4.1. Dataset Overview for Experimentation

This study employs a dataset derived from the high-performance concrete compressive
strength experimental dataset in the UCI Machine Learning Repository [56]. This dataset
is widely utilized in research on the prediction of HPC properties and holds significant
representativeness and practical value [57]. The dataset comprises 1030 samples, each with
eight input variables and one output variable. The input variables include the following:
cement, fly ash, blast furnace slag, water, superplasticizer, age, fine aggregate, and coarse
aggregate, while concrete compressive strength serves as the output variable. All input
variables, with the exception of Age, are quantified in kilograms per cubic meter (kg/m3);
age is measured in days, while compressive strength is expressed in megapascals (MPa).

The data were collected from controlled laboratory experiments simulating realistic
HPC mix designs, ensuring high data reliability and consistency. The samples cover a broad
range of mixture proportions and curing ages, which effectively represent the variability
encountered in practical engineering scenarios. This diversity in the dataset allows for
robust modeling of the nonlinear and complex relationships between mixture components
and compressive strength.

In this study, each sample represents a unique high-performance concrete mix design,
and the nonlinear mapping between the eight-dimensional input variables and compressive
strength output defines a high-dimensional, non-convex search space. This space lacks
gradient information and contains numerous local optima, often metaphorically referred to
as an “inhospitable environment.” Both IVYA and PSO are applied to this space to search
for the optimal parameters of the neural network.

Specifically, each individual in the population represents a set of initial weights and
biases for the BP neural network, which are encoded as real-valued vectors. The opti-
mization algorithm’s goal is to minimize the model’s prediction error on the training or
validation set. By initializing the BP neural network with the weights corresponding to each
individual, the network is trained on the normalized high-performance concrete dataset,
and its performance on the test set is evaluated to assess the fitness of each individual. In
this manner, the dynamic search process of swarm intelligence is directly applied to the
optimization of the concrete strength prediction parameters.

The compressive strength of HPC exhibits a distinct nonlinear relationship with the
composition of the mixture, and this complexity is visually illustrated in Figures 5 and 6.
Detailed information about the input features is presented in Table 7, facilitating a thorough
understanding of their characteristics. By using this data for neural network training and
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swarm intelligence-based optimization, the algorithmic strategy is not generic or abstract
but is specifically customized to model the highly nonlinear strength behavior of concrete.

Table 7. Statistical information for HPC datasets.

Type Variable Minimum Maximum
Value Average Value Standard

Deviation Unit

input variables

cement 102 540 281.1 104.54 Kg/m3

blast furnace slag 0 359.4 73.97 86.29 Kg/m3

fly ash 0 200.1 54.24 64.01 Kg/m3

water 121.8 247 181.55 21.35 Kg/m3

superplasticizer 0 32.2 6.21 5.97 Kg/m3

coarse aggregate 801 1145 972.92 77.79 Kg/m3

fine aggregate 594 992.6 773.58 80.21 Kg/m3

age 1 365 45.62 63.19 days
output variable compressive strength 2.33 82.6 35.82 16.71 MPa

Figure 5. The relationship graph between concrete strength and the initial 4 input features: cement,
water, fly ash, and blast furnace slag.
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Figure 6. The relationship graph between concrete strength and the final 4 input features: high-
efficiency water reducer, age, fine aggregate, and coarse aggregate.

To better reveal the interactions between variables, this paper employs the Pearson
Correlation Coefficient to analyze the correlations among the input variables and between
input variables and output variable. The coefficient ranges from −1 to 1, where values near
0 suggest a weak correlation, values approaching 1 indicate a strong positive correlation,
and values close to -l represent a strong negative correlation. The resulting Pearson
correlation matrix is displayed in Figure 7, from which the correlation patterns between
variables can be discerned. The results demonstrate that the influence of various factors on
strength follows distinct and significant correlation patterns.
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Figure 7. The Pearson correlation matrix for each variable.

Furthermore, to quantitatively evaluate the influence of each input variable on the
compressive strength of HPC, the XGBoost algorithm was employed within a Python 3.8
computational environment. The resulting feature importance rankings, as illustrated
in Figure 8, reveal that curing age is the most critical predictor, with cement and water
con-tent following closely behind. In contrast, fly ash and coarse aggregate have relatively
smaller impacts.

Figure 8. Ranking of feature importance.
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To ensure stable convergence during the model training process and eliminate dispari-
ties in the magnitudes of different feature variables, the input features were normalized to
the [0, 1] range using min-max normalization, while the output targets were standardized
using the Z-score method. This preprocessing step enhances the training efficiency and
prediction accuracy of the neural network, while mitigating potential convergence issues
or instability arising from significant differences in data scales.

In this study, the primary research goal is to accurately predict the compressive
strength of high-performance concrete based on its mix design parameters. To achieve this,
a hybrid prediction model named AP-IVYPSO-BP is proposed, in which the AP-IVYPSO
is employed to optimize the initial weights and biases of a BPNN. By combining global
search capability with nonlinear learning, this model aims to address the complex mapping
relationship between concrete components and compressive strength, thereby improving
prediction precision.

4.2. Performance Evaluation Metrics

To assess the predictive performance of the proposed algorithmic model, this study
utilizes three widely used evaluation metrics: the coefficient of determination (R2), mean
absolute error (MAE), and root mean squared error (RMSE). RMSE and MAE assess the
differences between actual values and predicted value; whereas lower values signify better
prediction accuracy, R2 quantifies the degree of correlation between the model’s predicted
results and the observed outcomes. Its value ranges from 0 to 1, with values approaching
1 indicating superior model performance and stronger predictive accuracy. The detailed
computational expressions are outlined in Equation (20) through (22):

R2 = 1 − ∑N
i=1 (yi − ŷi)

2

∑N
i=1 (yi − y)2

fi, (20)

MAE =
1
N ∑N

i=1 |ŷi − yi|, (21)

RMSE =

√
1
N ∑N

i=1 (yi − ŷi)2, (22)

where yi is the actual output value of the i − th sample, y is the mean of the actual values,
ŷi is the predicted output value, and N is the total number of samples.

4.3. Overview of Experimental Procedures

In this experiment, 1000 samples are used for training, while an additional 30 samples
are set aside for testing. The model is configured to undergo 100 training iterations, and
the optimization algorithm parameters are provided in Table 8. To balance computational
efficiency and algorithm performance, the population size for all algorithms in this study
was uniformly set to 30.

Table 8. Parameter settings of BP, PSO-BP, GA-BP, and IVY-BP.

Model Parameter Setting Model Parameter Setting

BP
Epochs = 1000

Error Goal = 0.000001
Learning Rate = 0.01

PSO-BP C1 = C2 = 4.494
V = (−1, 1), ω = 0.2

GA-BP
Selection pressure = 0.09

Crossover Rate = 2
Mutation Rate = [2, 50, 3]

IVY-BP N = 50, α = 0.9 ×
(
1 − t

MaxIter

)
GV = [0, 1]

AP-IVYPSO-BP C1 = C2 = 2.0, Vmax = 0.1, alpha = 0.2, ωmax = 0.9, ωmin = 0.4
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The flowchart of the experimental procedure is shown in Figure 9. The specific
procedures for conducting this experiment are outlined as follows.

 

Figure 9. The flowchart of the experimental procedure.

The specific procedures for conducting this experiment are detailed as follows:

(1) Data Preprocessing and Dataset Division: The original HPC dataset is divided into a
training set and a test set. The input features are normalized using the mapminmax
function, while the output values are standardized with Z-score normalization. These
preprocessing steps help to enhance the model’s stability and speed up convergence
during training.

(2) Neural Network Architecture Configuration: A BPNN is constructed, with two hidden
layers containing 16 and 8 neurons. The architecture is initialized based on the input
features’ dimensionality and the number of output variables.

(3) AP-IVYPSO Initialization: The maximum number of iterations and population size
for the AP-IVYPSO algorithm are set. Each “vine” individual represents a potential
combination of neural network weights and thresholds, which are the optimization
targets. The individual particles dynamically select between the PSO or IVYA update
strategies, using an adaptive probability mechanism based on fitness improvements.

(4) Fitness Evaluation: The fitness function is defined as the RMSE between predicted
and actual values. This guides the “vine” individuals toward the optimal solution,
ensuring that the network’s predictive performance is maximized.

(5) Position Update and Local Search: Each “vine” individual updates its position either
by applying a local disturbance strategy or by randomly selecting a leader’s direction.
In PSO updates, particle velocity and position are adjusted using the velocity update
mechanism. In IVYA updates, the position is modified using vine heuristic growth



Biomimetics 2025, 10, 515 26 of 47

dynamics. A mutation mechanism with a certain probability is incorporated to
increase population diversity and help avoid local optima.

(6) Optimal Weight Selection: After all iterations, the “vine” individual with the best
fitness is selected, and its corresponding neural network weights and thresholds are
used to update the BPNN.

(7) Model Training and Prediction: The BPNN is trained using the optimal weights
obtained from the AP-IVYPSO algorithm. Predictions are made for both the training
and test sets, and the model’s performance is evaluated using R2, MAE, and RMSE
metrics. The results are visualized to assess the model’s accuracy.

4.4. Analysis of Compressive Strength Prediction for High-Performance Concrete

To assess the practicality and advantages of the AP-IVYPSO-BP model in predicting
the compressive strength of high-performance concrete, we systematically compared it
with four benchmark models: the unoptimized standard BPNN, the PSO-optimized PSO-
BP model, the GA-optimized GA-BP model, and the IVYA-optimized IVY-BP model. By
keeping the input features consistent, different optimization strategies were applied to
adjust the BPNN parameters, ensuring a comprehensive and fair comparison of model
performance under the same dataset and experimental conditions.

To facilitate a more intuitive comparison of the prediction performance, we present
scatter plots (Figure 10) and prediction curves (Figure 11) showing actual values against
predicted values. These visualizations demonstrate the performance of the BPNN, PSO-BP,
GA-BP, IVY-BP, and AP-IVYPSO-BP models on the test set.

As shown in Figure 10, the scatter plot clearly indicates that the predicted points of
the AP-IVYPSO-BP model are the most tightly clustered and almost uniformly distributed
along the ideal diagonal (where predicted values equal actual values), suggesting minimal
deviation between the actual and predicted values. In contrast, the scatter plots for the
BPNN, PSO-BP, GA-BP, and IVY-BP models show greater dispersion, with the BPNN model
exhibiting more pronounced prediction errors.

The prediction curve in Figure 11 highlights how well the AP-IVYPSO-BP model fits
the entire sample range, with the predicted curve closely matching the actual curve and
demonstrating consistent fluctuations and trends. In comparison, other models show clear
deviations at certain sample points, particularly at extreme values or inflection points,
indicating poor fitting performance. Furthermore, the AP-IVYPSO-BP model excels in
tracking regions with large fluctuations in the data, effectively capturing complex nonlinear
relationships. This underscores the superior fitting ability and stability of the AP-IVYPSO-
BP model when dealing with complex data structures. Table 9 provides the prediction
results for each model, from which we can draw the following conclusions. Additionally,
the table also provides the runtime (TIME) of each model.

The AP-IVYPSO-BP model outperforms all comparison models, especially in terms
of prediction performance on the test set. Specifically, it surpasses the traditional BPNN,
PSO-BP, GA-BP, and IVY-BP models in key evaluation metrics such as R2, MAE, and
RMSE. Notably, it achieves R2 = 0.9542, MAE = 3.0404, and RMSE = 3.7991, demonstrating
minimal deviation between the predicted and actual values. These results show that the
AP-IVYPSO-BP model delivers optimal prediction accuracy for high-performance concrete
compressive strength.
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(a) BPNN. (b) PSO-BP. 

  
(c) GA-BP. (d) IVY-BP. 

 
(e) AP-IVYPSO-BP. 

Figure 10. Scatter diagrams comparing predicted and actual test set values across models.
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(c) GA-BP. 

(d) IVY-BP. 
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(e) AP-IVYPSO-BP. 

Figure 11. Comparison of predicted and actual values on the test set for different models.

Table 9. Prediction results of different models.

Index
Model

BPNN PSO-BP GA-BP IVY-BP AP-IVYPSO-BP

R2 0.8533 0.8631 0.8885 0.9385 0.9542

MAE 5.08 4.9142 4.2209 3.3559 3.0404

RMSE 6.4495 6.2298 5.6238 4.1748 3.7991

TIME 0.4466 0.8946 0.9136 0.7836 0.9667

Compared to the traditional BPNN model, the PSO and GA algorithms have already
enhanced its performance, and the IVYA further improves the predictive capability of
BPNN. The AP-IVYPSO-BP model combines the global search ability of PSO with the
local search characteristics of IVYA, dynamically adjusting the PSO and IVYA update
mechanisms through an adaptive probability strategy based on fitness improvement. This
dynamic balance between global and local searches significantly enhances both prediction
accuracy and model stability. When compared to the IVY-BP model, which is less optimized,
the AP-IVYPSO-BP model improves R2 from 0.9485 to 0.9542, reduces MAE by 0.3155, and
lowers RMSE by 0.3757. These improvements clearly demonstrate the superior prediction
accuracy of the AP-IVYPSO-BP model over other optimization techniques.

In conclusion, these results suggest that integrating bio-inspired optimization algo-
rithms with neural networks is an effective approach for improving regression prediction
accuracy in complex nonlinear problems. By leveraging both global and local search
capabilities, the AP-IVYPSO-BP model demonstrates remarkable generalization ability
and robustness, achieving notable success in predicting the compressive strength of high-
performance concrete.
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5. Conclusions
This paper introduces a novel hybrid prediction model, AP-IVYPSO-BP, that combines

the bio-inspired IVYA with PSO to optimize a BPNN for accurately predicting the compres-
sive strength of HPC. The AP-IVYPSO-BP model strengthens the global search capability of
PSO and the local search characteristics of IVYA, while dynamically adjusting their update
mechanisms through an adaptive probability strategy based on fitness improvement. This
dynamic adjustment optimizes the balance between global and local searches, significantly
enhancing prediction accuracy, model stability, and robustness.

To validate the proposed model’s effectiveness, experiments were conducted on a
publicly available dataset containing 1030 high-performance concrete mix samples. The
AP-IVYPSO-BP model was compared with traditional BPNN, PSO-BP, GA-BP, and IVY-BP
models. The experimental results demonstrate that the AP-IVYPSO-BP model outperforms
the other models across various evaluation metrics, particularly excelling in R2, MAE, and
RMSE. Specifically, the AP-IVYPSO-BP model achieved an R2 of 95.42%, reflecting its excel-
lent fitting ability and prediction accuracy. Moreover, MAE and RMSE showed substantial
improvements compared to the baseline models, further highlighting the model’s superior
performance in predicting concrete compressive strength.

The AP-IVYPSO-BP model provides an effective tool for accurately predicting concrete
strength, contributing to better material utilization, reduced resource waste, and minimized
environmental impact, thereby supporting the sustainable development of the construction
industry. Future research could explore applying this model to the prediction of other
engineering materials’ strength, incorporating additional optimization algorithms and
deep learning techniques to further enhance the model’s performance. Furthermore,
investigating the model’s practical applications in engineering management will help
unlock its full potential for sustainable development.
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Appendix A
Appendix A.1. Convergence Curves of AP-IVYPSO and 10 Other Algorithms
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