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Abstract

In this paper, a biologically congruent parallel mechanism (PM) inspired by the masticatory
system of human beings has been proposed to recreate complete chewing behaviours in
three-dimensional space. The mechanism is featured by direct constraints from the base
(DCEFB) to its end effector at two higher kinematic pairs (HKPs), which greatly raise its
topological complexity. Meanwhile, friction effects occur at HKPs and actuators, causing
wear and then reducing motion accuracy. Regarding these, an inverse dynamic model
that can raise the computational efficiency and the modelling fidelity is proposed, being
prepared to be applied to realise accurate real-time motion and/or force control. In it,
Euler parameters are employed to express the motions of the constrained end effector,
and Newton—-Euler’s law is applied, which can conveniently incorporate friction effects at
both HKPs and actuators into the dynamic model. Numerical results show that the time
consumption of the model using Euler parameters is only approximately 23% of that of the
model using Euler angles, and friction effects significantly increase the model’s nonlinearity.
Further, from the comparison between the models of the target PM and its counterpart
free of DCFB, these constraints sharply raise the modelling complexity in terms of the
transformation between Euler parameters and Euler angles in the end effector and the
computational cost of inverse dynamics.

Keywords: Euler parameters; inverse dynamics; friction effect; spatial parallel mechanism;
direct constraints from the base

1. Introduction

Mastication is a complex process in R3, where the foods are chewed to smaller and
softer boluses that can be swallowed safely [1]. The food industry has a strong curiosity in
this process, since exploring the human-food interaction is beneficial for evaluating food
texture properties so as to develop favourable, healthy, and appealing food products. Cur-
rently, machines used to assess food textures in vitro only simply compress the test foods
in one dimension, which is far away from the real complicated chewing motions of human
beings in R3. Recruiting healthy volunteers is associated with long-time consumption and
high expenditure, and the results are not objective. Thereby, robotic devices that can accu-
rately replicate complete masticatory behaviours in terms of chewing forces and motions in
IR3 are greatly needed. With their assistance, newly developed food samples can be chewed
in a human-like manner, then food textures can be analysed reliably and efficiently. To this
end, it is very natural to design a robotic mechanism by mimicking the muscle-skeleton
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biostructure of the masticatory system: its end effector is the moving mandible, the base
is the fixed maxilla, and six revolute-spherical-spherical (RSS) parallel linkages working
synchronously are the major chewing muscles, namely, the temporalis, the masseter, and
the pterygoid [2]. The underlined letter R indicates it is the active joint. Left and right
direct constraints from the base (DCFB) to the end effector form two higher kinematic pairs
(HKPs), playing the role of the crucial temporomandibular joints (TM]Js). As a result, from
the viewpoint of mechanism, the designed prototype is a spatial parallel mechanism (PM)
receiving DCFB to the end effector. These constraints evidently render this mechanism
different from others, since PMs in general do not have this sort of constraints. They
increase the topological complexity, bringing two parasitic motions and two redundant
actuations simultaneously [2]. It is fundamental to stress that theoretically, two kinematic
chains in the mechanism can be taken out to reduce its topological complexity; then it
would have no actuation redundancy. Nonetheless, the biological features of the chewing
system in terms of the roles of primary chewing muscles and TMJs cannot be explored
adequately via this simpler mechanism, and the potential engineering applications could
be limited. Hence, the bio-inspired mechanism under study is designed as faithfully as
we can.

Due to the closed-loops, PMs are superior to their serial counterparts in terms of larger
load carrying capacity [3], better motion accuracy [4,5], and lower moving inertias [6,7],
even if their singularity problems are more complex and the workspace is smaller. Thus,
they can exert these strengths in the domains where their desirable features are greatly
needed [8,9], e.g., machine tools [10-14], fast pick-and-place manipulators [15], haptic
devices [16], pointing devices [17], and physical human-robot interaction [18,19].

Before the designed mechanism is employed to evaluate newly developed foods in
the food industry, there are two concerns about its practical applications. The first is that,
due to the DCFB, parasitic motion variables are strongly coupled by translational and
rotational degrees of freedom (DOFs). They have complicated trigonometric functions as in
Equation (5) of [20], where XYZ Euler angles were used to characterise rotations of the end
effector. These complex and lengthy equations considerably increase the computational
time in dynamic models, being not in favour of real-time model-based controller design.
Thus, more efficient alternatives to Euler angles are sought to reduce the computational cost.
In the literature, Euler parameters, i.e., unit quaternions, deeply attract our interest. From
the Euler theorem, the orientation of a rigid body can be defined by its rotation around
an axis by an angle of rotation 6 at any instant of time [21]. Thereby, these parameters are
stated as

T 0 0
e:{eo eT} , 80:COS§, e:u~sin§ (1)

where u is the unit vector around which the rotation of the body occurs, and its three
elements are the projections along the orthogonal axes of the inertia frame. Although
four parameters are used to describe rotations in R3, indicating they are not completely
independent and that one constraint equation is needed; this cumbersome feature is more
than compensated for by their desirable merits as:

1. Any orientation of a body in R? can be defined satisfactorily since there are no inherent
singularity problems.

2. Kinematic equations associated with them have purely algebraic operators and are
free of trigonometric functions, as with Euler angles, being computationally more
efficient. As a result, they are easy to implement in a computer program in simpler
and more compact manners.

Regarding these, they are adopted to describe the motions of the end effector of the
mechanism under study to enhance the computational efficiency. From the literature, Euler
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parameters have been widely applied in many arenas due to their advantages. For instance,
a general Euler parameter-based dynamic model was built by the Lagrange formulation for
mechanical systems [22]. Many useful and interesting identities between Euler parameters
and their derivatives were presented in [21], based on which the dynamic model can be
more compact and efficient [23]. An attitude regulator for an arbitrary rigid body was
designed with these parameters in [24], leading to a linear feedback law, where neither
linearisation nor simplification assumptions such as small angular rates or attitude error
angles were made. This presentation avoids nonlinear equations of motion (EOMs) and a
nonlinear feedback law associated with Cayley—Rodrigues parameters. Euler parameters
were utilised to model the end effector rotation errors in resolved rate and acceleration
control of serial manipulators in [25]. The formulation considerably simplifies the stability
analysis of orientation error equations. In [26], their utilisation in a spherical joint avoided
the introduction of three virtual orthogonal revolute joints with zero length of intermediate
links in the general manner, which raised the sizes of associated matrices in the EOMs
and finally the computational burden. The dynamic modelling of a spatial RSSR serial
mechanism showed that the CPU time has a 10% improvement over the virtual revolute
joints method, and less computer memory is required. To address the photogrammetric
problem, a closed-form solution was provided in [27], where unit quaternions were used to
simplify the derivation of the solution.

As far as their applications in PMs are concerned, in [28], based on the number of
constant zero components of Euler parameters, they were classified into 15 cases, and
their kinematic interpretation was presented. Then, the orientation of the end effector of
a 3-DOF 3-RER PM with orthogonal platforms was represented using Euler parameters
effectively. Letters R and E denote revolute joint and planar joint, respectively. In [29],
the above-mentioned 15 cases of classification were used again, then Euler parameters
were employed together with Euler angles, algebraic geometry, and axodes to effectively
identify and compare distinct continuous motion characteristics of three 2-DOF pointing
mechanisms, i.e., a gimbal structure, a 1-RR&2-RRR spherical PM, and an Omni-Wrist III.
A systematic classification of a 3-RER PM based on the type/number of operation modes
varying with link parameters was presented in [30]. Euler parameters are found to be very
useful for identifying the motion characteristics of the end effector.

Apart from the computational cost, the second concern in the designed mechanism
is that, in practical experiments of its prototype, at the direct constraints from the base to
the end effector, wear appears due to friction effects, further introducing clearances and
reducing motion accuracy. Additionally, friction exists in the brushes, rotors, and bearings
inside the actuators, but it is not desirable to disassemble them frequently to lubricate those
parts. In this regard, for the sake of reliable and accurate manipulations of the robotic
device in practice, the friction is worth being considered in the inverse dynamic model to
analyse its effects.

In terms of friction effects in PMs, from the literature, a Lagrange-based approach
was proposed to analyse the forward dynamics of a 3-PRS PM in [24], where the LuGre
friction effects are modelled at active prismatic joints. Letters P and S denote a prismatic
joint and a spherical joint, respectively. On this basis, the influence on the motion accuracy
was analysed. EOMs of forward dynamics with a closed form were formatted by the
Udwadia-Kalaba approach for a planar 2RRR/RR PM with actuation redundancy in [31].
In [32], the friction effects were expressed by the Stribeck model in the artificial hip joint,
thrust ball bearing, and linear module of 2(3PUS+S) PM. The letter U denotes a universal
joint. Their parameters were identified by a least-squares method, and their negative effects
were compensated for through a feedforward compensation method. An explicit dynamic
model with joint friction was established for a 4-UPS PM, which was incorporated into
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a 5-DOF hybrid polishing robot [14]. The Newton—Euler method was utilised to build
the model, and friction effects were modelled by the Coulomb-viscous friction model. To
build an accurate dynamic model of a hybrid spray-painting robot in [33], the Stribeck
friction model was used to express friction effects in all active joints. The coefficients
were identified, and these effects were compensated for in the inverse dynamic model.
A nonlinear friction model, which can capture viscous, Coulomb, and Stribeck effects,
was developed for the 2RRR/RR PM in [34]. The comparison of the control performance
between this model and the Coulomb-viscous friction model showed that the trajectory
tracking accuracy was improved significantly in the former.

From the literature review, the practical applications of Euler parameters can be found
extensively, and their theoretical study has reached an in-depth level. However, their
application in PMs, especially those with various constraints from lower kinematic pairs
and HKPs like the one under study, has not been reported yet. In terms of friction effects,
they are considered only in a few publications about the dynamics of PMs. In the target PM,
to reduce the computational demands of inverse dynamics and the negative effects from
friction, an Euler parameter-based inverse dynamic model with friction effects at HKPs
and actuators is built in this paper. The two novelties are summarised as:

1. Euler parameters are employed to describe the motions of the constrained end effector
in the target PM, sharply reducing the computational expenditure of the model.

2. Friction effects are accounted for at HKPs and active revolute joints, arriving at a
nonlinear but more accurate inverse dynamic model.

The paper is organised as follows: in Section 2, the mechanism under study is described
in detail. The motions of the end effector are studied using Euler parameters in Section 3.
In Section 4, the inverse dynamic model with friction effects is built by Newton—Euler’s
law. Numerical computations are presented in Section 5 to find the transformation between
Euler parameters and Euler angles, the dynamic performances of the mechanism under
study, and the influence of constraints at HKPs on kinematics and dynamics. Finally, some
conclusions are given in Section 6.

2. The Robotic Mechanism

The scheme of the target PM constrained at two HKPs is illustrated in Figure 1. The
fixed maxilla to which the inertia frame {S} is assigned is not shown in the figure for a
clear exhibition of moving bodies. The movable lower jaw, namely, the end effector, is
connected to the base by six independent kinematic linkages. Frame {S} owns a horizontal
Xs-Ys plane perpendicular to the vertical Zg axis. At the mass centre Oy of the end effector,
a body-fixed frame {M} is set. Frames {S} and {M} are completely coincident when the
mechanism is at the home position, i.e., the upper and lower jaws are occlusal. The position
coordinates of Oy, in {S} denote the translations of the end effector, and its orientations
with respect to the inertia frame are computed by Euler parameters. In the chains, the crank
G;S;(i=1,...,6)is actuated by a revolute joint centred at G;, and the coupler S;M; connects
the crank and the end effector at its two ends S; and M;, respectively, using spherical joints.
A frame {C;} is attached to G; to express the rotation of the ith actuator. In it, the X¢, axis
is from G; to S;, the Z¢, axis runs through the rotational axis of the actuator, and the Y, axis
completes the frame, obeying the right-hand rule. A frame {N;} is attached to the mass centre
E; of the coupler to describe its motions in {S}. The Xy, axis points from S; to M;, the Yy, axis
is parallel to the cross product of two unit vectors defined along the Xy, and Xs axes, and the
Zy; axis is defined by the right-hand rule. Note that only one actuator frame {Cs} and one
coupler frame {N5} are drawn as illustrative examples in the diagram for the sake of clarity.

From a close observation of Figure 1, one can see that the point-contact HKPs mimick-
ing TMJs between left and right condylar balls and condylar surfaces are only schematic,



Biomimetics 2025, 10, 437

50f 33

since the former can only receive unilateral constraints from the latter. Hence, in the pro-
totype, due to motion errors in engineering practice, condylar balls are separated from
articular surfaces easily. Thus, the nature of the mechanism is changed. In these regards,
the HKP-related mechanical parts in engineering practice are shown in Figure 2 with the
computer-aided design (CAD) model of the prototype. The condylar ball slips along a condy-
lar socket that has a width equal to its diameter. Thereby, the point-contact HKPs during
the arbitrary motions of the end effector can always exist. By this design, the motion of the
condyle ball centre T; (i = L, R) is always constrained onto a surface, which is offset from the
upper and lower surfaces of the socket by the ball radius. Thereupon, it is clear that the end
effector is actuated by six chains and constrained by the base at two HKPs simultaneously.

Figure 1. A schematic view of the mechanism under study: @ and @) are condylar balls, and ) and
@ are articular surfaces of TMJs.

Figure 2. The mechanism under study: (a) CAD model, (b) HKP at the right side, (¢c) HKP-related
mechanical parts.
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3. Kinematics

The kinematics of the end effector using Euler parameters is analysed in this section
so as to be utilised adequately in the dynamics in Section 4.

3.1. Constrained Motions of the End Effector

The influence of DCFB on the end effector is first derived. In the inertia frame {S}, the
mathematical functions of the planar surfaces where the condylar ball centres T; (i = L, R)
are situated

p1-Xs+Zs+p2=0, p3<Xs<py p5<Yi<ps —ps<YR< —ps )

where Yi(i = L, R) are the coordinates of the left and right planes along the Y axis, respectively.
The coordinates of T; (i = L, R) in {S} are

OsT; = OsOp + 3R (0) - MO T; ?3)

T
where OOy = [X Y Z} denotes the position coordinates of the mass centre Oy in

{S}, MO\, T; is the position vector of T; in {M}, which is constant, and 3,R () rotates frame
{S} to frame {M} using Euler parameters 8 and is expressed in a quadratic form

%R(e):(2-93—1).13+2(e~eT+90~e><) @)
0 o

where 6 = [GO] ,0 = |6, I31s the 3 x 3 identity matrix, and © X is the 3 x 3 cross-product
03

matrix spanned by 6. Critically, 8 fulfils the normality constraint condition
07.0=1. (5)

Therefore, the four quantities in 8 are not all independent.
Substituting Equations (3) and (4) into Equation (2) produces the geometric constraint
equation at two HKPs as

pr- (x + Ry - MoMTj) +Z+ 4R,y - MOMT;+p2=0,(j = L,R) (6)

i
and MO, Ty in {M}, a summation and a subtraction of the two equations in Equation (6)

where ﬁAR( ) is the ith (i = 1,3) row of ,R. Owing to the left-right symmetry of MO, T}

sidewise yield

MO, T ()
Z= | pXtpat (P URay +iRey) |0 %
OuTy3)
o, = P1 02+ 6 0,
p1 6o — 62

where MO mTra) (i = 1,3) denotes the ith element of MQ,,T;. Thus, under DCFB, Z and
63 are parasitic motion variables, rather than DOFs of the 6RSS PM free of these constraints.
Specifically, Z is constituted by both a linear DOF X and Euler parameters 0 contained in
SR (i) (i =1,3), while 65 is only composed of the other three elements in 8. Hence, the four
entries in 0 are further coupled on the basis of Equation (5).
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Equation (7) has purely algebraic functions but no trigonometric functions. By com-
parison, the parasitic motion variable Z in Equation (6) of [20] has the same expression as
that in Equation (7), but the rotation matrix ﬁAR in it is full of trigonometric functions.

The seven coordinates describing the motion of the end effector are grouped as

XEE:[X Y Z eT]T 8)

In view of the three scalar equations in Equations (5) and (7), the mechanism has four
DOFs, which is also in accordance with the result from the Kutzbach—Griibler criterion [35].
Remember the six actuations are invariant; thus, redundant actuations in the mechanism
are essentially caused by DCFB onto the end effector, which is completely different from
the two primary accesses in [36].

After identifying the parasitic motions, five independent coordinates of X are used
to express the four DOFs and grouped ina 5 x 1 vector gt as

P T
aie=[X Y 6 6 6 ©)

Note that it is not four coordinates of X%, that are used to express the DOFs of
the mechanism. Two reasons account for this choice. Firstly, putting 63 in Equation (7)
into the quadratic constraint in Equation (5) can produce a complicated expression of 0;
(i =0,1,2), which is not in favour of the computational cost. Secondly, via the optimisation
in Section 5.1, all variables in X% can be conveniently obtained numerically.

Henceforth, to characterise an instantaneous configuration of the end effector,
Equation (8), or Equations (5), (7), and (9) ad hoc are needed. In other words, the mecha-
nism performs motions in six directions with five independent coordinates, two parasitic
motion variables, and one normality constraint condition.

P
The 7 x 5 Jacobian matrix M; between qEE and Xpg as
. P P
Xpp =M - g (10)
Differentiating this equation produces

. P
.. P .
o ) [

The twist of the end effector can be computed as

VO - P . P
trp = [ le = Moy, - Xpg = Myp - g (12)
WrE

where Vo, is the translational velocity of Oy, wg ¢ is the rotational velocity, and

MOb = diag(13 2. EEE)
Erg = [—9, 90'13+9X] (13)
My, = Moy, - M

On this basis, the first time-rate of the twist is easily derived as

. .

. V, .

= || = e ] |15 0
WEE e
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It is noted that though there are some common figures, equations, and texts between
this paper and [20], they are in Sections 2 and 3.1, serving as the foundation of this paper,
since the focus of this paper is on the use of Euler parameters and the friction effects, and
these two aspects do not exist in [20]. Finally, the dynamic models in this manuscript
and [20] are built by Newton-Euler’s law and the energy-based methods, respectively.
Therefore, these replications are not critical.

3.2. Crank G;S;
The crank only rotates around the fixed ZCi axis of frame {C;}; however, it is not
foG:s;
easy to express its rotations using Euler parameters 6g.s, = leoG’S’] where 0g;5, =
GiS;

T
[9161. s; s, 9361,51} . The reason is as follows: from the geometric relationship, one
can derive
Ci ;
GiSi =, R-"R(6¢;s,) - “G;S; (15)

in which E_OR is the rotation matrix of G;S; in {S} at the initial configuration of the mecha-

nism, giOR (6g;s;) is the rotation matrix about the Zc, axis
Ci
CiOR(BGiSi) = (2 ' 9(2)6‘,'51' - 1) ' 13 + z(ecisi ’ egisi + GOGiSi ’ eGiSi X) (16)

| GiSi||

2x1

and ¢iG;S; = where ||G;S;|| is the length of G;S;. On the one hand, as depicted in

Figure 1, one can find
S;M; = G;M; — G;S; (17)

then squaring the two sides of Equation (17) and rewriting the results produce

SiM;||*> — ||GiM;||* — ||G;Si ||

On the other hand, one can find
GM; = G;05 + O50yp; + OpM; (19)

Since the crank G;S; can only rotate around the Z, axis, the four elements in 6¢_s, are

Oc.s

QOG,-SI- = cos ——

0165, = bhg;s; =0 (20)
0c.s.

93(;1,51, = sin —+

where 0;s, cis the angular displacement of the ith active revolute joint around the Z¢, axis.
In this manner, putting Equations (15), (16), and (19), 61¢;s; and tg;s, in Equation (20) into
Equation (18) gives rise to a scalar equation

2. 9561_51, -1
GM/ - <S:l-0R |IGiSill - |2+ 6og;s; - 036,5, | = RHSg;s; (21)
0

where RHSg,s. is the scalar on the right-hand side of Equation (18). However, it can be
shown from Equation (21) that it is hard to compute 0yg.s, and 05¢;s, simultaneously, since
in general, nine numerical values of a 3 x 3 rotation matrix are all needed, as drawn from
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the conclusion after reviewing the various sorts of methods in [37]. However, if 6,5, and
t36;,s; in Equation (20) are substituted into (21), 6¢,s, can be derived using the procedure in
Section 2 of [2]. In fact, substituting Equation (20) into Equation (16) easily produces

cosblg,s, —sinfgs, 0
gi:OR = |sinfgs, cosfgs, O (22)
0 0 1

which is actually the rotation matrix by the Euler angle 6¢ s, around the Z¢, axis. In
these regards, the kinematics of the ith actuator including its displacement, velocity, and
acceleration is still derived as that in Section 2 of [2] and Section 3.2 of [20] using 0;s;.

3.3. Coupler S;M;

The motions of the coupler S;M; (i = 1, ..., 6) are also needed for its rigid-body
dynamics. On the one hand, the coordinate vector of S;M; is computed as

(23)

N; S;M;
SiM; = f\fioR ' NiOR (BS;'M,‘> ) [H(; l|‘|
2x1

where IS\I{OR is the rotation matrix of S;M; in {S} at the initial configuration of the mechanism;

S;M; || is the length of S;M;, and NfOR 0.0 ) is the rotation matrix since the configuration
& itVh N, S;M; &
using Euler parameters 6y,

%ﬁOR (gsiMi) = (2905,'Mi - 1) I3+ z(eSiMi ) egiMi + Oos;m; - Os;m; X) (24)

where
_ T
Os;m; = [ Bos;m;  Os,m, }
T
Os;m; = [ Oism;  Oasm;  O3s;m; }

On the other hand, geometrically, S;M; can also be computed from the differences of
the coordinate vector of M; and S; as

SiM; = OsOp; + OpM; — OsG; — G;S; (25)

where OyM; = ?AR(B) MO, M; and MO, ;M; is the constant coordinate vector of M; in
{M}, OsG; is the constant position vector of G; since it is fixed in {S}, and G;S; is derived
using Equations (15) and (22). When computing 65y, numerical values of the right-hand
side of Equation (25) are all available, i.e., the motions of the end effector and the crank
G;S; have been derived before. Combining Equations (23)-(25), one can find

2 2
Z(QOSiMi + 915,-M,-) -1 ?\r R
— i0
2(915iMi : GZSI‘MI' + GOSZ‘M,‘ : 93SZ‘M,‘) - ||SZM || ’ RHSSiMi (26)

1
2(61s.m; - 035,m; — Bos,m; - O2s,m;)

whose left-hand side is actually the first column of %;OR (95]. Mi) from Equation (24), and
RHSg,5q, is the known 3 x 1 vector at the right-hand side of Equation (25). By taking the
normality constraint equation

O3s,m; + Os.a, + 035,01, + 035,01, = 1 (27)

into consideration, there are in total four unknowns and four nonlinear scalar equations
which can be solved numerically, being neither simple nor straightforward. However, the
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mechanism is featured by the end effector constrained by the base directly. As such, the
rotations of the couplers by virtue of Euler parameters will be left for future work. In
summary, in the kinematics of the mechanism, Euler parameters are only utilised in the end
effector, while Euler angles in the kinematic chains, as in [2] and [20], are still employed to
describe their rotations.

4. Dynamic Model

Before the dynamic model is established, two reasonable assumptions about friction
effects are made: 1. The two HKPs are easily subject to wear and tear due to friction forces.
Thereby, from the viewpoint of practical applications, these forces are incorporated into
the dynamic model to make it more accurate. Meanwhile, in the prototype, revolute joints
are actuated by DC servo motors, and it is hard to lubricate the inner bodies, such as
brushes, rotors, or bearings. Henceforth, friction torques in these joints are also modelled.
2. Frictional moments exist in twelve passive spherical joints; however, the size of the ball
in the socket is very small, so these moments are not large. Additionally, friction effects
in passive spherical joints of PMs have been studied in [14] already. To avoid a tedious
deviation in the dynamic model and highlight the unique HKPs, all spherical joints are
assumed friction-free.

Friction effects are tightly related to constraint forces at joints, which are difficult to find
using energy-based dynamic methods, such as the Lagrangian formulation or Hamilton’s
equations. Additionally, in view of the intrinsic dependence of Euler parameters, Lagrange
multipliers are needed if Lagrange equations are used to build the model. They would
greatly increase the number of coordinates in the model. Consequently, the methods
in [21,38] are not adopted, and the dynamic model of the entire mechanism is built using
the classical Newton-Euler’s law. A great deal of friction models have been reviewed
in [39], which are classified into static and dynamic types. In view of the complex topology
of the target mechanism, the classical Coulomb and viscous friction model, which belongs
to the static type, is applied.

4.1. End Effector

The free-body diagram of the end effector is shown in Figure 3. The forces acting
on the end effector include constraint forces Fy (i = 1,...,6) at spherical joints M;, its
gravity —mgg - g at Op in which mgg is the mass and g = [02><1 9800} Tmm/ s? is the
gravitational acceleration vector, the reacted chewing force Fp at point B of a left lower
molar, and constraint forces Fr,(i = L, R) and friction forces fr, acting at T; from the surfaces
of condylar sockets. Fr, can be computed as

Fr, =My - Fz, (28)

T
where My = [1.1 0 1} is along the orthogonal direction of the planar surface specified
in Equation (2), and Fz, is the component of Fr, along the Zs axis. The friction force at

yritl

+uv) -V, Vi #0351, A :,”CW (29)

HKPs under the Coulomb and viscous friction model is

fr = (Air|Fz

03x1, V1, = 0351

where jic and py are Coulomb and viscous coefficients, respectively, |Fz,| is the absolute
value of Fz,, and H Vr, H is the two-norm sum of the linear velocity Vy, at T;. As a result,

friction forces at HKPs are not only a function of V7, but also the dynamics of the entire
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mechanism. The schematic diagram of the constraint forces Fr, from condylar sockets and
the friction forces fr, at the condylar ball from the sagittal view is displayed in Figure 4.
One can see that Fr, is perpendicular to the surface on which T; is constrained, and fr. is on
this planar surface. Fr, can be decomposed into two components, which are along the Zs

and X axes, respectively.

Figure 3. Free-body diagram of the end effector, the ith (i =1, ..., 6) coupler, and the ith crank.

Upper condylar plane

N
)

{S}
Xs Os

Figure 4. Schematic diagram of the constraint forces Fr, from condylar sockets and the friction forces
fr, at the condylar ball.

Note that since at all time instants of the tracked trajectory in Section 5, Vr, is nonzero,
then the case f;, = 031 is not considered in the following. By the Newton-Euler formula-
tion, the EOMs of the lower jaw are

— [Fr = _
Moy, - Fy o + M3y - F v My, (30)
TR _fTR
where
1 I — I I
My, = | 3 My = | >
OnMq X O Mg % OpmTrx  OpTrX
PMI v n (31)
] (Vo +8)
PMl_ﬁ = | : s My = . Ou T8 — Wk,
It - wee + weg X (Igg - WEE)
FM6

In Equation (31), OpM; x (i =1,...,6) and OnT; x (i = L, R) are cross-product ma-
trices spanned by OyM; and Oy T;, respectively, WE, is the reacted wrench on the end
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effector by Fp. mgg is the mass of the end effector, Irg = iAR .My EE " ﬁ/IRT is the inertia
matrix of the end effector updated as a function of its orientations in {S}, and MI. is the
inertia tensor of the end effector with respect to {M}.

Putting Equations (28) and (29) into Equation (30) gives rise to a compact form as

My, - Fyp, o +Msy, - Fz — Msy, - [Fz| = My, (32)

where
My, = Mgy, - (I @ My), Ms, = My, - diag( Ap-Vy, Ar-Vr, )

F — — V
Fz—[ ZL ], My, = My, +Mzyp, - piy - V?

R

and ® is the Kronecker product.

4.2. Coupler S;M;

The free-body diagram of the ith (i = 1,...,6) coupler is given in Figure 3. Via the
Newton-Euler’s law, for the ith coupler, one can format

ES; x Fs; + EM; x (=Fuy,) =Ism, - s, + wsm, X (Ispv; - wsm;) = Esim,
where Fg, is the constraint forces at S; acting at S;M;, ms,py, is the mass, and VEi is the linear
acceleration of E;, ws,p; and ws,y, are the angular velocity and acceleration, respectively,
Isp, = IS\II_R Nip SM; f\]iRT is the inertia tensor with respect to E; and built in {S}, and Nig M
is the inertia tensor with respect to E; and built in {N;}. Combining the two equations in
Equation (33) yields
M;S; x PMi = ES,'M,- (34)

where Eg p; = Eg.p, + 0.5 - g, - SiM; X (VEI. —I—g).

Among the three scalar equations in Equation (34), arbitrarily only two are indepen-
dent; the last two are chosen for the following computation. Thus, for the six couplers, one
can write

Msy - Fypy o = Mgy (35)

Es M, (2:3)
where M5, = diag((Mlslx)(ml:) (M6S6><)(2:3,:)),M6b = : , and the sub-
Es M, (2:3)
scripts (2:3,:) and (2:3) denote the last two rows of M;S; x and the last two entries of Es az,,
respectively. Meanwhile, repeating the first equation in Equation (33) six times for the six
couplers produces

Fs, . =Fm, ( + My, (36)
where '
Fs, ms my (VEl +g)
Fs, ;= | : |, Mp= :
Es, Mg M * (VE6 +g)

These equations will be incorporated into those for the end effector and crank to build
the dynamic model of the entire mechanism.
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4.3. Crank G;S;

To find frictional torques at active revolute joints at G;, the constraint force Fg; is to be
derived. The free-body diagram of the ith (i = 1,...,6) crank is shown in Figure 3. Firstly,
because the crank owns a cylinder shape, and it only rotates around the central line, which
is along the Zc, axis of frame {Cj}, its force equilibrium in {S} produces

Fg, =Fs +mgs, - g (37)

where mg_s, is the mass and its mass centre locates at the Z, axis. Fg, can be expressed in
frame {C;o} as
C,‘ — Ci _S T
°Fg, =g ‘R -Fg, = CiOR ' (Fsi +mg;s; 'g) (38)

to minimise computational overhead, where frame {C;y} denotes frame {C;} when the
angular displacement s, of the ith crank is zero. As such, for the six revolute joints, a
compact form of all constraint forces at G; can be written as

C
VFg mg,s, - §
_q; S T S T .
- dlag(ClOR .. R ) | Fs, o+ : (39)

Coo PG(, MGySs &
The Euler’s law is used to write the rotational EOM of the ith crank in {C;} as

CiOMgiSil :l 0211 ] (40)

C0G,;S; x “0Fg +
T T Ig;s; - Og;s;

where Cio G;s, is the 2 x 1 vector containing two constraint moments around the Xc; and
Yc, axes of {Cjo}, 7; and Ty, are the actuating torque and the frictional torque in the ith
actuator, respectively, éGi s; is the angular acceleration, and Ig_g, is the rotational inertia
of the ith crank. Thereby, around the direction of actuations, i.e., from the third line of
Equation (40), one can list

IGiSi . éG,‘Si =T — Tfi + (CiOGiSiX)(3 ) . CiOFSi (41)

”

where €0G;S; x is the cross-product matrix of ©0G;S; and (€0 G;S;x) (3,) Means the third
line. By the Coulomb and viscous friction model, Ty, is computed as

15, = R; - (Mci 'Sgn@cisi) : HC"OPGZ.(M) + uy, 'écisi) (42)

where R; is the friction arm of the ith actuator, yc, and py, are the Coulomb and vis-
cous coefficients, respectively, and sgn(-) is the sign function. Additionally, CiOPSi can be
written as
. C;
CIOFS,‘ = S OR ’ (_Fsi) = ?IiORT ’ (_Fsi) (43)

Putting it into Equation (40) produces
T =1+ Igs; - Oc,s; + Mayi - Fs, (44)
where Mg;; = (“0G;S;x) 3 (S:’_ORT. As a result, for the six cranks, one can derive

T="Tf+ My, + Mg, - P51,6 (45)
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! Th Ig,s, - Ogs,
T=|:1, TF = 2|, Mgy, = diag (Msbl ... Msbé)r Mg, =
T ¥, Ig,ss " 0Gyss
In addition, from the first two lines of Equation (40), one can write
i Ci . Ci

where (€0G;S;x ) is the first two lines of €0 G;S; .

(1:2,)

4.4. Entire Mechanism

Combining the EOMs of the end effector in Equation (32) and the six couplers in
Equation (35) generates

M- M M M
M5, - Mgy, 0122 0122
Then, Fyy, ( can be computed as
Fy, o = Moy — Mu1p - Fz + My - |[Fz| (48)

-1 -1 -1 —

M M M M M M
I T R P e R
5b 6b 5b 12x2 5b 12x2

Thus, with Equation (36), all constraint forces at S1~S¢ can be computed as
Fs, . = M3, — M1y - Fz + My, - |[FZ] (49)

where My3, = Mg, + My,. Finally, putting Equation (49) into Equation (45) produces the
explicit dynamic model of the entire mechanism with friction effects at HKPs and revolute
joints as

T = Tf + My, — Mysp - Fz + Mg - |F7] (50)

where
My, = Mgy, - M3 + Moy
M5, = Mgy, - My,
Mgy = Mgy, - Moy

are known matrices if the motions of the mechanism are given. There are six equations and
eight unknowns in T and F7 in this model, indicating that actuating torques and friction
effects should be optimally computed. Furthermore, a closer observation of Equation (50)
can lead to the following remarks:

1.  Evenif a simple Coulomb and viscous friction model, which is classified as a static one
in [39] is employed, friction effects at HKPs significantly enhance the nonlinearity of
the dynamic model in terms of |Fz| explicitly, and they implicitly influence frictional
torques 7y, since 7y is the function of |Fz| as shown in Equations (39), (42), and (49).
Regarding these, friction effects at HKPs and revolute joints are strongly coupled, and
actuating torques are influenced by them.

2. If all friction effects are neglected, Equation (50) degrades to the form of
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T=M—M, Fy (51)

where M1 and M, are matrices that are the functions of kinematic and dynamic parameters
of the target PM. Equation (51) is actually the simpler linear inverse dynamic model of
the target mechanism free of friction with six equations and eight unknowns, including
actuations and constraint forces Fz. The form of Equation (51) is very different from that of
the final EOMs of PMs in [31-33], since their unknowns are only actuations.

4.5. Optimal Goals to Distribute Actuating Torques

Because the inverse dynamic model of the mechanism under study is underdetermined
with six nonlinear equations and eight unknowns, actuating torques can be optimally
distributed to meet different dynamic performances. In this optimisation problem, the
eight unknowns are the optimal variables, and physical constraints include:

Constraint forces CiOFGi cannot exceed the axial and radial loading capacities of the
chosen actuator in the prototype;

The output power of the actuator is below its maximum power capacity;

The inverse dynamic model, Equation (50), is the nonlinear equality constraint.

Based on the physical application of the mechanism, three optimal goals are individu-
ally set to produce different performances.

As far as the initial guess under the three optimal goals is concerned, at =0, T = 0gx«1
and Fz = 0,1 are used as the initial guess, and the obtained values of T and F are used
as the initial guess of the optimisation scheme at the next time instant. This loop is repeated
for each time interval until the end of the timeline.

4.5.1. Minimal Actuating Torques

This goal can be mathematically defined as
G1 = min||T|| (52)

where ||| is the two-norm sum of 7. The physical meaning of this goal is to minimize
the output torque from the actuator, in favour of motor sizing in the design stage of
the mechatronics system. In fact, this goal is often achieved in PMs with redundant
actuations by virtue of the Moore-Penrose pseudo-inverse matrix to directly compute 7,
as in [40—43]. However, in Equation (50), T and F have different units, and the nonlinear
term Mg, - |Fz| exists. Henceforth, a more complex optimisation algorithm is needed to
numerically compute T and Fz simultaneously.

4.5.2. Minimal Constraint Forces at 51~Sq

As shown from Equations (38) and (46), Fs, directly influences constraint wrenches
at G;. Because the chewing behaviours of human beings to be mimicked by the designed
mechanism are approximately periodic, large constraint wrenches at G; bring large vi-
brations and impulses to the base and neighbouring devices. As such, a second goal is
set as

Gy = minHFSUJ (53)

which can minimize the constraint forces at S; and then reduce these abovementioned
negative effects.
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4.5.3. Minimal Constraint Forces at HKPs

A large constraint force at a HKP tends to cause large friction and then wear and tear
easily occurs in the condylar ball and the condylar socket. Regarding this, a third goal is
defined as

G3 = mir1||FZ|| (54)

which can minimise the constraint forces at HKPs; thus, wear and clearance caused by
friction effects can be minimised.

Finally, the sequential quadratic programming (SQP) method is characterised by fast
convergence, and nonlinear constraints, as mentioned above, can be easily incorporated.
Thus, this method is to be employed to optimally compute the dynamic model.

It is noted that what we are concerned about is whether the designed mechanism can
vividly reproduce the chewing behaviours of human subjects; thus, this robotic device
can be applied in the food industry to evaluate the newly developed food properties as
mentioned in Section 1. Secondly, the mechanism is actually a simplified model of the
human chewing system, which has more muscles than those in the designed mechanism.
In these regards, how the muscles in the human masticatory system work synchronously
under the control of the central neural system is left to the oral biologists to discover.

5. Numerical Computations and Discussions

The coordinates of G; and S; (i = 1, ..., 6) in frame {S}, and M; in frame {M} are
summarised in Table 1, and the geometrical and inertia parameters of the mechanism are
summarised in Table 2.

Table 1. Coordinates of G; and S; (i =1, .. ., 6) in frame {S}, and M; in frame {M} (unit: mm).

Gy G G3 Gy Gs Ge 51 Sy S3 S4 S5 Se
X 23.65 23.65 40.15 40.15 36.15 36.15 32.19 32.19 54.11 54.11 23.96 23.96
y —12.25 12.25 —58.24 58.24 —61.67 61.67 —17.45 17.45 —59.47 59.47 —63.49 63.49
z —16.02 —-16.02 —-3624 —36.24 39.47 39.47 —-16.02 —-16.02 —-3091 -30091 48.02 48.02
M, M, M3 M, Ms Mg
X 10.33 10.33 28.61 28.61 36.13 36.13
y —40.47 40.47 —54.65 54.65 —52.46 52.46
z —7.00 —7.00 —51.28 —51.28 —1.32 —-1.32

Table 2. Mechanical parameters of the mechanism.

~p.inE ti (2) p1 = 1.1,
P1~pe In Equation p2 = —13215mm, p3 = —10 mm, py =5 mm, ps = 69 mm, pg = 75 mm
Mass of the end effector megp =34022 g
. . 820,091.15 —26.57 —137,019.15
Inertia matrix of the end My ¢ 4 3
effector in (M) Iy = —26.57 423,459.18 —88.60 g-mm

Lengths of couplers

Inertia matrices of
couplers in {N;}

Mass of cranks
Rotational inertia of cranks
Radius of cranks

—137,019.15  —88.60  818,784.70

|SiM;|| =33mm (i =1,...,4), f/«M]«H =52mm (j = 5,6)

Mg v, = Mgy, = NI =Ny, = diag ((12.331 41143 41143 ) g- mm?

NsIg ap = NeIg o, = diag ( 19431 1595.4 1595.4 ) g - mm?

5V15 6V16

mgs, =702g (i=1,...,4),mgs, = 156.69 g (j = 5,6)
Ig;s; =3510g-mm® (i =1,...,4), Ig;s, = 17,628 g - mm’ (j = 5,6)

IGiSi| =10mm (i =1,...,4),||G;S;|| = 15mm (j = 5,6)
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. PP .P .P
5.1. Computation of X5, Xpp, Xpg and g%, g, drp
To study the dynamic model numerically, the mechanism is commanded to follow
a lower incisor path of a healthy volunteer in R3. To track the trajectory with respect to
displacement, only three scalar equations can be formatted as

050 + 3R (0) - MOyI — OpI = 0354 (55)

where MO ,,I contains three position coordinates of the incisor point I in frame {M}, and
O is the position vector of this point in {S}, whose numerical values are exhibited in
the first subplot of Figure 5. The letters D, V, and A in labels of the three subplots in the
first column denote displacement, velocity, and acceleration, respectively. In Equation
(55), there are only three equations but five unknowns in g%, i.e., theoretically, there are
infinite solutions. Nonetheless, it is not easy to numerically resolve this set of nonlinear
equations. From the literature, the algorithm in [44] enlightened us: to identify the solution
to a transcendental equation in that paper, the equation is not computed numerically. The
researchers’ logic is that the values of the unknown variables that can make the absolute
value of the transcendental equation as small as possible are the solutions. By virtue
of this idea, to find one feasible solution of 4%;, a single-aim optimisation problem is
constructed as

Aim : min fp = ||OsOp + 3,R(0) - MOy I — Opl||
Unknowns : qEE

-10<X <5 (56)
Range of variables :{ —3 <Y <3

|6;] <1,i=0,...,3

%1072
~ 40 x| ~ 2T
£ €
E 28 —Ys E1
o 20 ’ ZS =] o
0 25 5 0 25 5
%1028

S
Y wp\f\v&v“wf MY Ys
s

V (mm/s)
o B

\
N <
fv(mm/s)
o - N

100 |
0 2.5 5 0 2.5 5

%1028
& 2000/ X < 5] ‘
£ 1000 18
£ 0 —vﬁWOWﬁMOM/\g# AA—Ys £
= -1000 z | =,
< ‘ <o |
0 2.5 5 0 2.5 5
Time(s) Time(s)

Figure 5. An incisor trajectory of a healthy human subject and the tracking errors.

Constraints: Equations (5) and (7)

Method: SQP

The physical meaning of the aim is to track the predefined incisor trajectory with the
smallest tracking error in terms of displacement. The ranges of X and Y are determined by
the length and width of the socket that holds the condylar ball in the prototype, respectively.

After g%} is obtained, X% can be computed by Equation (7). Att =0, gE; = 051 is
used as initial guess, and the obtained values of gt are used as the initial guess of the
optimisation scheme at the next time instant. The loop is repeated for each time interval
until the end of the timeline.
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Correspondingly, in tracking the velocity of this trajectory, ng cannot be uniquely
determined, since, likewise, there are five unknowns in ng but only three equations, as

P
M- ggg — Vi = 0351 (57)

where M is the 3 x 5 Jacobian matrix between the coordinates of the incisor point I and
gL, and V7 is the 3 x 1 velocity vector of the incisor trajectory, whose numerical values are
given in the second subplot of the first column of Figure 5. From Equation (5), constraint
equations from the velocity and the acceleration levels can be attained by differentiating it
with respect to time once and twice, respectively

. T
0 -0=0. (58)
o' m ~0 (59)

Thus, to reach one feasible solution of qIE’E, a second optimisation problem is set as

. . . P
Aim : min fy = HMI-qEE—VIH (60)
Unknowns : g

Constraints: Equations (10) and (58)

Method: SQP

where numerical values of g%, in M are fed from those computed by Equation (56).
The physical meaning of this aim is to track the predefined incisor trajectory with the
smallest tracking error in terms of velocity. Att =0, qIE)E = 0541 is used asan initial
guess, and the obtained values of qIEJE are used as the initial guesses of the optimisation
scheme at the next time instant. The loop is repeated for each time interval until the end of
the timeline.

Finally, to compute éﬁ;E, only three scalar equations can be written as

P . .P .
M- ggg +Mp - qpg — Vi = 03 (61)

where VI is the predefined 3 x 1 acceleration vector of the incisor point I, whose numerical
values are shown in the third subplot of the first column of Figure 5, and M is the first
time-rate of M. Identically, to reach a feasible solution of ijlgE, a third optimisation problem
is set as
Aim s min fa = |[My - +M; - dgg — Vi @
Unknowns : g
Constraints: Equations (11) and (59)
Method: SQP
where numerical values of ngrng in M; and M are fed from those computed in
Equations (56) and (60). The physical meaning of this aim is to track the predefined incisor

trajectory with the smallest tracking error in terms of acceleration. After this, X;E and XQE
can be computed from Equation (10) and Equation (11), respectively. Att =0, ng = 0541
is used as initial guess, and the obtained values of égE are used as the initial guess of the
optimisation scheme at the next time instant. The loop is repeated for each time interval
until the end of the timeline.

By these three optimisation procedures, the numerical values of fp, fy, and f4 are
obtained as in the second column of Figure 5, being very tiny. Thus, the predefined
incisor trajectory is reckoned to be tightly followed in terms of displacement, velocity, and
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DT(mm)

< 0.995

0.99

0.1
< 0.05

-0.05

acceleration. Correspondingly, all XE, XEE, XEE are shown in the first seven subfigures of
Figure 6, where D, V, and A mean displacement, velocity, and acceleration, respectively,
and the subscripts T and R indicate translation and rotation, respectively. Unambiguously,
the motion range of the parasitic motion variable Z is far larger than that of X and Y, and
the magnitudes of Z and Z are also far larger than their counterparts. This discovery is
very different from [45], where parasitic motions are required to be as small as possible.
Additionally, the magnitudes of §; and 03 are nearly equivalent, due to the coefficient in
front of 6, in the formula of 65 from Equation (7) being almost equal 1. wf, and d;gE are
computed by Equations (12) and (14), and they are given in the last two subfigures.

— —x—v—z .
| —X

*Yé » —Y
ZE o0 E 0l— Z
> 5 | <
. -1000
0 2.5 5 0 2.5 5 0 2.5 5
0.5 =, 10 —
—0 —
>n: 0 N\ Qz(nc 0 i
0.5 -10
0 2.5 5 0 2.5 5 0 25 5
1 20
D % —Xs
—0, % /\A ‘ _XS”’ J\ A’\A
\ 1A S f IN—Y:
) S 0,/\//\~ W E o ,/\M "\/““JL Z
o5 VIR T
w\\'/'\\ ~ A A
' V 3 P 3 20
0 25 5 0 2.5 5 0 25 5
Time(s) Time(s) Time(s)

P .P
Figure 6. Motions of the end effector by X%, X, Xgr.

Note that by following the predefined incisor trajectory, the denominator of 63 as in
Equation (7), is nonzero. Perhaps in the entire workspace of the mechanism, there are
some configurations where the denominator of 03 is zero; then 63 cannot be computed
from Equation (7), and probably some other coordinates in the four Euler parameters
would be switched as parasitic motion variables. It is worth a deeper investigation in the
future work.

5.2. Transformation Between Euler Parameters and Euler Angles

A critical reason to employ Euler parameters to describe the constrained motions of
the end effector is to reduce the computational cost, as stated in Section 1. To this end, for a
fair comparison, the end effector must undergo identical motions as expressed by Euler
parameters if some other sets of parameters are employed, such as Euler angles. However,
this cannot be realised in the target PM due to DCFB. The reason is as follows.

Firstly, when Euler angles are used to describe the rotation of the end effector, the
parameters describing its configuration are grouped in a 6 x 1 vector as in Equation (3)
of [20]

Xfp=|X4 YA Z4 « B v ! (63)
where X4, Y4, and Z4 are the coordinates of Oy, in the inertia frame {S}, and «, , and
7 are the XYZ Euler angles. A superscript A is added to indicate parameters expressing
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translations are used together with Euler angles. Then, the four DOFs are grouped in a
4 x 1 vector as

T
gie = [X4 Y4« B (64)

For the parasitic motions, Z% owns a completely identical expression as Z in
Equation (7); however, the rotation matrix ?AR in it is expressed by Euler angles. The
parasitic Euler angle  in Equation (5) of [20] is repeated here as

SN
7= _atan(mcﬁ T casﬁ) )

where s(-) and c(-) indicate sin(-) and cos(-), respectively.

Thereby, by virtue of Euler angles, these parasitic motions are full of trigonometric
functions. Note that two translational DOFs along the Xs and Y's axes of {S} exist in both
g2 and g¥;. As such, to derive the passage from Euler parameters to Euler angles, one can
easily define

XA =X
YA=Y (66)
MR(0) = 4R(x,B,7)

where %R(rx, B,7y) is the rotation matrix calculated by &, B, and . Then, an identical
posture of the end effector in terms of both the translation of O; and the orientation of the
end effector can be achieved by Euler parameters and Euler angles. The three Euler angles
can be computed by

a = atan2(—ry3/cp, r33/¢cP)

B = asin(r3) (67)

7 in Equation (65)

where rij (i,j=1,...,3) means the element at the ith row and jth column of the rotation
matrix 3,R(0) in Equation (4).

However, one identical twist of the end effector is not easy to be reached by these two
sets of parameters. Apart from Equation (12), the twist using qéE can also be written in the
form of

tcgp = Ma - ‘7?5 (68)

where M 4 is the 6 x 4 twist-shaping matrix and ng is the first time-rate of 4.
If trr from Equations (12) and (68) is equivalent, we can find

X i
P I, O3 Y A L, O YA
trp = Myy, - q5p le Qo =My g = [MAz ) (69)
61 N
6, p

where I is the 2 x 2 identity matrix, O3 and O; are the 2 x 3 and 2 X 2 zero matrix,
respectively, My, is the 4 x 5 submatrix of My, containing its third to the sixth rows, and
My, is the 4 x 4 submatrix of M4 containing its third to the sixth rows. Thus, from the first
two rows of Equation (69), we can find

A (70)
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In fact, this can also be attained from the first two equations of Equation (66). After-
wards, from the last four rows, we can obtain

90 . AT .
. X o
Mo +Mipp - |01 =Max1- | . 4| TMax- l] (71)
0 Y p
2
where My, = Z\\./I.lﬁgl \Nﬂﬁg and My, = AiA,gl M‘ﬁg . It derives that
4x2 4x3 4x2 4x2 ]
0o i
M1 — Man | Mz |61 =Max - [] (72)
e N —— . ———r ‘3
4x2 4x2 4x3 0, 4x2

If the twist of the end effector tgr is predefined from My - qlgE, i.e., Equation (12),
then we need to compute & and ﬁ from Equation (72); however, the four rows of M a2
are generally independent. Thus, it is an overdetermined set of linear equations. It is not
easy to find the solutions to a and ,8 Likewise, if tg is predefined from My - ng, ie.,
Equation (68), then we need to compute 00~05 from Equation (72), and generally the four
rows of My, are independent. Thus, it is not easy to find the solutions to 90~92 neither.

Following the same logic, a first time-rate of the twist using Euler parameters cannot
be equivalently expressed by Euler angles, and vice versa. This phenomenon is clearly
caused by DCFB which produce parasitic motions and then reduce the number of DOFs. In
summary, an identical configuration can be reached by Euler parameters and Euler angles,
whilst these two sets of parameters can reach neither an identical twist nor its first time-rate.

In this regard, the optimisation procedure in Section 5.1 is implemented again to
obtain g4, qﬁE, éﬁE, which are independent of the procedures to compute gL, qlgE, qlgE

A A
Then, fzom Section 3 of [20], X?E,XEE,XEE and w?E can be computed as given in Figure 7,
and wgr can be further attained by differentiating w#,. These values are used in the
dynamic model to make a relatively fair comparison, to find which set of parameters is

more computationally efficient.
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Figure 7. Motions of the end effector by XfE, Xee, XEE-
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From Figures 6 and 7, their first subplots are equivalent, as stated after Equation (66).
However, as far as the first time-rate of the coordinates of the mass centre O, is concerned,
from the second subplot, differences between X and X 4, and those between Yand Y A
are much more apparent. The same conclusions can also be made in terms of the second
time-rate of the coordinates of Oy, as shown in the third subplot. From the subplots
about rotations, though the profiles of 6;~63 are very close to those of &, B, and 7, their
amplitudes are clearly not equivalent. Through the optimisation scheme in Equation (56),
the coefficient in front of ; in the formula of 63 from Equation (7) almost equals 1. Besides,
the analogous optimisation scheme also renders the value of  almost equivalent to that of
« through Equation (64).

The profiles of the rotational velocity wf; computed via Euler parameters at the
bottom row of Figure 6 are similar to those of the rotational velocity w4, computed via
Euler angles at the bottom row of Figure 7. Actually, their numerical values are different
at every time instant, however. The same conclusion can be reached by the rotational
acceleration. The differences between w#; and wXy are displayed in the first subplot of

Figure 8, while in the second one, the differences between w‘g}; and ng are presented.
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Figure 8. Angular velocity and angular acceleration differences were computed from Euler parameters
and Euler angles in the end effector of the target mechanism.
5.3. Dynamic Performances

Corresponding to the three optimal goals in Section 4.5, the following performance
indices are set to justify the optimisation problem:

1N N
h=5L Ill;, Fs = '):HFZ”i
1 1§1 z:l (73)
B=<L|F
27N igl Sslli
where N is the number of sampling instants along the timeline, ||-||; is the two-norm sum

of the specific vector at the ith instant. The physical meanings of F1~F3 are to compute
the mean values of the two-norm sum of the actuating torques, the constraint forces at
HKPs along the Zs axis, and the constraint forces at S; (i =1, ..., 6), respectively, along the
timeline. They correspond to the three optimal goals in Section 4.5 sequentially.
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Additionally, some other indices are set to see their strong correlations with F, and F3

E. Ly F Ly
=x kol Fo= w5,
N N (74)
F:leMC F_leF
P NS Gslli T T NG Cell;
C
10]\/18151
where MgLe = : . The physical meanings of F4~F7 are to compute the mean
C
60]\/[(%656

values of the two-norm sum of the friction torques at active revolute joints, the constraint
moments at G; (i =1, ..., 6), the sum of the friction forces at two HKPs, and the constraint
forces at G; (i =1, ..., 6), respectively, along the timeline. Evidently, from the derivation
of the dynamic model in Sections 4.1-4.4, F4~F4 and F7 are tightly related to F, and Fj3,
respectively. By setting these performance indices, the correctness of the computations can
be verified.

In general, true friction coefficients in the friction model are identified in practice to
compensate for their effects; in this paper, their values are assumed to show the friction
effects, however. Their practical identification will be performed in the future. For the
Coulomb and viscous friction model, all the coefficients are set as

pc = 0.02, py =0.03g/s,
pic; = 0.02, py, =0.03g/s, R; = 15mm(i = 1,...,6)

An experimentally measured reacted chewing force in {S} on peanuts by an orally
healthy male volunteer on his molars, as in Figure 9, acts on the lower left molar at point B.
The magnitude in the vertical direction in the inertia frame is far larger than its components
along the X5 and Y axes in every stroke, indicating that larger bite forces in this direction
are needed to chew the peanuts.

40
_XS
Y
20 ZS
S
0 = = —— 7 =
z
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-40
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-80 w ]
0 1 2 3 4 5

Time(s)

Figure 9. Reaction forces from chewing on peanuts to the molar in {S} [20].

Under the first aim in Equation (52), actuating torques 7, friction torques 7y, constraint
forces Fy, and friction forces fTi at T; are given in Figure 10. All these variables are following
an identical rhythm. Evidently, there is a certain degree of symmetry between 7; and 7;,4,
Tf, and Ty, , (i = 1,3,5), respectively. At most of the time instants, Fz, and Fz, are negative
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and positive, respectively, indicating that the right and left condylar balls are receiving
constraint forces from the upper and lower surfaces of the two condylar sockets, respectively.
That is because a reacted bite force Fp is acting at a left molar, tending to rotate the end
effector around the positive direction of the X axis. Additionally, Fz, has larger peaks
than Fz, , then friction peaks at T are accordingly larger than those at T7.
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Figure 10. Actuating torques and friction torques at active revolute joints, and constraint forces and
friction forces at HKPs under the first optimal goal in Equation (52).

The proportions between friction effects and actuating torques in each actuator are
computed as

P=-" (i=1,...,6) (75)

where Tf, is the ith entry of tf, and T is the 6 x 1 friction torque vector accounting for
friction effects at both HKPs and actuators with respect to the output shafts of actuators.

Numerical results under the three optimal goals are displayed in the three columns
of Figure 11, respectively. Under the first aim, the proportion in the second actuator can
even reach up to over 6000% at t = 1 s. The largest proportion in the fourth actuator is over
100% at t = 0, and at t = 2.7 s, the largest proportion in the fifth actuator is approximately
60%. Under the second aim, one can also find that at f = 0.1 s and 3.8 s, the proportion
in the fourth actuator is over 350%, and at t =2.9 s, 3.7 s, and 4.4 s, the proportion in
the fifth actuator is between 50% and 100%. Finally, under the third aim, at t = 4.6 s, the
proportion in the fourth actuator is over 100%. This shows that the friction has negative
effects that cannot be ignored in the motion accuracy, and lubrications are needed to reduce
wear at HKPs and revolute joints. Additionally, the proportions vary significantly across
different optimal goals for torque distributions. Under the third goal, in the first and second
actuators, the proportions are limited between +5%, being very consistent.
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Figure 11. Proportions between friction effects and actuating torques under three optimal goals:
(a) the first goal, (b) the second goal, and (c) the third goal.

Constraint forces at S; (i =1, ..., 6) are given in Figure 12. It is interesting to notice
that at 51, the components along the Xg and Y5 axes are nearly equivalent, whilst at Sy, the
component along the Y axis has the highest peak. At S3 and S4, the component along the
X axis experiences the largest magnitude, while at S5 and S¢, the component along the Zg
axis has the largest magnitude. In Equation (37), from Fs, to constraint forces Fg, at G;, only
one term mg_g, - § is needed; while in the prototype, the crank is not heavy. As a result, the
graphical exhibitions of Fs, and Fg, do not have a significant difference. The figure of Fg, is
not provided to save pages. Constraint moments at G; around X¢,, and Y¢,, axes are given
in Figure 13. By comparing it with the first column of Figure 10, apparently, the magnitude
of constraint moments is much smaller than that of actuating torques. Under the second
and third optimal goals, the profiles of actuating torques and friction torques at revolute
joints, constraint forces and friction forces at T; (i = L, R), constraint forcesat S; (i=1, ...,
6), and constraint moments at G; are similar to their counterparts as in Figures 8-11. Thus,
they are not depicted as saving pages.
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Figure 12. Constraint forces Fs, (i = 1,...,6) under the first optimal goal in Equation (52).
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Figure 13. Constraint moments at G; (i = 1, . . ., 6) under the first optimal goal in Equation (52).

To make a comparison of dynamic performances under different optimal goals, nu-
merical values of the proposed indices in Equations (73) and (74) are given in Table 3. The
performance indices are always the smallest under the corresponding optimal goals, as
remarked in bold, meaning the correctness of the optimisation issues in Section 4.5. Specif-
ically, under Gs, F3 is almost zero, so friction forces there can be sharply reduced, and a
longer period of utilisation of HKP-related mechanical parts can be permitted. Additionally,
due to the correlation between F, and F4~Fg, the smallest F, under G, also gives rise to
the smallest F4~F¢. Owing to the strong correlation between F3 and Fy, the smallest F3
under Gs also produces the smallest F;. These numerical results prove the correctness of
the computation. The inverse dynamic model using g4z, q?E, ij?E also reaches the identical
remarks as above-mentioned, which can be found in the second row of Table 3.

Table 3. Dynamic performance indices in the target mechanism and the 6RSS PM.

Fi(Nm) F, (W) F3 (N) Fs(N.m) Fs(N.m) Fg(N) F7 (N)
Target PM G 0.1912 18.5039 4.2544 0.0219 0.0059 20.0250 0.1265
, W]ivth p Gy 0.1958 17.8948 3.4370 0.0184 0.0058 19.5470 0.1022
9ee/ 9eE 9EE Gs 02653 273216  5.28 x 10~ 0.0482 0.0084 284067 1.64 x 10~
Target PM (e 0.1907 18.4899 4.2236 0.0218 0.0059 20.0041 0.1256
B W}qth A Gs 0.1951 17.9127 3.4374 0.0184 0.0058 19.5585 0.1022
9ee 9ce 9tk Gs 0.2638 27.2420 1.75 x 10~° 0.0481 0.0084 28.3257 3.19 x 10~°
6RSS PM
with 02652 27.3214 - 0.0482 00084  28.4066 -
Yip, Yer, Yer
6RSS PM
W};fh A 0.2652 27.3214 - 0.0482 0.0084 28.4066 -
YPe, Yep, Yeg

The procedures are formatted in Matlab installed on a personal computer with an
Intel (R) Xeon (R) W-2235 CPU@3.80 GHz and 32 GB of RAM. The computational time

of the target PM using XEE,XEE,XZE and XéE,XgE,X?E under three different optimal
goals is given in the first two clusters of Figure 14. The dynamic model using Euler
parameters to express motions of the end effector is much less time-consuming, which is
only approximately 23% of that using Euler angles. Hence, the computational demands
can be considerably alleviated by Euler parameters; then real-time control is possible.
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It apparently proves that in 3,;R and parasitic motion variables, the algebraic functions
are more efficient than the trigonometric functions, generating a faster dynamic model.
Additionally, the computational cost under the third optimal goal is a little heavier than
that under the other two goals in the target PM.

e,
G,
6 =16,|
5
oMl i
o)
E
=3
2 1.639
1.2531.317
1
0.243 0.412
0 .
tPM using EP tPM using EA 6RSS using EP B6RSS using EA

Figure 14. Computational time of the mechanism under study from three optimal goals and its
counterpart without DCFB.

5.4. The 6RSS PM

A schematic diagram of the 6RSS PM is displayed in Figure 15. From the comparison
between it and Figure 1, one can see that clearly the 6RSS PM can be obtained by deleting
the DCFB from the end effector, while other items are invariant.

Figure 15. Schematic diagram of the 6RSS PM.

As stated in Section 5.2, due to DCFB in the target mechanism, an identical twist and
its first time-rate of the end effector cannot be achieved by g%, qlgE, ng and g7, ng, i??}gz
since DCFB eliminates DOFs and produces parasitic motions. However, in the 6RSS PM
with three translational DOFs and three rotational DOFs, both the angular velocity and
acceleration of its end effector using Euler parameters can be easily converted to those
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using Euler angles, and vice versa. The reason is as follows: The two sets of parameters to
describe the configuration of the end effector are

T
YIEJE:{x y z eT}, e:{eo e ,e:{el e €3

Y?E:[x y z <1>T}T, <I>:[<p1 ¢ ¢3}T 70

where x, y, and z are translational DOFs along the three axes in frame {S}, e is Euler
parameters, and ¢1, ¢, and ¢3 are three XYZ Euler angles. Since its translations at position,
velocity, and acceleration levels are completely independent of these two sets of parameters
describing rotations, in the following, only the rotation at its three levels is analysed using
Euler parameters and Euler angles. The angular velocity of the end effector using these
two sets of parameters is expressed as

w'=2-G-e (77)
and
wd =R, - ® (78)
respectively, where
1 0 S¢o
G=| —e, ¢ -Iz+ex }, Ry=1|0 cp1 —spice

0 sP1  cpicgr

When the rotation is defined by e, the three Euler angles can be computed as

= atan2(fsz3/0¢2, 533/C¢2)
¢ = asin(s13) @)
3 = atanZ(fslz/Cqbz, 511 /C¢2)

where s; (i, j =1, ..., 3) means the element at the ith row and jth column of the rotation
matrix defined by e. According to Equations (77) and (78), when wPf = w?it yields

A
where R,, is directly inverted if it is not singular. Specifically, when
|Rw| =c¢p =0, (81)

ie., ¢ = g, R, is singular, corresponding to the so-called gimbal lock inherent to Euler
angles. However, this configuration can be circumvented in the trajectory planning. Specif-
ically, when tracking the incisor trajectory in Figure 5, it is not reached, fortunately. Further,
the angular acceleration by Euler parameters and Euler angles is

wP:2~(G-é+G-é) 82)

and

W' =R, - ®+R, D, (83)

respectively. Thus, the second time-rate of ® can be computed as

®=R; (a;P “Re- ci>) (84)
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P LA
when w = w’ .

On the contrary;, if the rotation is defined by Euler angles ®, one can have the values
of e from Equations (47)—(50) of [46]

260\/1 4+ t11 +tp + 133

1 t3p — t
e L 30 — 123 (85)
4eg ti3 — t31
b —t12

where tij (i,j=1,...,3) means the element at the ith row and jth column of the rotation
matrix defined by ®. Because the four quantities in e are not all independent, from Equation
(77), one can further write

wl=2.G-¢é (86)
el
where G = G - 0:3 180 1 and e means the first time-rate of e. Thus, all the three terms
3 3
in e can be computed as
R
e:i-cl-wf‘ (87)

when G is invertible. The reason to choose ¢j in the denominator in G is that in the
workspace of the 6RSS PM, ¢ is nonzero. Furthermore, when W' = a/‘, from Equation (86),
one can find

éz;c_l-(a;f‘—dé) (88)
Then, from
T T_é
e e
== b iy = (89)

all four terms in e and e are available numerically. Based on this derivation, for the end
effector of the 6RSS PM, two sets of rotational parameters can be available to realise identical
rotations at position, velocity, and acceleration levels.

.P .D
In this regard, by giving the numerical values of Xt -, X5, Xgr, of the target PM directly

to Ylg B/ Yi Es YZE of the 6RSS PM, Y‘SE, Y?E, Y?E can be computed using the procedure in this
section, and the end effector of the 6RSS PM can perform identical motions as those of the
end effector of the target PM, as shown in Figure 6, to make a fairer and more convenient
comparison in computational demands between dynamic models of these two PMs. The
inverse dynamic model of the 6RSS PM can be established following the procedure in
Section 4; henceforth, it is not provided again. Note that because this mechanism has six
actuations and six DOFs, its actuating torques have a closed-form solution without the
optimisations in Section 4.5. On this basis, its dynamic performance is shown in the last two
lines of Table 1, where the indices are completely identical. More precisely, the differences
A+, and difference ratios é-, of actuating torques are given in Figure 16, where

Ag=1" -1} (i=1,...,6)

_ T — A (90)
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Figure 16. Differences and difference ratios of actuating torques of the 6RSS PM using Euler parame-
ters and Euler angles.

7P and TiA are the output torque by the ith actuator and calculated from the model
using Euler parameters and Euler angles, respectively. These differences are very minor,
indicating that under one identical motion expressed by these two sets of parameters,
actuations are invariant. An identical exhibition can also be observed in friction torques at
revolute joints. For the sake of brevity, their graph is not provided.

The computational time of the dynamic model of the 6RSS PM using Euler parameters
is only approximately 60% of that using Euler angles, as shown in Figure 14, which again
denotes that Euler parameters are more efficient than Euler angles. From the comparison
between the mechanism under study and the 6RSS PM in Figure 14, DCFB significantly
raises the modelling burden in kinematics and dynamics. Furthermore, one interesting
discovery in Table 1 is, for the target PM under the third goal, i.e., Equation (54), all indices
are close to those of the 6RSS PM, the constraint forces at HKPs being nearly zero, as if
in the mechanism under study there were no DCFB to the end effector. Henceforth, the
optimisation procedures play an important role in attaining it.

6. Conclusions

In this paper, the rotation of the end effector of a PM constrained directly by the base
at two HKPs was expressed via Euler parameters, and the inverse dynamic model was
built with friction effects at HKPs and active revolute joints using Newton—Euler’s law.
Five conclusions can be drawn as follows:

1. The computational demand in the dynamic model with Euler parameters is only
approximately 23% of that using Euler angles. Likewise, great computational savings
can be achieved in the 6RSS PM. Thus, Euler parameters are an elegant alternative to
Euler angles in releasing the nonlinearity and reducing the computational cost.

2. Euler parameters can be converted smoothly to Euler angles to realise identical
configurations of the end effector of the PM under study. However, neither its twist
nor the first time-rate of the twist can be set equivalent to these two sets of parameters.
On the contrary, rotations of the end effector in the 6RSS PM can be set identically at
the levels of angular displacement, velocity, and acceleration using Euler parameters
and Euler angles. It is the DCFB that introduces these difficulties.

3. Friction effects at HKPs and revolute joints are strongly coupled via constraint forces
at lower kinematic pairs as intermediate variables, and they significantly raise the
nonlinearity of the dynamic model.
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4. From the comparison between the mechanism under study and the 6RSS PM, even
if DCFB is applied to the end effector, it considerably increases the computational
demands in the former, actuating torques can be optimised to achieve different dy-
namic performances under different optimal goals. Performance indices that have
strong relations with those under the predefined goals also reach their optimal values.
By contrast, the inverse dynamic model of the 6RSS PM has a unique closed-form
solution once its motions are predefined.

5. Inthe target PM, the computational cost under the third optimal goal is a little heavier
than that under the other two goals, but this goal can facilitate a longer utilisation
time of HKP-related mechanical parts. Under this goal, the performance indices of
the target PM are almost equivalent to those of the 6RSS PM.

The dynamic model of the target mechanism using Euler parameters under the third
goal will be incorporated into a motion controller design in experiments in our future work.
Friction effects at HKPs and active joints will be identified offline and compensated for to
raise the control accuracy.
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