
Academic Editors: Guoniu Zhu, Yi

Fang and Yang Yang

Received: 29 April 2025

Revised: 11 June 2025

Accepted: 12 June 2025

Published: 3 July 2025

Citation: Cheng, C.; Yuan, X.; Li, Y.

An Enhanced Dynamic Model of a

Spatial Parallel Mechanism Receiving

Direct Constraints from the Base at

Two Point-Contact Higher Kinematic

Pairs. Biomimetics 2025, 10, 437.

https://doi.org/10.3390/

biomimetics10070437

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

An Enhanced Dynamic Model of a Spatial Parallel Mechanism
Receiving Direct Constraints from the Base at Two Point-Contact
Higher Kinematic Pairs
Chen Cheng *, Xiaojing Yuan and Yenan Li

Lab of Mechatronics, Rocket Force University of Engineering, Xi’an 710025, China
* Correspondence: cche943@sina.com

Abstract

In this paper, a biologically congruent parallel mechanism (PM) inspired by the masticatory
system of human beings has been proposed to recreate complete chewing behaviours in
three-dimensional space. The mechanism is featured by direct constraints from the base
(DCFB) to its end effector at two higher kinematic pairs (HKPs), which greatly raise its
topological complexity. Meanwhile, friction effects occur at HKPs and actuators, causing
wear and then reducing motion accuracy. Regarding these, an inverse dynamic model
that can raise the computational efficiency and the modelling fidelity is proposed, being
prepared to be applied to realise accurate real-time motion and/or force control. In it,
Euler parameters are employed to express the motions of the constrained end effector,
and Newton–Euler’s law is applied, which can conveniently incorporate friction effects at
both HKPs and actuators into the dynamic model. Numerical results show that the time
consumption of the model using Euler parameters is only approximately 23% of that of the
model using Euler angles, and friction effects significantly increase the model’s nonlinearity.
Further, from the comparison between the models of the target PM and its counterpart
free of DCFB, these constraints sharply raise the modelling complexity in terms of the
transformation between Euler parameters and Euler angles in the end effector and the
computational cost of inverse dynamics.

Keywords: Euler parameters; inverse dynamics; friction effect; spatial parallel mechanism;
direct constraints from the base

1. Introduction
Mastication is a complex process in R3, where the foods are chewed to smaller and

softer boluses that can be swallowed safely [1]. The food industry has a strong curiosity in
this process, since exploring the human-food interaction is beneficial for evaluating food
texture properties so as to develop favourable, healthy, and appealing food products. Cur-
rently, machines used to assess food textures in vitro only simply compress the test foods
in one dimension, which is far away from the real complicated chewing motions of human
beings in R3. Recruiting healthy volunteers is associated with long-time consumption and
high expenditure, and the results are not objective. Thereby, robotic devices that can accu-
rately replicate complete masticatory behaviours in terms of chewing forces and motions in
R3 are greatly needed. With their assistance, newly developed food samples can be chewed
in a human-like manner, then food textures can be analysed reliably and efficiently. To this
end, it is very natural to design a robotic mechanism by mimicking the muscle-skeleton
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biostructure of the masticatory system: its end effector is the moving mandible, the base
is the fixed maxilla, and six revolute-spherical-spherical (RSS) parallel linkages working
synchronously are the major chewing muscles, namely, the temporalis, the masseter, and
the pterygoid [2]. The underlined letter R indicates it is the active joint. Left and right
direct constraints from the base (DCFB) to the end effector form two higher kinematic pairs
(HKPs), playing the role of the crucial temporomandibular joints (TMJs). As a result, from
the viewpoint of mechanism, the designed prototype is a spatial parallel mechanism (PM)
receiving DCFB to the end effector. These constraints evidently render this mechanism
different from others, since PMs in general do not have this sort of constraints. They
increase the topological complexity, bringing two parasitic motions and two redundant
actuations simultaneously [2]. It is fundamental to stress that theoretically, two kinematic
chains in the mechanism can be taken out to reduce its topological complexity; then it
would have no actuation redundancy. Nonetheless, the biological features of the chewing
system in terms of the roles of primary chewing muscles and TMJs cannot be explored
adequately via this simpler mechanism, and the potential engineering applications could
be limited. Hence, the bio-inspired mechanism under study is designed as faithfully as
we can.

Due to the closed-loops, PMs are superior to their serial counterparts in terms of larger
load carrying capacity [3], better motion accuracy [4,5], and lower moving inertias [6,7],
even if their singularity problems are more complex and the workspace is smaller. Thus,
they can exert these strengths in the domains where their desirable features are greatly
needed [8,9], e.g., machine tools [10–14], fast pick-and-place manipulators [15], haptic
devices [16], pointing devices [17], and physical human-robot interaction [18,19].

Before the designed mechanism is employed to evaluate newly developed foods in
the food industry, there are two concerns about its practical applications. The first is that,
due to the DCFB, parasitic motion variables are strongly coupled by translational and
rotational degrees of freedom (DOFs). They have complicated trigonometric functions as in
Equation (5) of [20], where XYZ Euler angles were used to characterise rotations of the end
effector. These complex and lengthy equations considerably increase the computational
time in dynamic models, being not in favour of real-time model-based controller design.
Thus, more efficient alternatives to Euler angles are sought to reduce the computational cost.
In the literature, Euler parameters, i.e., unit quaternions, deeply attract our interest. From
the Euler theorem, the orientation of a rigid body can be defined by its rotation around
an axis by an angle of rotation θ at any instant of time [21]. Thereby, these parameters are
stated as

e =
[
e0 eT

]T
, e0 = cos

θ

2
, e = u · sin

θ

2
(1)

where u is the unit vector around which the rotation of the body occurs, and its three
elements are the projections along the orthogonal axes of the inertia frame. Although
four parameters are used to describe rotations in R3, indicating they are not completely
independent and that one constraint equation is needed; this cumbersome feature is more
than compensated for by their desirable merits as:

1. Any orientation of a body in R3 can be defined satisfactorily since there are no inherent
singularity problems.

2. Kinematic equations associated with them have purely algebraic operators and are
free of trigonometric functions, as with Euler angles, being computationally more
efficient. As a result, they are easy to implement in a computer program in simpler
and more compact manners.

Regarding these, they are adopted to describe the motions of the end effector of the
mechanism under study to enhance the computational efficiency. From the literature, Euler
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parameters have been widely applied in many arenas due to their advantages. For instance,
a general Euler parameter-based dynamic model was built by the Lagrange formulation for
mechanical systems [22]. Many useful and interesting identities between Euler parameters
and their derivatives were presented in [21], based on which the dynamic model can be
more compact and efficient [23]. An attitude regulator for an arbitrary rigid body was
designed with these parameters in [24], leading to a linear feedback law, where neither
linearisation nor simplification assumptions such as small angular rates or attitude error
angles were made. This presentation avoids nonlinear equations of motion (EOMs) and a
nonlinear feedback law associated with Cayley–Rodrigues parameters. Euler parameters
were utilised to model the end effector rotation errors in resolved rate and acceleration
control of serial manipulators in [25]. The formulation considerably simplifies the stability
analysis of orientation error equations. In [26], their utilisation in a spherical joint avoided
the introduction of three virtual orthogonal revolute joints with zero length of intermediate
links in the general manner, which raised the sizes of associated matrices in the EOMs
and finally the computational burden. The dynamic modelling of a spatial RSSR serial
mechanism showed that the CPU time has a 10% improvement over the virtual revolute
joints method, and less computer memory is required. To address the photogrammetric
problem, a closed-form solution was provided in [27], where unit quaternions were used to
simplify the derivation of the solution.

As far as their applications in PMs are concerned, in [28], based on the number of
constant zero components of Euler parameters, they were classified into 15 cases, and
their kinematic interpretation was presented. Then, the orientation of the end effector of
a 3-DOF 3-RER PM with orthogonal platforms was represented using Euler parameters
effectively. Letters R and E denote revolute joint and planar joint, respectively. In [29],
the above-mentioned 15 cases of classification were used again, then Euler parameters
were employed together with Euler angles, algebraic geometry, and axodes to effectively
identify and compare distinct continuous motion characteristics of three 2-DOF pointing
mechanisms, i.e., a gimbal structure, a 1-RR&2-RRR spherical PM, and an Omni-Wrist III.
A systematic classification of a 3-RER PM based on the type/number of operation modes
varying with link parameters was presented in [30]. Euler parameters are found to be very
useful for identifying the motion characteristics of the end effector.

Apart from the computational cost, the second concern in the designed mechanism
is that, in practical experiments of its prototype, at the direct constraints from the base to
the end effector, wear appears due to friction effects, further introducing clearances and
reducing motion accuracy. Additionally, friction exists in the brushes, rotors, and bearings
inside the actuators, but it is not desirable to disassemble them frequently to lubricate those
parts. In this regard, for the sake of reliable and accurate manipulations of the robotic
device in practice, the friction is worth being considered in the inverse dynamic model to
analyse its effects.

In terms of friction effects in PMs, from the literature, a Lagrange-based approach
was proposed to analyse the forward dynamics of a 3-PRS PM in [24], where the LuGre
friction effects are modelled at active prismatic joints. Letters P and S denote a prismatic
joint and a spherical joint, respectively. On this basis, the influence on the motion accuracy
was analysed. EOMs of forward dynamics with a closed form were formatted by the
Udwadia–Kalaba approach for a planar 2RRR/RR PM with actuation redundancy in [31].
In [32], the friction effects were expressed by the Stribeck model in the artificial hip joint,
thrust ball bearing, and linear module of 2(3PUS+S) PM. The letter U denotes a universal
joint. Their parameters were identified by a least-squares method, and their negative effects
were compensated for through a feedforward compensation method. An explicit dynamic
model with joint friction was established for a 4-UPS PM, which was incorporated into
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a 5-DOF hybrid polishing robot [14]. The Newton–Euler method was utilised to build
the model, and friction effects were modelled by the Coulomb-viscous friction model. To
build an accurate dynamic model of a hybrid spray-painting robot in [33], the Stribeck
friction model was used to express friction effects in all active joints. The coefficients
were identified, and these effects were compensated for in the inverse dynamic model.
A nonlinear friction model, which can capture viscous, Coulomb, and Stribeck effects,
was developed for the 2RRR/RR PM in [34]. The comparison of the control performance
between this model and the Coulomb-viscous friction model showed that the trajectory
tracking accuracy was improved significantly in the former.

From the literature review, the practical applications of Euler parameters can be found
extensively, and their theoretical study has reached an in-depth level. However, their
application in PMs, especially those with various constraints from lower kinematic pairs
and HKPs like the one under study, has not been reported yet. In terms of friction effects,
they are considered only in a few publications about the dynamics of PMs. In the target PM,
to reduce the computational demands of inverse dynamics and the negative effects from
friction, an Euler parameter-based inverse dynamic model with friction effects at HKPs
and actuators is built in this paper. The two novelties are summarised as:

1. Euler parameters are employed to describe the motions of the constrained end effector
in the target PM, sharply reducing the computational expenditure of the model.

2. Friction effects are accounted for at HKPs and active revolute joints, arriving at a
nonlinear but more accurate inverse dynamic model.

The paper is organised as follows: in Section 2, the mechanism under study is described
in detail. The motions of the end effector are studied using Euler parameters in Section 3.
In Section 4, the inverse dynamic model with friction effects is built by Newton–Euler’s
law. Numerical computations are presented in Section 5 to find the transformation between
Euler parameters and Euler angles, the dynamic performances of the mechanism under
study, and the influence of constraints at HKPs on kinematics and dynamics. Finally, some
conclusions are given in Section 6.

2. The Robotic Mechanism
The scheme of the target PM constrained at two HKPs is illustrated in Figure 1. The

fixed maxilla to which the inertia frame {S} is assigned is not shown in the figure for a
clear exhibition of moving bodies. The movable lower jaw, namely, the end effector, is
connected to the base by six independent kinematic linkages. Frame {S} owns a horizontal
XS-YS plane perpendicular to the vertical ZS axis. At the mass centre OM of the end effector,
a body-fixed frame {M} is set. Frames {S} and {M} are completely coincident when the
mechanism is at the home position, i.e., the upper and lower jaws are occlusal. The position
coordinates of OM in {S} denote the translations of the end effector, and its orientations
with respect to the inertia frame are computed by Euler parameters. In the chains, the crank
GiSi (i = 1, . . ., 6) is actuated by a revolute joint centred at Gi, and the coupler SiMi connects
the crank and the end effector at its two ends Si and Mi, respectively, using spherical joints.
A frame {Ci} is attached to Gi to express the rotation of the ith actuator. In it, the XCi axis
is from Gi to Si, the ZCi axis runs through the rotational axis of the actuator, and the YCi axis
completes the frame, obeying the right-hand rule. A frame {Ni} is attached to the mass centre
Ei of the coupler to describe its motions in {S}. The XNi axis points from Si to Mi, the YNi axis
is parallel to the cross product of two unit vectors defined along the XNi and XS axes, and the
ZNi axis is defined by the right-hand rule. Note that only one actuator frame {C5} and one
coupler frame {N5} are drawn as illustrative examples in the diagram for the sake of clarity.

From a close observation of Figure 1, one can see that the point-contact HKPs mimick-
ing TMJs between left and right condylar balls and condylar surfaces are only schematic,
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since the former can only receive unilateral constraints from the latter. Hence, in the pro-
totype, due to motion errors in engineering practice, condylar balls are separated from
articular surfaces easily. Thus, the nature of the mechanism is changed. In these regards,
the HKP-related mechanical parts in engineering practice are shown in Figure 2 with the
computer-aided design (CAD) model of the prototype. The condylar ball slips along a condy-
lar socket that has a width equal to its diameter. Thereby, the point-contact HKPs during
the arbitrary motions of the end effector can always exist. By this design, the motion of the
condyle ball centre Ti (i = L, R) is always constrained onto a surface, which is offset from the
upper and lower surfaces of the socket by the ball radius. Thereupon, it is clear that the end
effector is actuated by six chains and constrained by the base at two HKPs simultaneously.

{C5}

TL

TR

M5

G5

S5

XC5

ZC5

YC5

Os
YS

ZS

XS

{S}

ZM

{M}

XM

YM
MO

2

4
1

3

G3

S3

M3

G1

G2

G6

S1

S2

S4

S6

M1 M2M6

M4

G4

{N5}

E5

YN5

ZN5

XN5

Figure 1. A schematic view of the mechanism under study: 1⃝ and 2⃝ are condylar balls, and 3⃝ and
4⃝ are articular surfaces of TMJs.

Right condylar socket

Right condylar ball
Condylar socket

Condylar ball

(a)

(c)

Spherical joint

Rotational actuator

Crank

Coupler

End effector

(b)

 

Figure 2. The mechanism under study: (a) CAD model, (b) HKP at the right side, (c) HKP-related
mechanical parts.
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3. Kinematics
The kinematics of the end effector using Euler parameters is analysed in this section

so as to be utilised adequately in the dynamics in Section 4.

3.1. Constrained Motions of the End Effector

The influence of DCFB on the end effector is first derived. In the inertia frame {S}, the
mathematical functions of the planar surfaces where the condylar ball centres Ti (i = L, R)
are situated

p1 · XS + ZS + p2 = 0, p3 ≤ XS ≤ p4, p5 ≤ YL
S ≤ p6, −p6 ≤ YR

S ≤ −p5 (2)

where Yi
S(i = L, R) are the coordinates of the left and right planes along the YS axis, respectively.

The coordinates of Ti (i = L, R) in {S} are

OSTi = OSOM + S
MR(θ) · MOMTi (3)

where OSOM =
[

X Y Z
]T

denotes the position coordinates of the mass centre OM in

{S}, MOMTi is the position vector of Ti in {M}, which is constant, and S
MR(θ) rotates frame

{S} to frame {M} using Euler parameters θ and is expressed in a quadratic form

S
MR(θ) =

(
2 · θ2

0 − 1
)
· I3 + 2

(
θ · θT + θ0 · θ×

)
(4)

where θ =

[
θ0

θ

]
,θ =

θ1

θ2

θ3

, I3 is the 3 × 3 identity matrix, and θ× is the 3 × 3 cross-product

matrix spanned by θ. Critically, θ fulfils the normality constraint condition

θT · θ = 1. (5)

Therefore, the four quantities in θ are not all independent.
Substituting Equations (3) and (4) into Equation (2) produces the geometric constraint

equation at two HKPs as

p1 ·
(

X + S
MR(1,:) ·

MOMTj

)
+ Z + S

MR(3,:) ·
MOMTj + p2 = 0, (j = L, R) (6)

where S
MR(i,:) is the ith (i = 1,3) row of S

MR. Owing to the left-right symmetry of MOMTL

and MOMTR in {M}, a summation and a subtraction of the two equations in Equation (6)
sidewise yield

Z = −

p1X + p2 +
(

p1 · S
MR(1,:) +

S
MR(3,:)

)
·

 MOMTL(1)
0

MOMTL(3)




θ3 =
p1 · θ2 + θ0

p1 · θ0 − θ2
· θ1

(7)

where MOMTL(i)(i = 1, 3) denotes the ith element of MOMTL. Thus, under DCFB, Z and
θ3 are parasitic motion variables, rather than DOFs of the 6RSS PM free of these constraints.
Specifically, Z is constituted by both a linear DOF X and Euler parameters θ contained in
S
MR(i,:)(i = 1, 3), while θ3 is only composed of the other three elements in θ. Hence, the four
entries in θ are further coupled on the basis of Equation (5).
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Equation (7) has purely algebraic functions but no trigonometric functions. By com-
parison, the parasitic motion variable Z in Equation (6) of [20] has the same expression as
that in Equation (7), but the rotation matrix S

MR in it is full of trigonometric functions.
The seven coordinates describing the motion of the end effector are grouped as

XP
EE =

[
X Y Z θT

]T
(8)

In view of the three scalar equations in Equations (5) and (7), the mechanism has four
DOFs, which is also in accordance with the result from the Kutzbach–Grübler criterion [35].
Remember the six actuations are invariant; thus, redundant actuations in the mechanism
are essentially caused by DCFB onto the end effector, which is completely different from
the two primary accesses in [36].

After identifying the parasitic motions, five independent coordinates of XP
EE are used

to express the four DOFs and grouped in a 5 × 1 vector qP
EE as

qP
EE =

[
X Y θ0 θ1 θ2

]T
(9)

Note that it is not four coordinates of XP
EE that are used to express the DOFs of

the mechanism. Two reasons account for this choice. Firstly, putting θ3 in Equation (7)
into the quadratic constraint in Equation (5) can produce a complicated expression of θi

(i = 0,1,2), which is not in favour of the computational cost. Secondly, via the optimisation
in Section 5.1, all variables in XP

EE can be conveniently obtained numerically.
Henceforth, to characterise an instantaneous configuration of the end effector,

Equation (8), or Equations (5), (7), and (9) ad hoc are needed. In other words, the mecha-
nism performs motions in six directions with five independent coordinates, two parasitic
motion variables, and one normality constraint condition.

The 7 × 5 Jacobian matrix MJ between
.
qP

EE and
.

X
P
EE as

.
X

P
EE = MJ ·

.
qP

EE (10)

Differentiating this equation produces

..
X

P
EE =

[ .
MJ MJ

]
·
[ .

qP
EE

..
qP

EE

]
(11)

The twist of the end effector can be computed as

tEE =

[
VOM

ωP
EE

]
= M0b ·

.
X

P
EE = M1b ·

.
qP

EE (12)

where VOM is the translational velocity of OM, ωP
EE is the rotational velocity, and

M0b = diag(I3 2 · EEE)

EEE = [−θ, θ0 · I3 + θ×]

M1b = M0b · MJ

(13)

On this basis, the first time-rate of the twist is easily derived as

.
tEE =

[ .
VOM
.

ω
P
EE

]
=

[ .
M1b M1b

]
·
[ .

qP
EE

..
qP

EE

]
(14)
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It is noted that though there are some common figures, equations, and texts between
this paper and [20], they are in Sections 2 and 3.1, serving as the foundation of this paper,
since the focus of this paper is on the use of Euler parameters and the friction effects, and
these two aspects do not exist in [20]. Finally, the dynamic models in this manuscript
and [20] are built by Newton–Euler’s law and the energy-based methods, respectively.
Therefore, these replications are not critical.

3.2. Crank GiSi

The crank only rotates around the fixed ZCi axis of frame {Ci}; however, it is not

easy to express its rotations using Euler parameters θGiSi =

[
θ0GiSi

θGiSi

]
where θGiSi =[

θ1GiSi θ2GiSi θ3GiSi

]T
. The reason is as follows: from the geometric relationship, one

can derive
GiSi =

S
Ci0

R · Ci0
Ci

R
(
θGiSi

)
· Ci GiSi (15)

in which S
Ci0

R is the rotation matrix of GiSi in {S} at the initial configuration of the mecha-

nism, Ci0
Ci

R
(
θGiSi

)
is the rotation matrix about the ZCi axis

Ci0
Ci

R
(
θGiSi

)
=

(
2 · θ2

0GiSi
− 1

)
· I3 + 2

(
θGiSi · θ

T
GiSi

+ θ0GiSi · θGiSi×
)

(16)

and Ci GiSi =

[
∥GiSi∥

02×1

]
where ∥GiSi∥ is the length of GiSi. On the one hand, as depicted in

Figure 1, one can find
SiMi = GiMi − GiSi (17)

then squaring the two sides of Equation (17) and rewriting the results produce

GiMT
i · GiSi =

∥SiMi∥2 − ∥GiMi∥2 − ∥GiSi∥2

−2
(18)

On the other hand, one can find

GiMi = GiOS + OSOM + OMMi (19)

Since the crank GiSi can only rotate around the ZCi axis, the four elements in θGiSi are

θ0GiSi = cos
θGiSi

2
θ1GiSi = θ2GiSi = 0

θ3GiSi = sin
θGiSi

2

(20)

where θGiSi cis the angular displacement of the ith active revolute joint around the ZCi axis.
In this manner, putting Equations (15), (16), and (19), θ1GiSi and θ2GiSi in Equation (20) into
Equation (18) gives rise to a scalar equation

GiMT
i · S

Ci0
R · ∥GiSi∥ ·

 2 · θ2
0GiSi

− 1
2 · θ0GiSi · θ3GiSi

0

 = RHSGiSi (21)

where RHSGiSi is the scalar on the right-hand side of Equation (18). However, it can be
shown from Equation (21) that it is hard to compute θ0GiSi and θ3GiSi simultaneously, since
in general, nine numerical values of a 3 × 3 rotation matrix are all needed, as drawn from
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the conclusion after reviewing the various sorts of methods in [37]. However, if θ0GiSi and
θ3GiSi in Equation (20) are substituted into (21), θGiSi can be derived using the procedure in
Section 2 of [2]. In fact, substituting Equation (20) into Equation (16) easily produces

Ci0
Ci

R =

cos θGiSi − sin θGiSi 0
sin θGiSi cos θGiSi 0

0 0 1

 (22)

which is actually the rotation matrix by the Euler angle θGiSi around the ZCi axis. In
these regards, the kinematics of the ith actuator including its displacement, velocity, and
acceleration is still derived as that in Section 2 of [2] and Section 3.2 of [20] using θGiSi .

3.3. Coupler SiMi

The motions of the coupler SiMi (i = 1, . . ., 6) are also needed for its rigid-body
dynamics. On the one hand, the coordinate vector of SiMi is computed as

SiMi =
S
Ni0

R · Ni0
Ni

R
(
θSiMi

)
·
[
∥SiMi∥

02×1

]
(23)

where S
Ni0

R is the rotation matrix of SiMi in {S} at the initial configuration of the mechanism;

∥SiMi∥ is the length of SiMi, and Ni0
Ni

R
(
θSiMi

)
is the rotation matrix since the configuration

using Euler parameters θSiMi

Ni0
Ni

R
(
θSiMi

)
=

(
2θ0SiMi − 1

)
· I3 + 2

(
θSiMi · θ

T
SiMi

+ θ0SiMi · θSiMi×
)

(24)

where
θSiMi =

[
θ0SiMi θT

SiMi

]T

θSiMi =
[

θ1SiMi θ2SiMi θ3SiMi

]T

On the other hand, geometrically, SiMi can also be computed from the differences of
the coordinate vector of Mi and Si as

SiMi = OSOM + OMMi − OSGi − GiSi (25)

where OMMi =
S
MR(θ) · MOMMi and MOMMi is the constant coordinate vector of Mi in

{M}, OSGi is the constant position vector of Gi since it is fixed in {S}, and GiSi is derived
using Equations (15) and (22). When computing θSiMi , numerical values of the right-hand
side of Equation (25) are all available, i.e., the motions of the end effector and the crank
GiSi have been derived before. Combining Equations (23)–(25), one can find 2

(
θ2

0SiMi
+ θ2

1SiMi

)
− 1

2
(
θ1SiMi · θ2SiMi + θ0SiMi · θ3SiMi

)
2
(
θ1SiMi · θ3SiMi − θ0SiMi · θ2SiMi

)
 =

S
Ni0

R−1

∥SiMi∥
· RHSSiMi (26)

whose left-hand side is actually the first column of Ni0
Ni

R
(
θSiMi

)
from Equation (24), and

RHSSiMi is the known 3 × 1 vector at the right-hand side of Equation (25). By taking the
normality constraint equation

θ2
0SiMi

+ θ2
1SiMi

+ θ2
2SiMi

+ θ2
3SiMi

= 1 (27)

into consideration, there are in total four unknowns and four nonlinear scalar equations
which can be solved numerically, being neither simple nor straightforward. However, the
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mechanism is featured by the end effector constrained by the base directly. As such, the
rotations of the couplers by virtue of Euler parameters will be left for future work. In
summary, in the kinematics of the mechanism, Euler parameters are only utilised in the end
effector, while Euler angles in the kinematic chains, as in [2] and [20], are still employed to
describe their rotations.

4. Dynamic Model
Before the dynamic model is established, two reasonable assumptions about friction

effects are made: 1. The two HKPs are easily subject to wear and tear due to friction forces.
Thereby, from the viewpoint of practical applications, these forces are incorporated into
the dynamic model to make it more accurate. Meanwhile, in the prototype, revolute joints
are actuated by DC servo motors, and it is hard to lubricate the inner bodies, such as
brushes, rotors, or bearings. Henceforth, friction torques in these joints are also modelled.
2. Frictional moments exist in twelve passive spherical joints; however, the size of the ball
in the socket is very small, so these moments are not large. Additionally, friction effects
in passive spherical joints of PMs have been studied in [14] already. To avoid a tedious
deviation in the dynamic model and highlight the unique HKPs, all spherical joints are
assumed friction-free.

Friction effects are tightly related to constraint forces at joints, which are difficult to find
using energy-based dynamic methods, such as the Lagrangian formulation or Hamilton’s
equations. Additionally, in view of the intrinsic dependence of Euler parameters, Lagrange
multipliers are needed if Lagrange equations are used to build the model. They would
greatly increase the number of coordinates in the model. Consequently, the methods
in [21,38] are not adopted, and the dynamic model of the entire mechanism is built using
the classical Newton–Euler’s law. A great deal of friction models have been reviewed
in [39], which are classified into static and dynamic types. In view of the complex topology
of the target mechanism, the classical Coulomb and viscous friction model, which belongs
to the static type, is applied.

4.1. End Effector

The free-body diagram of the end effector is shown in Figure 3. The forces acting
on the end effector include constraint forces FMi (i = 1, . . . , 6) at spherical joints Mi, its

gravity −mEE · g at OM in which mEE is the mass and g =
[
02×1 9800

]T
mm/s2 is the

gravitational acceleration vector, the reacted chewing force FB at point B of a left lower
molar, and constraint forces FTi (i = L, R) and friction forces fTi

acting at Ti from the surfaces
of condylar sockets. FTi can be computed as

FTi = MH · FZi (28)

where MH =
[
1.1 0 1

]T
is along the orthogonal direction of the planar surface specified

in Equation (2), and FZi is the component of FTi along the ZS axis. The friction force at
HKPs under the Coulomb and viscous friction model is

fTi
=


(

Ai ·
∣∣FZi

∣∣+ µV
)
· VTi , VTi ̸= 03×1, Ai =µC

√
p2

1 + 1∥∥VTi

∥∥
03×1, VTi = 03×1

(29)

where µC and µV are Coulomb and viscous coefficients, respectively,
∣∣FZi

∣∣ is the absolute
value of FZi , and

∥∥VTi

∥∥ is the two-norm sum of the linear velocity VTi at Ti. As a result,
friction forces at HKPs are not only a function of VTi but also the dynamics of the entire
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mechanism. The schematic diagram of the constraint forces FTi from condylar sockets and
the friction forces fTi

at the condylar ball from the sagittal view is displayed in Figure 4.
One can see that FTi is perpendicular to the surface on which Ti is constrained, and fTi

is on
this planar surface. FTi can be decomposed into two components, which are along the ZS

and XS axes, respectively.
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Figure 3. Free-body diagram of the end effector, the ith (i = 1, . . ., 6) coupler, and the ith crank.
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Figure 4. Schematic diagram of the constraint forces FTi from condylar sockets and the friction forces
fTi

at the condylar ball.

Note that since at all time instants of the tracked trajectory in Section 5, VTi is nonzero,
then the case fTi

= 03×1 is not considered in the following. By the Newton–Euler formula-
tion, the EOMs of the lower jaw are

M2b · FM1_6 + M3b ·
[

FTL − fTL

FTR − fTR

]
= M4b (30)

where

M2b =

[
I3 . . . I3

OMM1× . . . OMM6×

]
, M3b =

[
I3 I3

OMTL× OMTR×

]

FM1_6 =


FM1
...
FM6

, M4b =

[
mEE

( .
VOM + g

)
IEE · .

ωEE + ωEE × (IEE · ωEE)

]
− WFB

(31)

In Equation (31), OMMi × (i = 1, . . . , 6) and OMTi × (i = L, R) are cross-product ma-
trices spanned by OMMi and OMTi, respectively, WFB is the reacted wrench on the end
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effector by FB. mEE is the mass of the end effector, IEE = S
MR · MIEE · S

MRT is the inertia
matrix of the end effector updated as a function of its orientations in {S}, and MIEE is the
inertia tensor of the end effector with respect to {M}.

Putting Equations (28) and (29) into Equation (30) gives rise to a compact form as

M2b · FM1_6 + M3b · FZ − M5b · |FZ| = M4b (32)

where
M3b = M3b · (I2 ⊗ MH), M5b = M3b · diag

(
AL · VTL AR · VTR

)
FZ =

[
FZL

FZR

]
, M4b = M4b + M3b · µV ·

[
VTL

VTR

]
and ⊗ is the Kronecker product.

4.2. Coupler SiMi

The free-body diagram of the ith (i = 1, . . . , 6) coupler is given in Figure 3. Via the
Newton–Euler’s law, for the ith coupler, one can format

FSi − FMi = mSiMi ·
( .

VEi + g
)

EiSi × FSi + EiMi ×
(
−FMi

)
= ISiMi ·

.
ωSiMi + ωSiMi ×

(
ISiMi · ωSiMi

)
= ESiMi

(33)

where FSi is the constraint forces at Si acting at SiMi, mSiMi is the mass, and
.
VEi is the linear

acceleration of Ei, ωSiMi and
.

ωSiMi are the angular velocity and acceleration, respectively,
ISiMi =

S
Ni

R · Ni ISiMi
· S

Ni
RT is the inertia tensor with respect to Ei and built in {S}, and Ni ISiMi

is the inertia tensor with respect to Ei and built in {Ni}. Combining the two equations in
Equation (33) yields

MiSi × FMi = ESiMi (34)

where ESiMi = ESiMi + 0.5 · mSiMi · SiMi ×
( .

VEi + g
)

.
Among the three scalar equations in Equation (34), arbitrarily only two are indepen-

dent; the last two are chosen for the following computation. Thus, for the six couplers, one
can write

M5b · FM1_6 = M6b (35)

where M5b = diag
(
(M1S1×)(2:3,:) . . . (M6S6×)(2:3,:)

)
, M6b =


ES1M1(2:3)

...
ES6M6(2:3)

, and the sub-

scripts (2:3,:) and (2:3) denote the last two rows of MiSi× and the last two entries of ESiMi ,
respectively. Meanwhile, repeating the first equation in Equation (33) six times for the six
couplers produces

FS1_6 = FM1_6 + M7b (36)

where

FS1_6 =


FS1

...
FS6

, M7b =


mS1M1 ·

( .
VE1 + g

)
...

mS6M6 ·
( .

VE6 + g
)


These equations will be incorporated into those for the end effector and crank to build
the dynamic model of the entire mechanism.
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4.3. Crank GiSi

To find frictional torques at active revolute joints at Gi, the constraint force FGi is to be
derived. The free-body diagram of the ith (i = 1, . . . , 6) crank is shown in Figure 3. Firstly,
because the crank owns a cylinder shape, and it only rotates around the central line, which
is along the ZCi axis of frame {Ci}, its force equilibrium in {S} produces

FGi = FSi + mGiSi · g (37)

where mGiSi is the mass and its mass centre locates at the ZCi axis. FGi can be expressed in
frame {Ci0} as

Ci0FGi
= Ci0

S R · FGi =
S
Ci0

RT ·
(
FSi + mGiSi · g

)
(38)

to minimise computational overhead, where frame {Ci0} denotes frame {Ci} when the
angular displacement θGiSi of the ith crank is zero. As such, for the six revolute joints, a
compact form of all constraint forces at Gi can be written as

C10 FG1
...

C60 FG6

 = diag
(

S
C10

RT . . . S
C60

RT
)
·

FS1_6 +


mG1S1 · g

...
mG6S6 · g


 (39)

The Euler’s law is used to write the rotational EOM of the ith crank in {Ci0} as

Ci0GiSi × Ci0FSi
+

[
Ci0MC

GiSi

τi − τfi

]
=

[
02×1

IGiSi ·
..
θGiSi

]
(40)

where Ci0MC
GiSi

is the 2 × 1 vector containing two constraint moments around the XCi and
YCi axes of {Ci0}, τi and τfi

are the actuating torque and the frictional torque in the ith

actuator, respectively,
..
θGiSi is the angular acceleration, and IGiSi is the rotational inertia

of the ith crank. Thereby, around the direction of actuations, i.e., from the third line of
Equation (40), one can list

IGiSi ·
..
θGiSi = τi − τfi

+
(

Ci0GiSi×
)
(3,:)

· Ci0FSi
(41)

where Ci0GiSi× is the cross-product matrix of Ci0GiSi and
(Ci0GiSi×

)
(3,:) means the third

line. By the Coulomb and viscous friction model, τfi
is computed as

τfi
= Ri ·

(
µCi · sgn

( .
θGiSi

)
·
∥∥∥Ci0FGi(1:2)

∥∥∥+ µVi ·
.
θGiSi

)
(42)

where Ri is the friction arm of the ith actuator, µCi and µVi are the Coulomb and vis-
cous coefficients, respectively, and sgn(·) is the sign function. Additionally, Ci0FSi

can be
written as

Ci0FSi
= Ci0

S R ·
(
−FSi

)
= S

Ci0
RT ·

(
−FSi

)
(43)

Putting it into Equation (40) produces

τi = τfi
+ IGiSi ·

..
θGiSi + M8bi · FSi (44)

where M8bi =
(Ci0GiSi×

)
(3,:) ·

S
Ci0

RT . As a result, for the six cranks, one can derive

τ = τf + M9b + M8b · FS1_6 (45)
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where

τ =


τ1
...

τ6

, τf =


τf1
...

τf6

, M8b = diag
(

M8b1 . . . M8b6

)
, M9b =


IG1S1 ·

..
θG1S1

...
IG6S6 ·

..
θG6S6


In addition, from the first two lines of Equation (40), one can write

Ci0MC
GiSi

= −
(

Ci0GiSi×
)
(1:2,:)

· Ci0FSi
(46)

where
(Ci0GiSi×

)
(1:2,:) is the first two lines of Ci0GiSi×.

4.4. Entire Mechanism

Combining the EOMs of the end effector in Equation (32) and the six couplers in
Equation (35) generates[

M2b

M5b

]
· FM1_6 =

[
M3b

M6b

]
−

[
M4b

012×2

]
· FZ +

[
M5b

012×2

]
· |FZ| (47)

Then, FM1_6 can be computed as

FM1_6 = M10b − M11b · FZ + M12b · |FZ| (48)

where

M10b =

[
M2b

M5b

]−1

·
[

M3b

M6b

]
, M11b =

[
M2b

M5b

]−1

·
[

M4b

012×2

]
, M12b =

[
M2b

M5b

]−1

·
[

M5b

012×2

]

Thus, with Equation (36), all constraint forces at S1~S6 can be computed as

FS1_6 = M13b − M11b · FZ + M12b · |FZ| (49)

where M13b = M10b + M7b. Finally, putting Equation (49) into Equation (45) produces the
explicit dynamic model of the entire mechanism with friction effects at HKPs and revolute
joints as

τ = τf + M14b − M15b · FZ + M16b · |FZ| (50)

where
M14b = M8b · M13b + M9b

M15b = M8b · M11b

M16b = M8b · M12b

are known matrices if the motions of the mechanism are given. There are six equations and
eight unknowns in τ and FZ in this model, indicating that actuating torques and friction
effects should be optimally computed. Furthermore, a closer observation of Equation (50)
can lead to the following remarks:

1. Even if a simple Coulomb and viscous friction model, which is classified as a static one
in [39] is employed, friction effects at HKPs significantly enhance the nonlinearity of
the dynamic model in terms of |FZ| explicitly, and they implicitly influence frictional
torques τf , since τf is the function of |FZ| as shown in Equations (39), (42), and (49).
Regarding these, friction effects at HKPs and revolute joints are strongly coupled, and
actuating torques are influenced by them.

2. If all friction effects are neglected, Equation (50) degrades to the form of
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τ = M1 − M2 · FZ (51)

where M1 and M2 are matrices that are the functions of kinematic and dynamic parameters
of the target PM. Equation (51) is actually the simpler linear inverse dynamic model of
the target mechanism free of friction with six equations and eight unknowns, including
actuations and constraint forces FZ. The form of Equation (51) is very different from that of
the final EOMs of PMs in [31–33], since their unknowns are only actuations.

4.5. Optimal Goals to Distribute Actuating Torques

Because the inverse dynamic model of the mechanism under study is underdetermined
with six nonlinear equations and eight unknowns, actuating torques can be optimally
distributed to meet different dynamic performances. In this optimisation problem, the
eight unknowns are the optimal variables, and physical constraints include:

Constraint forces Ci0FGi
cannot exceed the axial and radial loading capacities of the

chosen actuator in the prototype;
The output power of the actuator is below its maximum power capacity;
The inverse dynamic model, Equation (50), is the nonlinear equality constraint.
Based on the physical application of the mechanism, three optimal goals are individu-

ally set to produce different performances.
As far as the initial guess under the three optimal goals is concerned, at t = 0, τ = 06×1

and FZ = 02×1 are used as the initial guess, and the obtained values of τ and FZ are used
as the initial guess of the optimisation scheme at the next time instant. This loop is repeated
for each time interval until the end of the timeline.

4.5.1. Minimal Actuating Torques

This goal can be mathematically defined as

G1 = min∥τ∥ (52)

where ∥τ∥ is the two-norm sum of τ. The physical meaning of this goal is to minimize
the output torque from the actuator, in favour of motor sizing in the design stage of
the mechatronics system. In fact, this goal is often achieved in PMs with redundant
actuations by virtue of the Moore–Penrose pseudo-inverse matrix to directly compute τ,
as in [40–43]. However, in Equation (50), τ and FZ have different units, and the nonlinear
term M16b · |FZ| exists. Henceforth, a more complex optimisation algorithm is needed to
numerically compute τ and FZ simultaneously.

4.5.2. Minimal Constraint Forces at S1~S6

As shown from Equations (38) and (46), FSi directly influences constraint wrenches
at Gi. Because the chewing behaviours of human beings to be mimicked by the designed
mechanism are approximately periodic, large constraint wrenches at Gi bring large vi-
brations and impulses to the base and neighbouring devices. As such, a second goal is
set as

G2 = min
∥∥∥FS1_6

∥∥∥ (53)

which can minimize the constraint forces at Si and then reduce these abovementioned
negative effects.
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4.5.3. Minimal Constraint Forces at HKPs

A large constraint force at a HKP tends to cause large friction and then wear and tear
easily occurs in the condylar ball and the condylar socket. Regarding this, a third goal is
defined as

G3 = min∥FZ∥ (54)

which can minimise the constraint forces at HKPs; thus, wear and clearance caused by
friction effects can be minimised.

Finally, the sequential quadratic programming (SQP) method is characterised by fast
convergence, and nonlinear constraints, as mentioned above, can be easily incorporated.
Thus, this method is to be employed to optimally compute the dynamic model.

It is noted that what we are concerned about is whether the designed mechanism can
vividly reproduce the chewing behaviours of human subjects; thus, this robotic device
can be applied in the food industry to evaluate the newly developed food properties as
mentioned in Section 1. Secondly, the mechanism is actually a simplified model of the
human chewing system, which has more muscles than those in the designed mechanism.
In these regards, how the muscles in the human masticatory system work synchronously
under the control of the central neural system is left to the oral biologists to discover.

5. Numerical Computations and Discussions
The coordinates of Gi and Si (i = 1, . . ., 6) in frame {S}, and Mi in frame {M} are

summarised in Table 1, and the geometrical and inertia parameters of the mechanism are
summarised in Table 2.

Table 1. Coordinates of Gi and Si (i = 1, . . ., 6) in frame {S}, and Mi in frame {M} (unit: mm).

G1 G2 G3 G4 G5 G6 S1 S2 S3 S4 S5 S6

x 23.65 23.65 40.15 40.15 36.15 36.15 32.19 32.19 54.11 54.11 23.96 23.96
y −12.25 12.25 −58.24 58.24 −61.67 61.67 −17.45 17.45 −59.47 59.47 −63.49 63.49
z −16.02 −16.02 −36.24 −36.24 39.47 39.47 −16.02 −16.02 −30.91 −30.91 48.02 48.02

M1 M2 M3 M4 M5 M6
x 10.33 10.33 28.61 28.61 36.13 36.13
y −40.47 40.47 −54.65 54.65 −52.46 52.46
z −7.00 −7.00 −51.28 −51.28 −1.32 −1.32

Table 2. Mechanical parameters of the mechanism.

p1~p6 in Equation (2) p1 = 1.1,
p2 = −13.215 mm, p3 = −10 mm, p4 = 5 mm, p5 = 69 mm, p6 = 75 mm

Mass of the end effector mEE = 340.22 g
Inertia matrix of the end
effector in {M}

MIEE =

[
820, 091.15 −26.57 −137, 019.15
−26.57 423, 459.18 −88.60

−137, 019.15 −88.60 818, 784.70

]
g · mm3

Lengths of couplers ∥SiMi∥ = 33 mm (i = 1, . . . , 4),
∥∥SjMj

∥∥ = 52 mm (j = 5, 6)
Inertia matrices of
couplers in {Ni}

N1IS1M1
= N2IS2M2

= N3IS3M3
= N4IS4M4

= diag ( 12.331 411.43 411.43 ) g · mm2

N5IS5M5
= N6IS6M6

= diag ( 19.431 1595.4 1595.4 ) g · mm2

Mass of cranks mGiSi = 70.2 g (i = 1, . . . , 4), mGjSj = 156.69 g (j = 5, 6)
Rotational inertia of cranks IGiSi = 3510 g · mm3 (i = 1, . . . , 4), IGjSj = 17, 628 g · mm3 (j = 5, 6)
Radius of cranks ∥GiSi∥ = 10 mm (i = 1, . . . , 4),

∥∥GjSj
∥∥ = 15 mm (j = 5, 6)
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5.1. Computation of XP
EE,

.
X

P
EE,

..
X

P
EE and qP

EE,
.
qP

EE,
..
qP

EE

To study the dynamic model numerically, the mechanism is commanded to follow
a lower incisor path of a healthy volunteer in R3. To track the trajectory with respect to
displacement, only three scalar equations can be formatted as

OSOM + S
MR(θ) · MOMI − OMI = 03×1 (55)

where MOMI contains three position coordinates of the incisor point I in frame {M}, and
OMI is the position vector of this point in {S}, whose numerical values are exhibited in
the first subplot of Figure 5. The letters D, V, and A in labels of the three subplots in the
first column denote displacement, velocity, and acceleration, respectively. In Equation
(55), there are only three equations but five unknowns in qP

EE, i.e., theoretically, there are
infinite solutions. Nonetheless, it is not easy to numerically resolve this set of nonlinear
equations. From the literature, the algorithm in [44] enlightened us: to identify the solution
to a transcendental equation in that paper, the equation is not computed numerically. The
researchers’ logic is that the values of the unknown variables that can make the absolute
value of the transcendental equation as small as possible are the solutions. By virtue
of this idea, to find one feasible solution of qP

EE, a single-aim optimisation problem is
constructed as

Aim : min fD =
∥∥OSOM + S

MR(θ) · MOMI − OMI
∥∥

Unknowns : qP
EE

Range of variables :


−10 ≤ X ≤ 5
−3 ≤ Y ≤ 3
|θi| ≤ 1, i = 0, . . . , 3

(56)

Figure 5. An incisor trajectory of a healthy human subject and the tracking errors.

Constraints: Equations (5) and (7)
Method: SQP
The physical meaning of the aim is to track the predefined incisor trajectory with the

smallest tracking error in terms of displacement. The ranges of X and Y are determined by
the length and width of the socket that holds the condylar ball in the prototype, respectively.

After qP
EE is obtained, XP

EE can be computed by Equation (7). At t = 0, qP
EE = 05×1 is

used as initial guess, and the obtained values of qP
EE are used as the initial guess of the

optimisation scheme at the next time instant. The loop is repeated for each time interval
until the end of the timeline.
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Correspondingly, in tracking the velocity of this trajectory,
.
qP

EE cannot be uniquely
determined, since, likewise, there are five unknowns in

.
qP

EE but only three equations, as

MI ·
.
qP

EE − VI = 03×1 (57)

where MI is the 3 × 5 Jacobian matrix between the coordinates of the incisor point I and
qP

EE, and VI is the 3 × 1 velocity vector of the incisor trajectory, whose numerical values are
given in the second subplot of the first column of Figure 5. From Equation (5), constraint
equations from the velocity and the acceleration levels can be attained by differentiating it
with respect to time once and twice, respectively

.
θ

T
· θ = 0. (58)

[ ..
θ

T .
θ

T
]
·
[

θ
.
θ

]
= 0 (59)

Thus, to reach one feasible solution of
.
qP

EE, a second optimisation problem is set as

Aim : min fV =
∥∥∥MI ·

.
qP

EE − VI

∥∥∥
Unknowns :

.
qP

EE

(60)

Constraints: Equations (10) and (58)
Method: SQP
where numerical values of qP

EE in MI are fed from those computed by Equation (56).
The physical meaning of this aim is to track the predefined incisor trajectory with the
smallest tracking error in terms of velocity. At t = 0,

.
qP

EE = 05×1 is used asan initial
guess, and the obtained values of

.
qP

EE are used as the initial guesses of the optimisation
scheme at the next time instant. The loop is repeated for each time interval until the end of
the timeline.

Finally, to compute
..
qP

EE, only three scalar equations can be written as

MI ·
..
qP

EE +
.

MI ·
.
qP

EE −
.
VI = 03×1 (61)

where
.
VI is the predefined 3 × 1 acceleration vector of the incisor point I, whose numerical

values are shown in the third subplot of the first column of Figure 5, and
.

MI is the first
time-rate of MI . Identically, to reach a feasible solution of

..
qP

EE, a third optimisation problem
is set as

Aim : min fA =
∥∥∥MI ·

..
qP

EE +
.

MI ·
.
qP

EE −
.
VI

∥∥∥
Unknowns :

..
qP

EE

(62)

Constraints: Equations (11) and (59)
Method: SQP
where numerical values of qP

EE,
.
qP

EE in MI and
.

MI are fed from those computed in
Equations (56) and (60). The physical meaning of this aim is to track the predefined incisor

trajectory with the smallest tracking error in terms of acceleration. After this,
.

X
P
EE and

..
X

P
EE

can be computed from Equation (10) and Equation (11), respectively. At t = 0,
..
qP

EE = 05×1

is used as initial guess, and the obtained values of
..
qP

EE are used as the initial guess of the
optimisation scheme at the next time instant. The loop is repeated for each time interval
until the end of the timeline.

By these three optimisation procedures, the numerical values of fD, fV, and fA are
obtained as in the second column of Figure 5, being very tiny. Thus, the predefined
incisor trajectory is reckoned to be tightly followed in terms of displacement, velocity, and
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acceleration. Correspondingly, all XP
EE,

.
X

P
EE,

..
X

P
EE are shown in the first seven subfigures of

Figure 6, where D, V, and A mean displacement, velocity, and acceleration, respectively,
and the subscripts T and R indicate translation and rotation, respectively. Unambiguously,
the motion range of the parasitic motion variable Z is far larger than that of X and Y, and
the magnitudes of

.
Z and

..
Z are also far larger than their counterparts. This discovery is

very different from [45], where parasitic motions are required to be as small as possible.
Additionally, the magnitudes of θ1 and θ3 are nearly equivalent, due to the coefficient in
front of θ1 in the formula of θ3 from Equation (7) being almost equal 1. ωP

EE and
.

ω
P
EE are

computed by Equations (12) and (14), and they are given in the last two subfigures.

θ  

Figure 6. Motions of the end effector by XP
EE,

.
X

P
EE,

..
X

P
EE.

Note that by following the predefined incisor trajectory, the denominator of θ3 as in
Equation (7), is nonzero. Perhaps in the entire workspace of the mechanism, there are
some configurations where the denominator of θ3 is zero; then θ3 cannot be computed
from Equation (7), and probably some other coordinates in the four Euler parameters
would be switched as parasitic motion variables. It is worth a deeper investigation in the
future work.

5.2. Transformation Between Euler Parameters and Euler Angles

A critical reason to employ Euler parameters to describe the constrained motions of
the end effector is to reduce the computational cost, as stated in Section 1. To this end, for a
fair comparison, the end effector must undergo identical motions as expressed by Euler
parameters if some other sets of parameters are employed, such as Euler angles. However,
this cannot be realised in the target PM due to DCFB. The reason is as follows.

Firstly, when Euler angles are used to describe the rotation of the end effector, the
parameters describing its configuration are grouped in a 6 × 1 vector as in Equation (3)
of [20]

XA
EE =

[
XA YA ZA α β γ

]T
(63)

where XA, YA, and ZA are the coordinates of OM in the inertia frame {S}, and α, β, and
γ are the XYZ Euler angles. A superscript A is added to indicate parameters expressing
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translations are used together with Euler angles. Then, the four DOFs are grouped in a
4 × 1 vector as

qA
EE =

[
XA YA α β

]T
(64)

For the parasitic motions, ZA owns a completely identical expression as Z in
Equation (7); however, the rotation matrix S

MR in it is expressed by Euler angles. The
parasitic Euler angle γ in Equation (5) of [20] is repeated here as

γ = −atan
(

sα

p1cβ + cαsβ

)
(65)

where s(·) and c(·) indicate sin(·) and cos(·), respectively.
Thereby, by virtue of Euler angles, these parasitic motions are full of trigonometric

functions. Note that two translational DOFs along the Xs and Ys axes of {S} exist in both
qA

EE and qP
EE. As such, to derive the passage from Euler parameters to Euler angles, one can

easily define
XA = X
YA = Y

S
MR(θ) = S

MR(α, β, γ)

(66)

where S
MR(α, β, γ) is the rotation matrix calculated by α, β, and γ. Then, an identical

posture of the end effector in terms of both the translation of OM and the orientation of the
end effector can be achieved by Euler parameters and Euler angles. The three Euler angles
can be computed by

α = atan2(−r23/cβ, r33/cβ)

β = asin(r13)

γ in Equation (65)
(67)

where rij (i, j = 1, . . ., 3) means the element at the ith row and jth column of the rotation
matrix S

MR(θ) in Equation (4).
However, one identical twist of the end effector is not easy to be reached by these two

sets of parameters. Apart from Equation (12), the twist using
.
qA

EE can also be written in the
form of

tEE = MA · .
qA

EE (68)

where MA is the 6 × 4 twist-shaping matrix and
.
qA

EE is the first time-rate of qA
EE.

If tEE from Equations (12) and (68) is equivalent, we can find

tEE = M1b ·
.
qP

EE =

[
I2 O2×3

M1b2

]
·



.
X
.

Y
.
θ0.
θ1.
θ2

 = MA · .
qA

EE =

[
I2 O2

MA2

]
·


.

X
A

.
Y

A

.
α
.
β

 (69)

where I2 is the 2 × 2 identity matrix, O2×3 and O2 are the 2 × 3 and 2 × 2 zero matrix,
respectively, M1b2 is the 4 × 5 submatrix of M1b containing its third to the sixth rows, and
MA2 is the 4 × 4 submatrix of MA containing its third to the sixth rows. Thus, from the first
two rows of Equation (69), we can find

.
X

A
=

.
X

.
Y

A
=

.
Y

(70)
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In fact, this can also be attained from the first two equations of Equation (66). After-
wards, from the last four rows, we can obtain

M1b21 ·
[ .

X
.

Y

]
+ M1b22 ·


.
θ0.
θ1.
θ2

 = MA21 ·

 .
X

A

.
Y

A

+ MA22 ·
[ .

α
.
β

]
(71)

where M1b2 =

[
M1b21︸ ︷︷ ︸

4×2

M1b22︸ ︷︷ ︸
4×3

]
and MA2 =

[
MA21︸ ︷︷ ︸

4×2

MA22︸ ︷︷ ︸
4×2

]
. It derives that

M1b21︸ ︷︷ ︸
4×2

− MA21︸ ︷︷ ︸
4×2

 ·
[ .

X
.

Y

]
+ M1b22︸ ︷︷ ︸

4×3

·


.
θ0.
θ1.
θ2

 = MA22︸ ︷︷ ︸
4×2

·
[ .

α
.
β

]
(72)

If the twist of the end effector tEE is predefined from M1b ·
.
qP

EE, i.e., Equation (12),
then we need to compute

.
α and

.
β from Equation (72); however, the four rows of MA22

are generally independent. Thus, it is an overdetermined set of linear equations. It is not
easy to find the solutions to

.
α and

.
β. Likewise, if tEE is predefined from MA · .

qA
EE, i.e.,

Equation (68), then we need to compute
.
θ0~

.
θ2 from Equation (72), and generally the four

rows of M1b22 are independent. Thus, it is not easy to find the solutions to
.
θ0~

.
θ2 neither.

Following the same logic, a first time-rate of the twist using Euler parameters cannot
be equivalently expressed by Euler angles, and vice versa. This phenomenon is clearly
caused by DCFB which produce parasitic motions and then reduce the number of DOFs. In
summary, an identical configuration can be reached by Euler parameters and Euler angles,
whilst these two sets of parameters can reach neither an identical twist nor its first time-rate.

In this regard, the optimisation procedure in Section 5.1 is implemented again to
obtain qA

EE,
.
qA

EE,
..
qA

EE, which are independent of the procedures to compute qP
EE,

.
qP

EE,
..
qP

EE.

Then, from Section 3 of [20], XA
EE,

.
X

A
EE,

..
X

A
EE and ωA

EE can be computed as given in Figure 7,
and

.
ω

A
EE can be further attained by differentiating ωA

EE. These values are used in the
dynamic model to make a relatively fair comparison, to find which set of parameters is
more computationally efficient.

Figure 7. Motions of the end effector by XA
EE,

.
X

A
EE,

..
X

A
EE.
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From Figures 6 and 7, their first subplots are equivalent, as stated after Equation (66).
However, as far as the first time-rate of the coordinates of the mass centre OM is concerned,
from the second subplot, differences between

.
X and

.
XA, and those between

.
Y and

.
YA

are much more apparent. The same conclusions can also be made in terms of the second
time-rate of the coordinates of OM, as shown in the third subplot. From the subplots
about rotations, though the profiles of θ1~θ3 are very close to those of α, β, and γ, their
amplitudes are clearly not equivalent. Through the optimisation scheme in Equation (56),
the coefficient in front of θ1 in the formula of θ3 from Equation (7) almost equals 1. Besides,
the analogous optimisation scheme also renders the value of γ almost equivalent to that of
α through Equation (64).

The profiles of the rotational velocity ωP
EE computed via Euler parameters at the

bottom row of Figure 6 are similar to those of the rotational velocity ωA
EE computed via

Euler angles at the bottom row of Figure 7. Actually, their numerical values are different
at every time instant, however. The same conclusion can be reached by the rotational
acceleration. The differences between ωA

EE and ωP
EE are displayed in the first subplot of

Figure 8, while in the second one, the differences between
.

ω
A
EE and

.
ω

P
EE are presented.

Figure 8. Angular velocity and angular acceleration differences were computed from Euler parameters
and Euler angles in the end effector of the target mechanism.

5.3. Dynamic Performances

Corresponding to the three optimal goals in Section 4.5, the following performance
indices are set to justify the optimisation problem:

F1 =
1
N

N
∑

i=1
∥τ∥i , F3 =

1
N

N
∑

i=1
∥FZ∥i

F2 =
1
N

N
∑

i=1

∥∥∥FS1_6

∥∥∥
i

(73)

where N is the number of sampling instants along the timeline, ∥·∥i is the two-norm sum
of the specific vector at the ith instant. The physical meanings of F1~F3 are to compute
the mean values of the two-norm sum of the actuating torques, the constraint forces at
HKPs along the ZS axis, and the constraint forces at Si (i = 1, . . ., 6), respectively, along the
timeline. They correspond to the three optimal goals in Section 4.5 sequentially.
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Additionally, some other indices are set to see their strong correlations with F2 and F3

F4 =
1
N

N
∑

i=1

∥∥∥τf

∥∥∥
i

, F6 =
1
N

N
∑

i=1

∥∥∥fTL
+ fTR

∥∥∥
i

F5 =
1
N

N
∑

i=1

∥∥∥MC
G1_6

∥∥∥
i

, F7 =
1
N

N
∑

i=1

∥∥∥FG1_6

∥∥∥
i

(74)

where MC
G1_6

=


C10 MC

G1S1
...

C60 MC
G6S6

. The physical meanings of F4~F7 are to compute the mean

values of the two-norm sum of the friction torques at active revolute joints, the constraint
moments at Gi (i = 1, . . ., 6), the sum of the friction forces at two HKPs, and the constraint
forces at Gi (i = 1, . . ., 6), respectively, along the timeline. Evidently, from the derivation
of the dynamic model in Sections 4.1–4.4, F4~F6 and F7 are tightly related to F2 and F3,
respectively. By setting these performance indices, the correctness of the computations can
be verified.

In general, true friction coefficients in the friction model are identified in practice to
compensate for their effects; in this paper, their values are assumed to show the friction
effects, however. Their practical identification will be performed in the future. For the
Coulomb and viscous friction model, all the coefficients are set as

µC = 0.02, µV = 0.03g/s,
µCi = 0.02, µVi = 0.03g/s, Ri = 15mm(i = 1, . . . , 6)

An experimentally measured reacted chewing force in {S} on peanuts by an orally
healthy male volunteer on his molars, as in Figure 9, acts on the lower left molar at point B.
The magnitude in the vertical direction in the inertia frame is far larger than its components
along the XS and YS axes in every stroke, indicating that larger bite forces in this direction
are needed to chew the peanuts.

Figure 9. Reaction forces from chewing on peanuts to the molar in {S} [20].

Under the first aim in Equation (52), actuating torques τ, friction torques τf , constraint
forces FZ, and friction forces fTi

at Ti are given in Figure 10. All these variables are following
an identical rhythm. Evidently, there is a certain degree of symmetry between τi and τi+1,
τfi

and τfi+1
(i = 1,3,5), respectively. At most of the time instants, FZR and FZL are negative
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and positive, respectively, indicating that the right and left condylar balls are receiving
constraint forces from the upper and lower surfaces of the two condylar sockets, respectively.
That is because a reacted bite force FB is acting at a left molar, tending to rotate the end
effector around the positive direction of the XS axis. Additionally, FZR has larger peaks
than FZL , then friction peaks at TR are accordingly larger than those at TL.

Figure 10. Actuating torques and friction torques at active revolute joints, and constraint forces and
friction forces at HKPs under the first optimal goal in Equation (52).

The proportions between friction effects and actuating torques in each actuator are
computed as

Pi =
τFi

τi
(i = 1, . . . , 6) (75)

where τFi is the ith entry of τF, and τF is the 6 × 1 friction torque vector accounting for
friction effects at both HKPs and actuators with respect to the output shafts of actuators.

Numerical results under the three optimal goals are displayed in the three columns
of Figure 11, respectively. Under the first aim, the proportion in the second actuator can
even reach up to over 6000% at t = 1 s. The largest proportion in the fourth actuator is over
100% at t = 0, and at t = 2.7 s, the largest proportion in the fifth actuator is approximately
60%. Under the second aim, one can also find that at t = 0.1 s and 3.8 s, the proportion
in the fourth actuator is over 350%, and at t = 2.9 s, 3.7 s, and 4.4 s, the proportion in
the fifth actuator is between 50% and 100%. Finally, under the third aim, at t = 4.6 s, the
proportion in the fourth actuator is over 100%. This shows that the friction has negative
effects that cannot be ignored in the motion accuracy, and lubrications are needed to reduce
wear at HKPs and revolute joints. Additionally, the proportions vary significantly across
different optimal goals for torque distributions. Under the third goal, in the first and second
actuators, the proportions are limited between ±5%, being very consistent.
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(a) (b) (c)

Figure 11. Proportions between friction effects and actuating torques under three optimal goals:
(a) the first goal, (b) the second goal, and (c) the third goal.

Constraint forces at Si (i = 1, . . ., 6) are given in Figure 12. It is interesting to notice
that at S1, the components along the XS and YS axes are nearly equivalent, whilst at S2, the
component along the YS axis has the highest peak. At S3 and S4, the component along the
XS axis experiences the largest magnitude, while at S5 and S6, the component along the ZS

axis has the largest magnitude. In Equation (37), from FSi to constraint forces FGi at Gi, only
one term mGiSi · g is needed; while in the prototype, the crank is not heavy. As a result, the
graphical exhibitions of FSi and FGi do not have a significant difference. The figure of FGi is
not provided to save pages. Constraint moments at Gi around XCi0 and YCi0 axes are given
in Figure 13. By comparing it with the first column of Figure 10, apparently, the magnitude
of constraint moments is much smaller than that of actuating torques. Under the second
and third optimal goals, the profiles of actuating torques and friction torques at revolute
joints, constraint forces and friction forces at Ti (i = L, R), constraint forces at Si (i = 1, . . .,
6), and constraint moments at Gi are similar to their counterparts as in Figures 8–11. Thus,
they are not depicted as saving pages.

Figure 12. Constraint forces FSi (i = 1, . . . , 6) under the first optimal goal in Equation (52).
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Figure 13. Constraint moments at Gi (i = 1, . . ., 6) under the first optimal goal in Equation (52).

To make a comparison of dynamic performances under different optimal goals, nu-
merical values of the proposed indices in Equations (73) and (74) are given in Table 3. The
performance indices are always the smallest under the corresponding optimal goals, as
remarked in bold, meaning the correctness of the optimisation issues in Section 4.5. Specif-
ically, under G3, F3 is almost zero, so friction forces there can be sharply reduced, and a
longer period of utilisation of HKP-related mechanical parts can be permitted. Additionally,
due to the correlation between F2 and F4~F6, the smallest F2 under G2 also gives rise to
the smallest F4~F6. Owing to the strong correlation between F3 and F7, the smallest F3

under G3 also produces the smallest F7. These numerical results prove the correctness of
the computation. The inverse dynamic model using qA

EE,
.
qA

EE,
..
qA

EE also reaches the identical
remarks as above-mentioned, which can be found in the second row of Table 3.

Table 3. Dynamic performance indices in the target mechanism and the 6RSS PM.

F1 (N.m) F2 (W) F3 (N) F4 (N.m) F5 (N.m) F6 (N) F7 (N)

Target PM
with

qP
EE,

.
qP

EE,
..
qP

EE

G1 0.1912 18.5039 4.2544 0.0219 0.0059 20.0250 0.1265
G2 0.1958 17.8948 3.4370 0.0184 0.0058 19.5470 0.1022

G3 0.2653 27.3216 5.28 × 10−6 0.0482 0.0084 28.4067 1.64 × 10−6

Target PM
with

qA
EE,

.
qA

EE,
..
qA

EE

G1 0.1907 18.4899 4.2236 0.0218 0.0059 20.0041 0.1256
G2 0.1951 17.9127 3.4374 0.0184 0.0058 19.5585 0.1022

G3 0.2638 27.2420 1.75 × 10−5 0.0481 0.0084 28.3257 3.19 × 10−6

6RSS PM
with

YP
EE,

.
Y

P
EE,

..
Y

P
EE

0.2652 27.3214 - 0.0482 0.0084 28.4066 -

6RSS PM
with

YA
EE,

.
Y

A
EE,

..
Y

A
EE

0.2652 27.3214 - 0.0482 0.0084 28.4066 -

The procedures are formatted in Matlab installed on a personal computer with an
Intel (R) Xeon (R) W-2235 CPU@3.80 GHz and 32 GB of RAM. The computational time

of the target PM using XP
EE,

.
X

P
EE,

..
X

P
EE and XA

EE,
.

X
A
EE,

..
X

A
EE under three different optimal

goals is given in the first two clusters of Figure 14. The dynamic model using Euler
parameters to express motions of the end effector is much less time-consuming, which is
only approximately 23% of that using Euler angles. Hence, the computational demands
can be considerably alleviated by Euler parameters; then real-time control is possible.
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It apparently proves that in S
MR and parasitic motion variables, the algebraic functions

are more efficient than the trigonometric functions, generating a faster dynamic model.
Additionally, the computational cost under the third optimal goal is a little heavier than
that under the other two goals in the target PM.

Figure 14. Computational time of the mechanism under study from three optimal goals and its
counterpart without DCFB.

5.4. The 6RSS PM

A schematic diagram of the 6RSS PM is displayed in Figure 15. From the comparison
between it and Figure 1, one can see that clearly the 6RSS PM can be obtained by deleting
the DCFB from the end effector, while other items are invariant.

{C5}

M5

G5

S5

XC5

ZC5

YC5

Os
YS

ZS

XS

{S}

ZM

{M}

XM

YM
MO

G3

S3

M3

G1

G2

G6

S1

S2

S4

S6

M1 M2M6

M4

G4

{N5}

E5

YN5

ZN5

XN5

Figure 15. Schematic diagram of the 6RSS PM.

As stated in Section 5.2, due to DCFB in the target mechanism, an identical twist and
its first time-rate of the end effector cannot be achieved by qP

EE,
.
qP

EE,
..
qP

EE and qA
EE,

.
qA

EE,
..
qA

EE,
since DCFB eliminates DOFs and produces parasitic motions. However, in the 6RSS PM
with three translational DOFs and three rotational DOFs, both the angular velocity and
acceleration of its end effector using Euler parameters can be easily converted to those
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using Euler angles, and vice versa. The reason is as follows: The two sets of parameters to
describe the configuration of the end effector are

YP
EE =

[
x y z eT

]T
, e =

[
e0 e

]T
, e =

[
e1 e2 e3

]T

YA
EE =

[
x y z ΦT

]T
, Φ =

[
ϕ1 ϕ2 ϕ3

]T (76)

where x, y, and z are translational DOFs along the three axes in frame {S}, e is Euler
parameters, and ϕ1, ϕ2, and ϕ3 are three XYZ Euler angles. Since its translations at position,
velocity, and acceleration levels are completely independent of these two sets of parameters
describing rotations, in the following, only the rotation at its three levels is analysed using
Euler parameters and Euler angles. The angular velocity of the end effector using these
two sets of parameters is expressed as

ωP = 2 · G · .
e (77)

and
ωA = Rω ·

.
Φ (78)

respectively, where

G =
[
−e, e0 · I3 + e×

]
, Rω =

 1 0 sϕ2

0 cϕ1 −sϕ1cϕ2

0 sϕ1 cϕ1cϕ2

.

When the rotation is defined by e, the three Euler angles can be computed as

ϕ1 = atan2(−s23/cϕ2, s33/cϕ2)

ϕ2 = asin(s13)

ϕ3 = atan2(−s12/cϕ2, s11/cϕ2)

(79)

where sij (i, j = 1, . . ., 3) means the element at the ith row and jth column of the rotation
matrix defined by e. According to Equations (77) and (78), when ωP = ωA it yields

.
Y

A
EE = Rω

−1 · ωP (80)

where Rω is directly inverted if it is not singular. Specifically, when

|Rω | = cϕ2 = 0, (81)

i.e., ϕ2 =
π

2
, Rω is singular, corresponding to the so-called gimbal lock inherent to Euler

angles. However, this configuration can be circumvented in the trajectory planning. Specif-
ically, when tracking the incisor trajectory in Figure 5, it is not reached, fortunately. Further,
the angular acceleration by Euler parameters and Euler angles is

.
ω

P
= 2 ·

( .
G · .

e + G · ..
e
)

(82)

and
.

ω
A
=

.
Rω ·

.
Φ + Rω ·

..
Φ, (83)

respectively. Thus, the second time-rate of Φ can be computed as

..
Φ = R−1

ω ·
( .

ω
P −

.
Rω ·

.
Φ
)

(84)
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when
.

ω
P
=

.
ω

A.
On the contrary, if the rotation is defined by Euler angles Φ, one can have the values

of e from Equations (47)–(50) of [46]

e =
1

4e0


2e0

√
1 + t11 + t22 + t33

t32 − t23

t13 − t31

t21 − t12

 (85)

where tij (i, j = 1, . . ., 3) means the element at the ith row and jth column of the rotation
matrix defined by Φ. Because the four quantities in e are not all independent, from Equation
(77), one can further write

ωP = 2 · G · .
e (86)

where G = G ·
[

01×3 − eT

e0

03 I3

]
and

.
e means the first time-rate of e. Thus, all the three terms

in
.
e can be computed as

.
e =

1
2
· G−1 · ωA (87)

when G is invertible. The reason to choose e0 in the denominator in G is that in the
workspace of the 6RSS PM, e0 is nonzero. Furthermore, when

.
ω

P
=

.
ω

A, from Equation (86),
one can find

..
e =

1
2
· G−1 ·

(
.

ω
A −

.
G · .

e
)

(88)

Then, from

.
e0 = −eT

e0
· .
e,

..
e0 = −

[
.
eT eT

]
·
[ .

e
..
e

]
e0

(89)

all four terms in
.
e and

..
e are available numerically. Based on this derivation, for the end

effector of the 6RSS PM, two sets of rotational parameters can be available to realise identical
rotations at position, velocity, and acceleration levels.

In this regard, by giving the numerical values of XP
EE,

.
X

P
EE,

..
X

P
EE of the target PM directly

to YP
EE,

.
Y

P
EE,

..
Y

P
EE of the 6RSS PM, YA

EE,
.
Y

A
EE,

..
Y

A
EE can be computed using the procedure in this

section, and the end effector of the 6RSS PM can perform identical motions as those of the
end effector of the target PM, as shown in Figure 6, to make a fairer and more convenient
comparison in computational demands between dynamic models of these two PMs. The
inverse dynamic model of the 6RSS PM can be established following the procedure in
Section 4; henceforth, it is not provided again. Note that because this mechanism has six
actuations and six DOFs, its actuating torques have a closed-form solution without the
optimisations in Section 4.5. On this basis, its dynamic performance is shown in the last two
lines of Table 1, where the indices are completely identical. More precisely, the differences
∆τi and difference ratios δτi of actuating torques are given in Figure 16, where

∆τi = τP
i − τA

i , (i = 1, . . . , 6)

δτi =
τP

i − τA
i

τA
i

(90)
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Figure 16. Differences and difference ratios of actuating torques of the 6RSS PM using Euler parame-
ters and Euler angles.

τP
i and τA

i are the output torque by the ith actuator and calculated from the model
using Euler parameters and Euler angles, respectively. These differences are very minor,
indicating that under one identical motion expressed by these two sets of parameters,
actuations are invariant. An identical exhibition can also be observed in friction torques at
revolute joints. For the sake of brevity, their graph is not provided.

The computational time of the dynamic model of the 6RSS PM using Euler parameters
is only approximately 60% of that using Euler angles, as shown in Figure 14, which again
denotes that Euler parameters are more efficient than Euler angles. From the comparison
between the mechanism under study and the 6RSS PM in Figure 14, DCFB significantly
raises the modelling burden in kinematics and dynamics. Furthermore, one interesting
discovery in Table 1 is, for the target PM under the third goal, i.e., Equation (54), all indices
are close to those of the 6RSS PM, the constraint forces at HKPs being nearly zero, as if
in the mechanism under study there were no DCFB to the end effector. Henceforth, the
optimisation procedures play an important role in attaining it.

6. Conclusions
In this paper, the rotation of the end effector of a PM constrained directly by the base

at two HKPs was expressed via Euler parameters, and the inverse dynamic model was
built with friction effects at HKPs and active revolute joints using Newton–Euler’s law.
Five conclusions can be drawn as follows:

1. The computational demand in the dynamic model with Euler parameters is only
approximately 23% of that using Euler angles. Likewise, great computational savings
can be achieved in the 6RSS PM. Thus, Euler parameters are an elegant alternative to
Euler angles in releasing the nonlinearity and reducing the computational cost.

2. Euler parameters can be converted smoothly to Euler angles to realise identical
configurations of the end effector of the PM under study. However, neither its twist
nor the first time-rate of the twist can be set equivalent to these two sets of parameters.
On the contrary, rotations of the end effector in the 6RSS PM can be set identically at
the levels of angular displacement, velocity, and acceleration using Euler parameters
and Euler angles. It is the DCFB that introduces these difficulties.

3. Friction effects at HKPs and revolute joints are strongly coupled via constraint forces
at lower kinematic pairs as intermediate variables, and they significantly raise the
nonlinearity of the dynamic model.
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4. From the comparison between the mechanism under study and the 6RSS PM, even
if DCFB is applied to the end effector, it considerably increases the computational
demands in the former, actuating torques can be optimised to achieve different dy-
namic performances under different optimal goals. Performance indices that have
strong relations with those under the predefined goals also reach their optimal values.
By contrast, the inverse dynamic model of the 6RSS PM has a unique closed-form
solution once its motions are predefined.

5. In the target PM, the computational cost under the third optimal goal is a little heavier
than that under the other two goals, but this goal can facilitate a longer utilisation
time of HKP-related mechanical parts. Under this goal, the performance indices of
the target PM are almost equivalent to those of the 6RSS PM.

The dynamic model of the target mechanism using Euler parameters under the third
goal will be incorporated into a motion controller design in experiments in our future work.
Friction effects at HKPs and active joints will be identified offline and compensated for to
raise the control accuracy.
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