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Abstract: In recent years, metaheuristic algorithms have garnered significant attention for
their efficiency in solving complex optimization problems. However, their performance
critically depends on maintaining a balance between global exploration and local exploita-
tion; a deficiency in either can result in premature convergence to local optima or low
convergence efficiency. To address this challenge, this paper proposes an enhanced ivy al-
gorithm guided by a particle swarm optimization (PSO) mechanism, referred to as IVYPSO.
This hybrid approach integrates PSO’s velocity update strategy for global searches with
the ivy algorithm’s growth strategy for local exploitation and introduces an ivy-inspired
variable to intensify random perturbations. These enhancements collectively improve the
algorithm’s ability to escape local optima and enhance the search stability. Furthermore,
IVYPSO adaptively selects between local growth and global diffusion strategies based on
the fitness difference between the current solution and the global best, thereby improving
the solution diversity and convergence accuracy. To assess the effectiveness of IVYPSO,
comprehensive experiments were conducted on 26 standard benchmark functions and
three real-world engineering optimization problems, with the performance compared
against 11 state-of-the-art intelligent optimization algorithms. The results demonstrate that
IVYPSO outperformed most competing algorithms on the majority of benchmark functions,
exhibiting superior search capability and robustness. In the stability analysis, IVYPSO
consistently achieved the global optimum across multiple runs on the three engineering
cases with reduced computational time, attaining a 100% success rate (SR), which highlights
its strong global optimization ability and excellent repeatability.

Keywords: particle swarm optimization; ivy algorithm; global optimization ability

1. Introduction
Metaheuristic algorithms have become vital tools for addressing complex optimization

problems and are widely applied in fields such as engineering design [1,2], machine learn-
ing [3,4], and control systems [5,6]. Compared to traditional mathematical optimization
techniques, such as gradient-based techniques [7], metaheuristics offer several advantages;
they do not require gradient information, exhibit low sensitivity to initial conditions, and
are well-suited for high-dimensional or multimodal problems [8,9]. Their flexibility in
navigating the solution space and capability to avoid entrapment in local optima have
made them a central focus in computational intelligence research [10,11].
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In recent years, hybridization techniques have been increasingly employed to en-
hance the performance of metaheuristics by integrating complementary strategies from
different algorithms, thereby improving the convergence speed, solution quality, and
robustness [12–15]. Among these, particle swarm optimization (PSO) has received consid-
erable attention due to its simplicity and rapid convergence [16]. However, PSO also suffers
from limited local exploitation ability and a tendency toward premature convergence. To
mitigate these issues, numerous studies have combined particle swarm optimization (PSO)
with evolutionary operators such as genetic algorithms (GA) [17] and differential evolution
(DE) [18], adaptive parameter control techniques [19], and multi-strategy perturbation
schemes to better balance global exploration and local exploitation [20].

In parallel, the ivy algorithm (IVYA) has emerged as a promising bio-inspired approach
due to its straightforward design and strong local search capabilities [21]. By mimicking the
natural growth and propagation behaviors of ivy plants, IVYA can efficiently exploit the
neighborhood of promising regions while preserving population diversity. Nevertheless,
the lack of a global guidance mechanism limits its convergence efficiency on large-scale
optimization problems.

Despite the development of various hybrid metaheuristics, most existing methods
primarily focus on accelerating convergence or maintaining diversity, without effectively
addressing how to preserve the exploration–exploitation balance while avoiding premature
convergence. Moreover, mechanisms that adaptively adjust search strategies based on
dynamic fitness landscapes remain underexplored in the current literature.

To bridge these gaps, this paper introduces a novel hybrid optimization algorithm—
IVYPSO—which synergistically combines the global guidance of PSO with the adaptive
local search capabilities of IVYA. IVYPSO incorporates a biologically inspired ivy perturba-
tion variable (GV) into the PSO velocity update equation, enabling adaptive directional
control and stochastic perturbations based on the current fitness landscape. This design
enhances the algorithm’s ability to escape local optima while improving the population
diversity and convergence stability. The main contributions of this work are summarized
as follows:

1. A novel PSO-guided hybrid optimization algorithm, IVYPSO, is proposed. It embeds
the ivy growth strategy of IVYA into the velocity update process of PSO, thereby
enabling dynamic switching between local and global search modes.

2. A balanced search framework was constructed by comparing the fitness of the current
individual with that of the global best. The algorithm dynamically determines whether
to perform local exploitation or global exploration, thereby improving its adaptability
to complex search spaces.

3. A comprehensive experimental evaluation was conducted on 26 standard benchmark
functions and three constrained real-world engineering design problems. The perfor-
mance of the proposed IVYPSO algorithm was compared against eleven advanced
metaheuristic optimization algorithms, including classical methods (such as PSO,
IVY, BOA, WOA, and GOOSE), as well as recently developed hybrid algorithms from
high-quality research studies (including HPSOBOA, FDC-AGDE, dFDB-LSHADE,
NSM-BO, dFDB-SFS, and FDB-AGSK). The experimental results demonstrate that
IVYPSO consistently outperformed the compared algorithms in terms of optimization
accuracy, convergence speed, and robustness.

The rest of this paper is organized as follows. Section 2 reviews the related work
concerning the design and development of metaheuristic search algorithms. Section 3
introduces the PSO and ivy algorithms. Section 4 presents the proposed IVYPSO hybrid
algorithm. Section 5 covers its testing on benchmark functions and applications for practical
engineering problems. Section 6 discusses the results and outlines future work.



Biomimetics 2025, 10, 342 3 of 41

2. Related Work
Metaheuristic algorithms have become essential tools for addressing complex, multi-

modal, and high-dimensional optimization problems. Inspired by natural, biological, or
social phenomena, these gradient-free algorithms are particularly well-suited for real-world
engineering applications. Recent advancements in metaheuristics have shifted the research
focus toward enhancing the algorithmic performance by redesigning key components—
namely, the guiding mechanisms, convergence strategies, and update schemes.

Among these components, the guiding mechanism is critical, as it governs how indi-
viduals or candidate solutions are influenced by others within the population. Traditional
guidance approaches, such as those used in classical PSO, typically direct individuals
toward global or local optima based on fitness values but often suffer from premature con-
vergence and loss of population diversity. To address these challenges, advanced guiding
strategies have been developed, including fitness distance balance (FDB) [22], adaptive
FDB (AFDB) [23], dynamic FDB (DFDB) [24], and fitness distance constraint (FDC). By
incorporating spatial distance information between solutions, these methods achieve a
more balanced trade-off between exploration and exploitation, as demonstrated by their
successful integration into algorithms such as FDC_AGDE [25], dFDB_LSHADE [26],
dFDB_SFS [27], and FDB_AGSK [28], which exhibit strong performance on benchmark
functions and engineering problems.

Convergence strategies, which determine how candidate solutions are updated each
iteration, also play a pivotal role in directing search trajectories and influencing the conver-
gence speed. The contemporary approaches include time-decreasing control parameters,
multi-phase convergence schemes, and hybrid deterministic random update models. For
instance, the GOOSE algorithm adapts its convergence behavior across different search
stages [29], while HPSOBOA incorporates multiple convergence modes to sustain robust-
ness across diverse problem domains [30].

Moreover, update schemes—particularly for the selection of surviving individuals—
are vital for maintaining the solution quality and population diversity. Conventional
methods relying solely on fitness-based ranking risk stagnation and premature conver-
gence. To overcome this, the natural survivor method (NSM) integrates the fitness perfor-
mance with historical success rates to judiciously select individuals for the next genera-
tion [31]. NSM has proven effective in algorithms such as NSM-BO and NSM-LSHADE-
CnEpSin [32], markedly enhancing the stability and global search performance in con-
strained engineering problems.

Despite these advances, most existing studies focus on improving individual algo-
rithmic components—such as the convergence behavior or update strategies—often at
the expense of overall adaptability or diversity. A unified framework that simultane-
ously integrates global guidance and bio-inspired local searches with dynamic adaptability
remains lacking.

To bridge this gap, we propose a hybrid algorithm, IVYPSO, which synergistically
combines PSO’s global search capability with the ivy algorithm’s local growth and diffusion
mechanisms. By embedding a dynamic ivy-inspired variable GV within the PSO velocity
update formula, IVYPSO adaptively switches search strategies based on individual fitness,
effectively balancing exploration and exploitation. This design not only preserves the
convergence accuracy but also enhances the robustness and diversity, offering a novel high-
performance optimization framework tailored for complex global optimization challenges.

3. Materials and Methods
To better illustrate our hybrid algorithm, the inspiration behind and detailed imple-

mentation of the PSO algorithm and ivy algorithm will be introduced.
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3.1. PSO Formulation

PSO is a nature-inspired swarm intelligence algorithm, proposed by Kennedy and
Eberhart in 1995. Its core idea is based on simulating the foraging behavior of bird
flocks or fish schools. By sharing information and collaborating among individuals, PSO
strikes a balance between global exploration and local exploitation, effectively solving
optimization problems.

In the PSO algorithm, each particle has a unique position Xi =
[
xi1, xi2, xi3, . . . , xij, . . . , xiD

]
and velocity Vi =

[
vi1, vi2, vi3, . . . , vij, . . . , viD

]
, representing a potential solution. Here,

j = 1, 2, . . . , D, D denotes the dimensionality of the search space. In each iteration, the
position of the particle is dynamically updated based on the following three components:

(1) Inertia component: Determined by the particle’s previous velocity, it is used to main-
tain the particle’s movement trend and balance the global exploration capability of
the search.

(2) Individual cognitive component: The particle adjusts its search direction based on its
own historical best position Pbest, simulating individual learning behavior.

(3) Social component: The particle adjusts its direction based on the entire population’s
global best position Gbest, reflecting social learning and collaborative effects.

During the search process, the particle’s position is influenced by its best position in
the neighborhood Pbest,i and the global best position Gbest of the entire population.

The particle position and velocity update formulas are given by Equations (1) and (2),
respectively:

Xk+1
i = Xk

i + Vk+1
i (1)

Vk+1
i = wVk

i + c1r1

(
Pbest,i − Xk

i

)
+ c2r2

(
Gbest − Xk

i

)
(2)

where w is the inertia weight, which controls the balance between global and local searches;
c1 and c2 are acceleration coefficients that determine the influence of individual and group
learning, respectively; c1r1 and c2r2 are random numbers, ranging from 0 to 1, which
enhance the randomness of the search.

The flowchart of the PSO algorithm is shown in Figure 1.

3.2. IVYA Formulation

The ivy algorithm, derived from the growth behavior of ivy plants in nature, is a
swarm intelligence optimization method. Ivy plants continuously grow, climb, and spread
in the environment in search of sunlight, nutrients, and other resources for survival. This
process serves as inspiration for addressing global optimization problems. The algorithm
simulates the different life stages of ivy, including growth, ascent, and spreading [33]. The
algorithm’s implementation process can be outlined in the subsequent four steps:

(1) Initialize the population, where N and D represent the total number of members and
the dimensionality of the problem, respectively. Thus, the i − th population member
has the form Ii = (Ii1, . . . , IiD), where i = 1, 2, . . . , N, The total population of ivy plants

is represented as
→
I =

(
I1, . . . , Ii, . . . , INpop

)
, At the start of the algorithm, the initial

positions of the ivy algorithm population in the search space are determined using
Equation (3):

Ii = Imin + rand(1, D)⊙ (Imax − Imin), i = 1, . . . , N (3)

where rand(1, D) represents a vector of dimension D with random numbers uniformly
distributed in the range [0, 1]. The upper and lower limits of the search space are
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denoted by Imax and Imin, respectively, and ⊙ denotes the element-wise product of
two vectors.

Figure 1. Flowchart of PSO algorithm.

(2) Coordinated and disciplined population growth. In the growth process of the ivy
algorithm, we assume that the growth rate GV of the ivy algorithm is a function of
time, expressed through a differential equation, as illustrated in Equation (4):

dGV(t)
dt

= ψ · GV(t) ·φ(GV(t)) (4)

where GV, ψ, and φ represent the growth rate, growth velocity, and correction factor
for growth deviation, respectively. The member Ii is modeled by Equation (5).

∆GVi(t + 1) = rand2 ⊙ (N(1, D)⊙ ∆GVi(t)) (5)

where GVi(t) and GVi(t + 1) represent the growth rates at discrete time steps t and
t + 1, respectively; rand is a random number in the range of [0, 1]; N(1, D) represents
a random vector of dimension D.

(3) Obtaining sunlight for growth. For ivy in nature, quickly finding a surface to attach
to is crucial. The movement towards the light source is modeled by Equations (6)–(8).
In the proposed algorithm, this behavior is simulated by the i − th individual Ii in the
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population, selecting its closest and most optimal neighbor Iii (based on the value of
the fitness function) as a reference for self-improvement, as shown in Figure 2.

Iii =

{
Is
j−1, Ii = Is

j

Ii, Ii = Ibest
(6)

Inew1
i = Ii + |N(1, D)| ⊙ (Iii − Ii) + N(1, D)⊙ ∆GVi, i = 1, 2, . . . , N (7)

∆Gvi =

{
Ii ⊗ (Imax − Imin), Iter = 1
rand2 ⊙ (N(1, D)⊙ ∆Gvi), Iter > 1

(8)

where |N(1, D)| is a vector, with each component being the absolute value of the
corresponding component in the vector N(1, D).

(4) Growth and evolution of ivy. After the member Ii navigates the search space globally
to reach its nearest and most significant neighbor Iii, it enters a phase where Ii strives
to directly follow the optimal member Ibest in the population. This stage aligns with
the pursuit of an improved optimal solution in the vicinity of Ibest, as depicted in
Equations (9) and (10).

Inew
i = IBest ⊙ (rand(1, D) + N(1, D)⊙ ∆GVi) (9)

∆GVnew
i = Inew

i ⊗ (Imax − Imin) (10)

The flowchart of the ivy algorithm is shown in Figure 3.

Figure 2. The i − th member of the population Ii chooses its closest, most vital neighbor Iii.
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Figure 3. Flowchart of the ivy algorithm.

4. Proposed Optimization Formulation of IVYPSO
The IVYPSO hybrid algorithm integrates the global exploration capability of PSO with

the local exploitation and adaptive perturbation mechanism inspired by the natural growth
behavior of ivy plants. Specifically, the algorithm leverages the PSO’s velocity-position
update rule to guide individuals toward promising areas in the solution space. Meanwhile,
an ivy-inspired GV introduces fine-grained random perturbations to enhance the local
search capability around high-quality solutions. To balance exploration and exploitation,
IVYPSO adaptively switches between global and local strategies based on a dynamic
quality threshold. A greedy selection strategy is also employed to retain elite solutions in
each iteration. This coordinated hybridization approach improves the convergence speed,
avoids local optima, and enhances the solution’s overall accuracy.

4.1. Initialization Phase

In this phase, the objective function f obj is defined to calculate the fitness. The
lower and upper bounds of the search space, lb and ub, respectively, are set to restrict
the solution range; N individuals are randomly generated, and the position and velocity
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of each individual i are initialized, along with the ivy variables. The specific parameter
initialization process is as follows.

The particles’ initial positions in the search space are randomly generated, as described
in Equation (11):

Xi = uni f rnd(lb, ub, [1, dim]). (11)

The velocity is initialized as a zero vector, as described in Equation (12):

Vi = zeros(1, dim). (12)

The ivy growth variable GV is then initialized, as described in Equation (13):

GV =
Xi

ub − lb
(13)

The ivy variable GV represents the relative growth behavior of an ivy plant within the
bounded search space and is used to control the intensity of local random movement.

4.2. Guidance Mechanism: PSO-Guided Velocity Update

This step updates the velocity for each individual, as described by the velocity update
formula in Equation (14):

Vt+1
i = w · Vt

i + c1 · r1 ·
(

Pbest − Xt
i
)
+ c2 · r2 ·

(
Gbest − Xt

i
)

(14)

where w = 0.7, c1 = 1.5, c2 = 1.5, r1, and r2 are randomly generated values within
the interval [0, 1], adding randomness to the particles. This mechanism guides particles
towards their personal best position Pbest and the global best position Gbest, promoting
convergence toward high-quality areas.

This velocity update represents the guidance mechanism in a metaheuristic search
(MHS), guiding particles toward personal and global best positions to balance explo-
ration and exploitation. Recent state-of-the-art (SOTA) methods such as FDB and its
variants improve the guidance by considering both the fitness and distance to avoid
premature convergence.

4.3. Update Mechanism: Position Update with Ivy Perturbation

To achieve a dynamic balance between global and local searches, we introduce a
dynamic control factor β1, which is a dynamic adjustment parameter that controls the ratio
between global and local search. The expression is as described in Equation (15):

β1 = 1 +
rand

2
(15)

The random value rand is in the range of [0, 1], and the value of β1 dynamically
changes, which helps introduce randomness and balance the strengths of global and
local searches. By adjusting β1, the algorithm primarily focuses on global searches in the
early stages and gradually enhances the local search capability in the later stages, thereby
improving the convergence accuracy.

In each iteration, for each individual I the update strategy is selected based on the
relationship between its current fitness value Cost(Xi) and the global best fitness value
Cost(Gbest). The condition judgment formula is as described in Equation (16):

Cost(Xi) < β1 · Cost(Gbest) (16)
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where Cost(Xi) represents the fitness value of the current individual and Cost(Gbest) repre-
sents the fitness value of the current global best solution. If the condition is met, Equation (17)
is used for local searches (exploited around a neighbor). Otherwise, Equation (18) is applied
to global searches (perturbed toward the best). Equations (17) and (18) are as follows:

X’
i = x+

∣∣∣randn
∣∣∣×(xneighbor − x

)
+ randn × GV (17)

X’
i = Gbest × (rand + randn × GV) (18)

Here, GV controls the perturbation magnitude; randn is a normally distributed ran-
dom value that mimics the irregular yet directed growth of ivy tips toward better areas.
The ivy growth variable is then updated using Equation (19).

GV = GV ×
(

rand2 × randn
)

(19)

This adaptive update allows GV to decay or intensify based on the stochastic process,
simulating flexible growth behaviors for refining solutions.

4.4. Survivor Selection Strategy

In metaheuristic search algorithms, survivor selection is a crucial component of the
update mechanism that determines which individuals are retained in the population to
balance the convergence speed and solution diversity. In IVYPSO, we employ a greedy
selection strategy, described in Equation (20), to preserve improved solutions:

Cost
(

X’
i

)
< Cost(Xi) =⇒ Xi(t + 1) = X’

i (20)

If the new position X’
i yields a better fitness than the current position Xi, it replaces the

current solution; otherwise, the original solution is retained. Additionally, the individual
best Pbest,i and global best Gbest are updated synchronously upon improvement.

Furthermore, inspired by recent advances in metaheuristics, the NSM has been pro-
posed as an effective survivor selection technique. NSM dynamically combines fitness
and historical success information to select survivors, enhancing the stability and diversity
in the population. Although IVYPSO does not explicitly implement NSM, its greedy se-
lection strategy combined with ivy-inspired perturbations shares conceptual similarities
with NSM’s goal of balancing exploitation and exploration, ensuring robustness against
premature convergence. Future work may explore integrating NSM directly into IVYPSO
to further improve the update mechanism performance.

4.5. Summary

Through PSO-guided global movement and ivy-inspired local perturbations, IVYPSO
forms a complementary hybrid search system. The use of ivy growth variables enhances
the adaptability and solution refinement, particularly in rugged or complex landscapes.
The implementation process of IVYPSO is illustrated in Figure 4 and Algorithm 1.
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Algorithm 1. IVYPSO

Input: N, Max_iteration, lb, ub, dim, fobj
Output: Destination_fitness, Destination_position, Convergence_curve
Initialize parameters:

Set PSO parameters: inertia weight (w), cognitive factor (c1), social factor (c2)
Initialize population size (N), maximum iterations (Max_iteration), search

space (lb, ub)
Define and initialize the vine growth variable (GV)

Initialize population:
For each particle i in population:

Randomly initialize position Position_i within [lb, ub]
Initialize velocity Velocity_i as a zero vector
Evaluate fitness Cost_i = fobj(Position_i)
Initialize vine growth variable GV_i = Position_i/(ub - lb)
Set personal best PBest_i = Position_i and PBest_Cost_i = Cost_i

Set global best GBest as the particle with the lowest fitness value
Iteration loop (t = 1 to Max_iteration):

For each particle i in population:
Update velocity and position:

Generate random vectors r1 and r2
Velocity_i = w * Velocity_i

+ c1 * r1 * (PBest_i - Position_i)
+ c2 * r2 * (GBest - Position_i)

Calculate dynamic control factor β:
β = 1 + (random/2)

Perform local or global search based on fitness comparison:
If Cost_i < β * GBest_Cost:

New_Position = Position_i
+ |N(0,1)| * (Position_neighbor -

Position_i)
+ N(0,1) * GV_i

Else:
New_Position = GBest * (random + N(0,1) * GV_i)

Boundary handling:
Ensure New_Position is within [lb, ub]

Update vine growth variable:
GV_i = GV_i * (randomˆ2 * N(0,1))

Evaluate and update solutions:
New_Cost = fobj(New_Position)
If New_Cost < Cost_i:

Position_i = New_Position
Cost_i = New_Cost
If New_Cost < PBest_Cost_i:

PBest_i = New_Position
PBest_Cost_i = New_Cost
If New_Cost < GBest_Cost:

GBest = New_Position
GBest_Cost = New_Cost

Record the best fitness at the current iteration:
Convergence_curve(t) = GBest_Cost

Return:
Destination_fitness = GBest_Cost
Destination_position = GBest
Convergence_curve
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Figure 4. Flowchart of IVYPSO algorithm.
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5. Results and Analytical Evaluation of the Experiment
To verify the proposed algorithm’s reliability and performance, 26 standard benchmark

functions were utilized. Moreover, we applied the algorithm to three real-world engineering
optimization problems to evaluate its practical performance. The subsequent sections
offer comprehensive details on the benchmark functions, parameter configurations, and
performance metrics. The algorithm’s effectiveness was assessed through a comparative
analysis with ten widely recognized metaheuristic algorithms.

Setup for experiments: The proposed IVYPSO algorithm and other metaheuristic
methods were implemented in MATLAB 2023a. All tests were conducted on a Windows 10
platform with an Intel(R) Core (TM) i9-14900KF processor (3.10 GHz) and 32 GB of RAM.

5.1. Global Optimization with 26 Benchmark Mathematical Test Functions

To assess the performance of the proposed IVYPSO algorithm in solving complex opti-
mization problems, this study employed 26 widely recognized benchmark functions [34–36].
These functions were selected to ensure a comprehensive evaluation covering various opti-
mization scenarios, and they are grouped here into two main categories: unimodal and
multimodal functions. Each function was tested in a 30-dimensional space.

Unimodal functions: The initial set of 15 benchmark functions (F1–F15) is unimodal,
characterized by the presence of a single global optimum, making it suitable for evaluating
the convergence speed and local exploitation capability of optimization algorithms. These
functions provide a smooth search landscape without local optima, allowing the assessment
of an algorithm’s ability to quickly converge to the global minimum.

For instance, the Quartic function introduces a noise component that simulates real-
world measurement errors, making it relevant for applications such as experimental
data fitting. The Sum Power function, with its amplified penalization of higher-order
dimensions, reflects challenges seen in structural reliability or robust design tasks in
engineering optimization.

Multimodal functions: The latter set of functions (F16–F26) is multimodal, containing
numerous local optima and being employed to test an algorithm’s ability to maintain
diversity and avoid premature convergence. These functions simulate complex landscapes
typically encountered in real-world scenarios such as material design, resource allocation,
or non-linear process optimization.

For example, the Alpine function represents rugged fitness landscapes with a repetitive
pattern, akin to multi-peak phenomena in signal processing or energy system optimization.
The Weierstrass function, characterized by its fractal-like structure, is often used to test
algorithms under highly irregular and non-differentiable conditions, making it applicable
to domains such as financial modeling or dynamic system tuning.

By adopting this comprehensive set of 26 benchmark functions, this study evaluated
IVYPSO across a wide range of conditions, from simple landscapes to highly complex
multimodal terrains. This thorough testing ensures that the algorithm’s effectiveness,
robustness, and generalization ability were rigorously validated. The full mathematical
formulations and parameter settings of the benchmark functions are detailed in Table 1.
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Table 1. Details of the 26 test functions.

s/n Function Name Formula Category Range f*
min

F1 Sphere f1(x) =
dim
∑

i=1
x2

i
Unimodal [−100, 100] 0

F2 Schwefel 2.22 f2(x) =
dim
∑

i=1

∣∣∣∣xi

∣∣∣∣+dim
∏
i=1

∣∣∣∣xi

∣∣∣∣ Unimodal [−10, 10] 0

F3 Schwefel 1.2
f3(x) =

dim
∑

i=1

(
i

∑
j=1

xj

)2
Unimodal [−100, 100] 0

F4 Schwefel 2.21 f4(x) = max
i

{|xi |}, 1 ≤ i ≤ dim Unimodal [−100, 100] 0

F5 Step f5(x) =
dim
∑

i=1
(xi + 0.5)2 Unimodal [−100, 100] 0

F6 Quartic f6(x) =
dim
∑

i=1
ix4

i + rand Unimodal [−1.28, 1.28] 0

F7 Exponential f7(x) =
dim
∑

i=1
(exi − xi)

Unimodal [−10, 10] 0

F8 Sum power f8(x) =
dim
∑

i=1
x2

i
Unimodal [−1, 1] 0

F9 Sum square f9(x) =
dim
∑

i=1
ix2

i
Unimodal [−10, 10] 0

F10 Rosenbrock f10(x) =
dim−1

∑
i=1

(
100
(
xi+1 − x2

i )
2 +

(
xi − 1)2 ) Unimodal [−5, 10] 0

F11 Zakharov f11(x) =
dim
∑

i=1
x2

i +

(
dim
∑

i=1
0.5ixi

)2

+

(
dim
∑

i=1
0.5ixi

)4
Unimodal [−5, 10] 0

F12 Trid f12(x) =
dim
∑

i=1

(
xi − 1)2 −

dim
∑

i=2
xi xi−1

Unimodal [−5, 10] 0

F13 Elliptic f13(x) =
dim
∑

i=1

(
106)i/(dim−1)x2

i
Unimodal [−100, 100] 0

F14 Cigar f14(x) = x2
1 + 106

dim
∑

i=2
x2

i
Unimodal [−100, 100] 0

F15 Rastrigin f15(x) =
dim
∑

i=1

(
x2

i − 10cos(2πxi) + 10
) Fixed [−5.12, 5.12] 0

F16 NCRastrigin f16(x) =
dim
∑

i=1

(
x2

i − 10cos(2πxi) + 10
)
, yi =

{
xi , i f xi ≤ 0.5
xi − 1, otherwise

Multimodal [−5.12, 5.12] 0

F17 Ackley
f17(x) = 20e

−0.2

√
1

dim

dim
∑

i=1
x2

i
+ e−1

dim
∑

i=1
cos(2πxi)+20 + e

Multimodal [−50, 50] 0

F18 Griewank f18(x) = 1 +
1

4000

dim
∑

i=1
x2

i −
dim
∏
i=1

cos
(

xi√
i

)
Multimodal [−600, 600] 0

F19 Alpine f19(x) =
dim
∑

i=1

∣∣∣∣xisin(xi) +0.1xi | Fixed [−10, 10] 0

F20 Penalized 1

f20(x) =

π
dim

{
10sin2(πy1) +

dim−1
∑

i=1

(
yi − 1)2

[
1 + 10sin2(πyi+1)

]
+
(
ydim − 1)2 }+

dim
∑

i=1
u(xi , 10, 100, 4), yi = 1 + xi+1

4 , u(xi , a, k, m) ={
k(xi − a)m , xi > a
0, −a ≤ xi ≤ a
k(−xi − a)m , xi < −a

Multimodal [−100, 100] 0

F21 Penalized 2
f21(x) = 0.1

{
sin2(3πx1) +

dim−1
∑

i=1

(
xi − 1)2

[
1 + sin2(3πxi+1)

]
+(

xdim − 1)2
[
1 + sin2(2πxdim)

]}
+

dim
∑

i=1
u(xi , 5, 100, 4)

Multimodal [−100, 100] 0

F22 Schwefel f22(x) =
dim
∑

i=1
xisin

(√
|xi |
)

Fixed [−100, 100] 0

F23 Lévy
f23(x) = sin2(3πx1) +

dim
∑

i=1

(
xi − 1)2

[
1 + sin2(3πxi+1)

]
+
(

xdim − 1)2
[
1 + sin2(2πxdim)

] Multimodal [−10, 10] 0

F24 Weierstrass f24(x) =
dim
∑

i=1

(
kmax
∑

k=0
akcos

(
2πbk(xi + 0.5)

))
− dim

(
kmax
∑

k=0
akcos

(
πbk)), a =

0.5, b = 3, kmax = 20

Multimodal [−0.5, 0.5] 0

F25 Solomon f25(x) = 1 − cos

(
2π

√
dim
∑

i=1
x2

i

)
+ 0.1

√
dim
∑

i=1
x2

i
Fixed [−100,100] 0

F26 Bohachevsky f26(x) =
dim
∑

i=1

(
x2

i + 2x2
i − 0.3cos(3πxi)

) Fixed [−10,10] 0
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5.1.1. Performance Indicators

To objectively assess the effectiveness of the IVYPSO algorithm, this study used the
following standard evaluation metrics to comprehensively assess its performance across
different benchmark tests [37–40].

Average value (Avg): The average fitness value obtained from M independent runs of
the algorithm, calculated as shown in Equation (21).

Avg =
∑M

i=1 (fi)

M
(21)

Standard deviation (Std): The variability in the objective function values obtained
from M independent runs of the algorithm. The standard deviation is calculated using
Equation (22).

Std =

√
1

M − 1∑M
i=1 (fi − Avg)2 (22)

Best: The minimum fitness obtained from M independent runs of the algorithm, as
shown in Equation (23).

Best = min
1≤i≤M

fi (23)

where fi denotes the optimal fitness value attained during run i.

5.1.2. Parameter Settings and Performance Comparison Against Other Algorithms

Table 2 summarizes the parameter settings for the IVYPSO algorithm and its compari-
son algorithms. The proper adjustment of the parameters for each algorithm is crucial to
ensure optimal performance. To maintain the fairness of the comparison, the initial settings
and common parameters for all algorithms are set based on the standard values from the
existing literature, while the remaining parameters are optimized through experimental
procedures. The comparison algorithms selected in this study include classic metaheuristic
methods such as PSO, IVY, BOA [41], and WOA [42], as well as several recently proposed
improved algorithms, including GOOSE and HPSOBOA, and several advanced variant
algorithms such as FDC-AGDE, dFDB-LSHADE, NSM-BO, dFDB-SFS, and FDB-AGSK.
These algorithms have demonstrated strong performance in the IEEE CEC competition and
in solving real-world engineering optimization problems. In this study, the evaluation of
the objective function is terminated upon reaching the maximum number of iterations.

Table 2. Parameter settings of IVYPSO and other algorithms.

Algorithm Parameter Algorithm Parameter

ALL Max iteration = 500, Agents = 30, Runs = 30 HPSOBOA w = 0.7, a = (0.1, 0.3), V = (−1, 1), C1 =
C2 = 0.5, c0 = 0.01, p = 0.6

IVYPSO C1 = C2 = 1.5, w = 0.7, beta1 =
[1, 1.5), GV = [0, 1] dFDB_LSHADE p_best_rate = 0.11, arc_rate = 1.4

memory_size = 5, memory_pos = 1
PSO C1 = C2 = 2, V = (−6, 6), w = (0.2, 0.9) FDC_AGDE NW = [0.5 0.5], Cr_All = zeros(1, 2)
IVY beta1 = [1, 1.5), GV = [0, 1] NSM_BO pxgminitial

= 0.03, scab = 1.25, scsb = 1.3
rcpp = 0.0035, tsgs_factor_max = 0.05BOA a = 0.1, p = 0.6, c0 = 0.01

WOA a = linear decrease from 2 to 0,
C = [0, 2], a2 = linear decrease f rom − 1 to − 2

dFDB_SFS d = X(A, :)− X(B, :)

GOOSE S_W_min = 5, S_W_max = 25, coe_min =
0.17 FDB_AGSK l = rand()*2 − 1, b = 1

5.1.3. Analysis of Numerical Results

The proposed algorithm’s performance was evaluated and compared with several
mature and latest algorithms.

Table 3 presents a detailed comparison of the average fitness values and standard
deviations achieved by the IVYPSO algorithm and other algorithms across the test functions.
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Notably, IVYPSO attained the best average fitness on 21 out of the 26 test functions (F1–F4,
F6, F8–F20, F24–F26), outperforming the other 11 algorithms. Particularly impressive was
its performance on 17 functions (F1–F4, F8, F9, F11, F13–F17, F19, F20, F24–F26), where it
achieved the best average fitness with a standard deviation of zero, demonstrating excellent
stability and efficiency. On functions F5, F21, and F23, the IVYPSO algorithm ranked 6th,
5th, and 4th, respectively. However, its performance on F7 and F22 was relatively poor,
ranking 11th and 12th, respectively.

Table 4 compares the best fitness values obtained by the IVYPSO algorithm and the
other 11 algorithms across the test functions. Among the 26 functions, IVYPSO achieved
superior results on 20 functions (F1–F4, F8, F9, F11–F20, F24–F26), outperforming the
other 11 algorithms. For functions F6, F21, and F23, IVYPSO ranked 2nd, 4th, and 2nd,
respectively, in terms of the best fitness value. Nevertheless, its performance was inferior
on functions F5, F7, and F22, where it ranked 8th, 11th, and 10th, respectively.

In summary, the IVYPSO algorithm can be considered a superior optimization algorithm.

5.1.4. Analysis of Convergence Behavior

Figure 5 compares the convergence behavior of the IVYPSO algorithm with that of
other algorithms over 500 iterations. The vertical axis represents the best fitness value
obtained at each iteration, while the horizontal axis indicates the iteration count. On 16
out of the 26 test functions (specifically F1–F4, F6, F8–F15, F18, F20, and F25), IVYPSO
demonstrated consistently faster and more efficient convergence, outperforming the other
algorithms. Although IVYPSO exhibits strong global optimization capability, a few other
algorithms outperformed it in certain specific cases.

5.1.5. Analysis of Exploitation Capabilities

Ideal for evaluating the algorithm’s development capabilities, the single-modal bench-
mark functions (F1–F14) contain only one minimum. For functions F1–F4, F8, F9, F11,
F13, and F14, Figure 3 demonstrates that IVYPSO reaches the theoretical best solution
in around 50 iterations. Reflecting IVYPSO’s high precision and stability, Table 3 reveals
that the average fitness and standard deviation for these functions are typically 0. These
findings clearly indicate that IVYPSO outperforms most of the comparison algorithms on
the benchmark functions. For the multi-modal functions F15–F17, F19, F20, and F24–F26,
IVYPSO also attains the theoretical best fitness in around 50 iterations. Table 4 demon-
strates that the majority of the algorithms are capable of locating the theoretical optimal
solution. Moreover, Table 3 underscores that IVYPSO demonstrates better average fitness
and standard deviation than most competing algorithms, highlighting its robust and stable
exploration capabilities.

5.1.6. Wilcoxon Signed-Rank Analysis Results and Friedman Ranking Scores

To ensure statistically robust conclusions, the widely accepted Wilcoxon non-
parametric [43–46] test was used to assess the effectiveness of IVYPSO compared to
11 other algorithms. Table 5 presents the results of the Wilcoxon signed-rank test applied
to 26 standard test functions at a significance level of α = 0.05, using the mean objective
value of each function as the test sample. The p-value, which reflects the significance level,
is considered significant when below 0.05. The data in Table 5 show that IVYPSO yields
p-values below 0.05 in all cases. Therefore, this analysis statistically validates the superiority
of IVYPSO over the other 11 algorithms.
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Table 3. A comparison of IVYPSO’s average fitness values and standard deviation with 10 other algorithms for various test functions.

Func Metrics IVYPSO PSO IVY BOA WOA GOOSE HPSOBOA dFDB_LSHADE FDC_AGDE NSM_BO dFDB_SFS FDB_AGSK

F1 Avg 0 2.5159 5.6148 × 10−160 7.5380 × 10−11 4.4643 × 10−74 28.045 1.6444 × 10−291 4954.6436 6.1553 × 10−3 0.5044 27.5647 6.0516 × 10−96

Std 0 1.1071 8.5891 × 10−160 7.0143 × 10−12 2.2966 × 10−73 103.4571 0 1398.5169 3.6651 × 10−3 1.982 10.3053 3.3035 × 10−95

Rank 1 9 3 6 5 11 2 12 7 8 10 4
F2 Avg 0 4.5489 0 2.3029 × 10−8 2.5328 × 10−50 1359.2299 1.0782 × 10−145 43.1042 1.4138 × 10−2 4.2033 × 10−3 4.5363 3.9126 × 10−60

Std 0 1.1878 0 6.7460 × 10−9 1.3725 × 10−49 6860.7534 7.0216 × 10−146 9.4746 3.4474 × 10−3 8.0123 × 10−3 1.1547 2.1335 × 10−59

Rank 1 10 1 6 5 12 3 11 8 7 9 4
F3 Avg 0 82.4665 5.6472 × 10−85 5.2628 × 10−11 422.432 2.43 3.3155 × 10−292 188.7533 8.4739 3.6188 174.9405 419.0353

Std 0 24.2503 4.3479 × 10−86 6.0949 × 10−12 156.2203 0.8986 0 78.0896 13.0659 3.9852 48.3456 128.6289
Rank 1 8 3 4 12 5 2 10 7 6 9 11

F4 Avg 0 1.9179 0 2.6176 × 10−8 3.8852 0.2502 5.4053 × 10−147 4.4093 1.2657 2.2818 1.1509 5.7175
Std 0 0.32 0 2.4363 × 10−9 2.8659 0.2304 3.3527 × 10−148 0.744 0.1467 0.4925 0.2463 3.5226

Rank 1 8 1 4 10 5 3 11 7 9 6 12
F5 Avg 0.241 2.2492 0.4888 5.3766 9.8934 × 10−2 0.0114 0.0327 53.3583 6.2779 × 10−5 3.2036 × 10−3 0.2562 0.5742

Std 0.1957 1.1515 0.4037 0.4651 7.3668 × 10−2 3.7831 × 10−3 2.3514 × 10−2 16.69 3.1763 × 10−5 7.9615 × 10−3 8.6912 × 10−2 0.5068
Rank 6 10 8 11 5 3 4 12 1 2 7 9

F6 Avg 6.7137 × 10−5 14.4701 6.7440 × 10−5 1.9729 × 10−3 2.5420 × 10−3 0.1336 1.1522 × 10−4 1.9443 6.3089 × 10−2 0.0984 7.7676 × 10−2 1.3547 × 10−3

Std 5.9831 × 10−5 10.0623 6.4272 × 10−5 8.4663 × 10−4 3.0980 × 10−3 4.2711 × 10−2 8.8115 × 10−5 0.8096 1.4809 × 10−2 3.9632 × 10−2 2.4921 × 10−2 2.5808 × 10−3

Rank 1 12 2 5 6 10 3 11 7 9 8 4
F7 Avg 4.8103 × 10−15 0 8.7899 × 10−31 6.3334 × 10−11 7.1751 × 10−66 1.2216 × 10−65 1.7703 × 10−62 1.6598 × 10−48 2.5562 × 10−54 7.1751 × 10−66 2.0229 × 10−65 7.1751 × 10−66

Std 1.7831 × 10−14 0 4.0250 × 10−30 2.0811 × 10−10 3.2167 × 10−81 1.6721 × 10−65 8.7838 × 10−78 9.0229 × 10−48 1.3999 × 10−53 3.2167 × 10−81 1.2398 × 10−65 3.2167 × 10−81

Rank 11 1 10 12 2 5 7 9 8 3 6 4
F8 Avg 0 0.183 0 9.7665 × 10−14 3.5039 × 10−104 1.7042 × 10−5 1.2449 × 10−295 7.6028 × 10−4 9.4531 × 10−20 2.5527 × 10−20 1.4060 × 10−10 4.4055 × 10−153

Std 0 0.1684 0 6.2767 × 10−14 1.9152 × 10−103 1.1127 × 10−5 0 1.5541 × 10−3 3.4998 × 10−19 8.9169 × 10−20 3.8320 × 10−10 2.3589 × 10−152

Rank 1 12 1 8 5 10 3 11 7 6 9 4
F9 Avg 0 26.7969 4.3686 × 10−95 6.8638 × 10−11 2.6339 × 10−73 0.8848 2.6080 × 10−291 658.4361 6.9232 × 10−4 0.123 2.9677 1.3465 × 10−94

Std 0 14.5494 0 5.7608 × 10−12 1.4319 × 10−72 0.7549 0 209.486 4.2068 × 10−4 0.4863 0.9921 5.1291 × 10−94

Rank 1 11 3 6 5 9 2 12 7 8 10 4
F10 Avg 26.9025 914.4537 27.6343 28.9104 27.9035 86.349 28.7569 45,111.5779 60.6339 87.2424 162.7128 28.7208

Std 0.8425 438.8139 0.2558 2.3631 × 10−2 0.4628 68.1133 4.3639 × 10−2 29,206.2521 43.6974 53.4909 63.2633 9.4422 × 10−2

Rank 1 11 2 6 3 8 5 12 7 9 10 4
F11 Avg 0 111.8508 0 6.6299 × 10−11 7.0248 × 10−75 0.1491 1.5401 × 10−291 679.9458 6.8789 × 10−4 9.7422 × 10−3 1.7317 2.7436 × 10−92

Std 0 52.0599 0 6.5461 × 10−12 2.5674 × 10−74 3.6406 × 10−2 0 337.3768 3.7684 × 10−4 1.8844 × 10−2 0.5826 1.5027 × 10−91

Rank 1 11 1 6 5 9 3 12 7 8 10 4
F12 Avg 0.6667 209.9059 0.6667 0.9707 0.667 2.1609 0.9959 1233.9148 0.8234 2.9415 3.9169 0.7818

Std 9.4147 × 10−8 128.9306 4.7975 × 10−8 9.8902 × 10−3 2.0518 × 10−4 1.3914 8.0022 × 10−4 870.8841 0.2879 1.8042 1.7217 0.1635
Rank 1 11 2 6 3 8 7 12 5 9 10 4

F13 Avg 0 1.7597 × 10−23 0 1.2000 × 10−21 0 3.3757 × 10−4 5.2516 × 10−2 8.6767 8.4768 × 10−37 0 1.8101 × 10−32 0
Std 0 9.2757 × 10−23 0 3.9643 × 10−21 0 5.2807 × 10−4 0.103 17.2354 3.6192 × 10−36 0 4.8001 × 10−32 0

Rank 1 8 1 9 1 10 11 12 6 1 7 1
F14 Avg 0 1.2617 × 10−17 0 6.5631 × 10−15 2.0239 × 10−103 1997.0369 0.0359 8.1314 2.6242 × 10−25 0 2.3759 × 10−19 9.7815 × 10−151

Std 0 4.3869 × 10−17 0 3.5821 × 10−14 9.0242 × 10−103 2107.4933 0.1044 23.3506 1.4323 × 10−24 0 5.3197 × 10−19 5.3566 × 10−150

Rank 1 8 1 9 5 12 10 11 6 1 7 4
F15 Avg 0 1.0826 × 10−23 5.3697 × 10−260 1.3855 × 10−18 1.1287 × 10−128 6.8549 × 10−3 3.1054 × 10−3 0.0557 1.6634 × 10−36 0 1.8751 × 10−30 1.6475 × 10−192

Std 0 4.3883 × 10−23 6.3684 × 10−259 4.4188 × 10−18 6.1811 × 10−128 1.1247 × 10−2 6.5997 × 10−3 0.1444 9.0070 × 10−36 0 5.4607 × 10−30 0
Rank 1 8 3 9 5 11 10 12 6 1 7 4

F16 Avg 0 169.139 0 26.6377 0 150.3139 0.3609 239.6035 46.6483 10.3208 214.2906 1.8948 × 10−15

Std 0 31.3264 0 69.0482 0 28.026 0.8057 18.0974 7.1298 3.6033 14.3203 1.0378 × 10−14

Rank 1 10 1 7 1 9 5 12 8 6 11 4
F17 Avg 0 151.8179 0 109.6198 4.9084 194.1359 0.2559 216.455 30.7778 8.7194 197.9083 0

Std 0 28.435 0 79.6068 26.8846 33.0475 0.4747 23.1197 3.1702 3.0756 19.4055 0
Rank 1 9 1 8 5 10 4 12 7 6 11 1
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Table 3. Cont.

Func Metrics IVYPSO PSO IVY BOA WOA GOOSE HPSOBOA dFDB_LSHADE FDC_AGDE NSM_BO dFDB_SFS FDB_AGSK

F18 Avg 4.4409 × 10−16 2.5742 4.4409 × 10−16 2.7789 × 10−8 3.1678 × 10−15 8.1913 4.4409 × 10−16 9.3502 1.2613 × 10−2 0.8511 2.3255 3.6415 × 10−15

Std 0 0.4745 0 2.7043 × 10−9 2.5861 × 10−15 7.6507 0 0.946 3.3014 × 10−3 0.6142 0.4014 2.1580 × 10−15

Rank 1 10 1 6 4 11 1 12 7 8 9 5
F19 Avg 0 0.1297 8.3647 × 10−31 1.0441 × 10−11 9.3855 × 10−3 240.6283 0 51.1922 5.7896 × 10−2 0.1998 1.2171 5.3087 × 10−2

Std 0 5.8069 × 10−02 9.1238 × 10−30 8.8748 × 10−12 3.6288 × 10−2 219.7319 0 16.6066 5.7987 × 10−2 0.2448 9.1563 × 10−2 0.2087
Rank 1 8 3 4 5 12 1 11 7 9 10 6

F20 Avg 0 5.5514 0 2.9520 × 10−9 1.0727 × 10−44 6.33 4.9382 × 10−147 25.9518 3.0941 × 10−2 1.1060 × 10−3 10.4077 2.4419 × 10−62

Std 0 2.3383 0 8.8910 × 10−9 5.8751 × 10−44 2.6195 6.0974 × 10−147 4.7219 1.0909 × 10−2 1.6310 × 10−3 2.5345 6.5463 × 10−62

Rank 1 9 1 6 5 10 3 12 8 7 11 4
F21 Avg 2.5547 × 10−2 5.2594 × 10−2 2.9661 × 10−2 0.5326 1.9728 × 10−2 3.8312 2.2408 × 10−3 3.2529 4.4463 × 10−6 2.0755 × 10−2 0.0312 3.5037 × 10−2

Std 9.7752 × 10−3 4.9296 × 10−2 1.4688 × 10−2 0.1176 5.4402 × 10−2 1.3479 1.6259 × 10−3 1.2921 4.5629 × 10−6 4.2171 × 10−2 2.6494 × 10−2 0.03
Rank 5 9 4 10 3 12 2 11 1 4 6 7

F22 Avg 2.9038 0.5688 2.9005 2.7472 0.1729 9.1851 × 10−3 1.0042 2.7355 4.4222 × 10−6 5.5565 × 10−3 4.5368 × 10−2 0.134
Std 0.1621 0.247 0.19955 0.3013 0.1276 6.9460 × 10−3 0.8045 0.8778 5.7875 × 10−6 1.0655 × 10−2 1.8046 × 10−2 0.0886

Rank 12 7 9 10 6 3 8 9 1 2 4 5
F23 Avg 0.5537 6.2603 1.3854 12.1723 0.3206 0.8029 0.7788 5.8924 3.9947 × 10−2 6.3801 × 10−2 1.6454 0.5537

Std 1.1402 3.5956 0.8307 2.4477 0.2835 0.6338 0.8349 1.7669 0.012 8.4765 × 10−2 0.6333 1.1402
Rank 4 11 5 12 3 6 5 10 1 2 9 4

F24 Avg 0 3.7947 8.1486 × 10−8 1.0973 0 9.6985 0 38.4245 0 1.4924 × 10−5 0 0
Std 0 3.1278 8.6874 × 10−8 2.0728 0 6.5506 0 2.5571 0 5.6480 × 10−5 0 0

Rank 1 10 7 9 3 11 4 12 5 8 6 7
F25 Avg 0 1.6918 0 0.714 0.1592 1.844 0.0233 20.7438 0.732 4.9581 1.0114 0.136

Std 0 0.4571 0 0.2408 0.1373 0.4942 4.2871 × 10−2 6.4717 0.2354 1.5861 0.2408 0.1394
Rank 1 9 1 6 5 10 3 12 7 11 8 4

F26 Avg 0 22.3883 0 7.8537 × 10−11 0 4.9249 0 58.728 1.6200 × 10−2 0.4135 4.5409 0
Std 0 6.0981 0 8.3251 × 10−12 0 2.077 0 12.0427 8.5765 × 10−2 1.0675 1.4705 0

Rank 1 11 1 6 1 10 1 12 7 8 9 1

Paired rank +/=/− 24/0/2 11/12/3 25/0/1 18/3/5 23/0/3 19/3/4 24/0/2 21/0/5 18/3/5 24/0/2 20/4/2
Avg. rank 2.26 9.27 2.92 7.35 4.54 8.92 4.31 11.35 5.96 6.08 8.42 4.81

Overall rank 1 11 2 8 4 10 3 12 6 7 9 5

Note: The optimal values are highlighted in bold.
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Table 4. A comparison of the best fitness values between IVYPSO and 10 other algorithms for various test functions.

Func. Metrics IVYPSO PSO IVY BOA WOA GOOSE HPSOBOA dFDB_LSHADE FDC_AGDE NSM_BO dFDB_SFS FDB_AGSK

F1 Best 0 1.9195 3.2648 × 10−260 7.6243 × 10−11 2.3137 × 10−83 0.0134 2.2327 × 10−291 6221.6016 0.0075 3.9426 × 10−5 26.8336 3.2275 × 10−104

Rank 1 10 3 6 5 9 2 12 8 7 11 4
F2 Best 0 4.8081 0 2.4927 × 10−08 3.6914 × 10−49 12.8456 7.8194 × 10−146 32.7774 0.0182 0.0051 5.3565 5.2776 × 10−63

Rank 1 9 1 6 5 11 3 12 8 7 10 4
F3 Best 0 53.1933 6.5785 × 10−95 5.085 × 10−11 428.7845 0.7136 2.9839 × 10−292 169.5741 4.42 1.3085 161.3353 724.5566

Rank 1 8 3 4 11 5 2 10 7 6 9 12
F4 Best 0 1.8277 0 2.466 × 10−08 0.4163 0.3557 5.2086 × 10−147 2.9046 1.4183 2.6106 1.0204 8.0432

Rank 1 9 1 4 6 5 3 11 8 10 7 12
F5 Best 0.2523 0.9559 0.6904 5.1787 0.0725 0.007 0.0302 39.4716 5.2662 × 10−5 3.4297 × 10−5 0.2432 0.136

Rank 8 10 9 11 5 3 4 12 2 1 7 6
F6 Best 1.1454 × 10−5 45.8573 3.2954 × 10−5 0.0014 0.0011 0.1351 5.385 × 10−5 2.6236 0.066 0.1496 0.0931 1.2591 × 10−5

Rank 2 12 1 6 5 9 4 11 7 10 8 3
F7 Best 3.1914 × 10−19 0 6.3819 × 10−35 5.3719 × 10−13 7.1751 × 10−66 9.334 × 10−66 1.7703 × 10−62 8.2727 × 10−52 7.1751 × 10−66 7.1751 × 10−66 1.1911 × 10−65 7.1751 × 10−66

Rank 11 1 10 12 2 6 8 9 2 2 7 2
F8 Best 0 0.3335 0 1.1492 × 10−13 2.5197 × 10−100 8.3454 × 10−6 1.7958 × 10−295 1.4189 × 10−5 4.3298 × 10−21 1.2446 × 10−23 9.3771 × 10−11 7.2831 × 10−152

Rank 1 12 1 8 5 10 3 11 7 6 9 4
F9 Best 0 25.8431 4.3686 × 10−95 7.5806 × 10−11 1.2833 × 10−82 0.7984 2.2617 × 10−291 545.8044 0.0003 0.0003 4.3525 2.3672 × 10−106

Rank 1 11 4 6 5 9 2 12 8 7 10 3
F10 Best 27.0059 673.4298 27.899 28.9468 27.7308 30.1997 28.8365 21,955.7713 29.2534 396.3681 203.3141 28.7384

Rank 1 11 3 6 2 8 5 12 7 10 9 4
F11 Best 0 85.9941 0 6.8182 × 10−11 3.5927 × 10−81 0.244 1.9516 × 10−291 894.8034 0.0007 1.665 × 10−5 0.9829 1.1737 × 10−108

Rank 1 11 1 6 5 9 3 12 8 7 10 4
F12 Best 0.6667 222.886 0.66667 0.9632 0.6667 0.8154 0.9953 2331.6115 0.7225 6.9031 4.5096 0.6774

Rank 1 11 1 7 1 6 8 12 5 10 9 4
F13 Best 0 2.0826 × 10−27 0 5.5035 × 10−26 0 0.0017 0.0598 0.0089 4.8456 × 10−42 0 2.4964 × 10−33 0

Rank 1 8 1 9 1 10 12 11 6 1 7 1
F14 Best 0 7.0078 × 10−22 0 7.8597 × 10−20 5.0035 × 10−125 0.013 0.0256 0.5158 5.1081 × 10−27 0 1.1492 × 10−19 1.0275 × 10−152

Rank 1 7 1 8 5 10 11 12 6 1 9 4
F15 Best 0 1.1273 × 10−30 8.3154 × 10−262 5.7109 × 10−22 4.1221 × 10−133 0.0004 1.9605 × 10−296 0.0002 2.3713 × 10−40 0 2.0643 × 10−31 1.7744 × 10−188

Rank 1 9 4 10 6 12 3 11 7 1 8 5
F16 Best 0 207.2783 0 2.8422 × 10−13 1.1369 × 10−13 170.5284 0 227.4552 45.5111 6.967 197.8528 0

Rank 1 11 1 6 5 9 1 12 8 7 10 1
F17 Best 0 174.921 0 167.5903 0 280.0004 0 217.8745 35.3575 6.0006 206.6572 0

Rank 1 9 1 8 1 12 1 11 7 6 10 1
F18 Best 4.4409 × 10−16 2.8075 4.4409 × 10−16 2.5252 × 10−8 4.4409 × 10−16 0.0649 4.4409 × 10−16 9.5098 0.0115 0.9373 2.0932 3.9968 × 10−15

Rank 1 11 1 6 1 8 1 12 7 9 10 5
F19 Best 0 0.1039 0 1.8527 × 10−11 0 289.0103 0 57.1856 0.0152 0.1684 1.1599 0

Rank 1 8 1 6 1 12 1 11 7 9 10 1
F20 Best 0 2.3272 0 5.0467 × 10−10 2.1642 × 10−50 8.4344 6.1344 × 10−147 23.0176 0.0272 0.0005 8.9652 1.3616 × 10−67

Rank 1 9 1 6 5 10 3 12 8 7 11 4
F21 Best 0.0068 0.0125 0.0198 0.4861 0.0181 3.3439 0.0013 3.2316 4.0407 × 10−6 2.7412 × 10−7 0.0211 0.0107

Rank 4 6 8 10 7 12 3 11 2 1 9 5
F22 Best 2.9661 0.8753 2.9715 2.9968 0.0595 0.0147 0.0651 1.5015 2.0754 × 10−6 7.3649 × 10−9 0.052 0.2135

Rank 10 8 11 12 5 3 6 9 2 1 4 7
F23 Best 0.0134 5.2542 2.1048 6.4945 0.3179 0.2986 1.5223 5.6278 0.051 1.235 1.6193 0.0021

Rank 2 10 9 12 5 4 7 11 3 6 8 1
F24 Best 0 3.2678 0 0 0 2.0776 0 38.2506 0 0 0 0

Rank 1 11 1 1 1 10 1 12 1 1 1 1
F25 Best 0 2.4874 0 0.8955 0.398 1.5919 0.0995 25.468 0.8955 6.3676 0.9069 0.0995

Rank 1 10 1 7 5 9 4 12 6 11 8 3
F26 Best 0 14.0908 0 7.6919 × 10−11 0 5.3631 0 54.1892 0.0006 0.0253 3.8484 0

Rank 1 11 1 6 1 10 1 12 7 8 9 1

Paired rank +/=/− 24/0/2 9/15/2 25/0/1 16/7/3 23/0/3 16/6/4 24/0/2 21/1/4 18/4/4 22/1/3 16/6/4
Avg. rank 2.19 9.35 3.08 7.27 4.08 8.5 3.92 11.35 5.92 5.85 8.46 3.92

Overall rank 1 10 2 8 5 10 3 11 7 6 9 3

Note: The optimal values are highlighted in bold.
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Figure 5. The convergence behaviors of IVYPSO and other algorithms for various test functions.
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Table 5. Results of the Wilcoxon signed-rank test for 26 test functions with α = 0.05.

Algorthm Wilcoxon Test p-Value Significant

IVYPSO-PSO 2.4153 × 10−5 Yes
IVYPSO-IVY 1.6357 × 10−2 Yes
IVYPSO-BOA 2.9991 × 10−5 Yes
IVYPSO-WOA 4.5685 × 10−2 Yes

IVYPSO-GOOSE 5.0978 × 10−5 Yes
IVYPSO-HPSOBOA 1.6067 × 10−2 Yes
IVYPSO-FDC-AGDE 8.3166 × 10−3 Yes

IVYPSO-dFDB-LSHADE 7.8847 × 10−6 Yes
IVYPSO-NSM-BO 3.8919 × 10−3 Yes
IVYPSO-dFDB-SFS 5.9619 × 10−5 Yes

IVYPSO-FDB-AGSK 1.5664 × 10−3 Yes

To evaluate further the overall performance of the proposed IVYPSO algorithm on the
26 benchmark functions, the Friedman scores were used to rank the average performances
of 12 comparative algorithms [47–49]. Table 6 presents the Friedman scores and their
corresponding ranks. Among all algorithms, IVYPSO achieved the lowest Friedman score
of 1.9231, ranking first, which demonstrates its outstanding performance across all test
functions. In contrast, traditional algorithms such as PSO and BOA obtained Friedman
scores of 5.8846 and 6.7308, ranking 9th and 11th, respectively, indicating relatively weaker
overall performance. Similarly, some improved algorithms, such as FDC-AGDE and dFDB-
LSHADE, ranked 12th and 10th, respectively, also underperforming compared to IVYPSO.
These results indicate that IVYPSO exhibits strong robustness and competitiveness in
solving complex optimization problems, and its overall performance surpasses that of both
traditional and newly developed metaheuristic algorithms.

Table 6. Friedman ranking scores of IVYPSO and other competing algorithms.

Algorthm Friedman Scores Rank
IVYPSO 1.9231 1

PSO 5.8846 9
IVY 3.7308 2
BOA 6.7308 11
WOA 4.8462 3

GOOSE 5.4615 6
HPSOBOA 4.9615 4
FDC-AGDE 7.0385 12

dFDB-LSHADE 6.4231 10
NSM-BO 5.4615 7
dFDB-SFS 5.5385 8

FDB-AGSK 5.0385 5
Note: The optimal values are highlighted in bold.

5.1.7. Analysis of Computational Expenses

The time complexity of the IVYPSO algorithm is primarily composed of three parts:
the population initialization, iteration updates, and fitness evaluation. Let the population
size be N, the maximum number of iterations be T, and the dimensionality of the decision
variables be dim. In the population initialization phase, the random generation of each
particle’s position and velocity, along with the fitness evaluation, requires a time complexity
of O(N × dim). In each iteration, the algorithm updates the velocity and position of each
particle, adjusts the ivy growth variables, and evaluates the fitness. The velocity and
position updates involve basic vector operations, with a time complexity of O(dim), and
the ivy growth variable update and random perturbation for local or global searches
also have a time complexity of O(dim). The fitness evaluation is usually the most time-
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consuming operation. If the complexity of the objective function evaluation is O( f ), the
fitness calculation for the entire population in each iteration has a time complexity of
O(N × f ). Therefore, the overall time complexity of the IVYPSO algorithm can be expressed
as O(T × N × (dim + f )). As the population size N, maximum iteration count T, and
dimensionality dim increase, the algorithm’s time complexity grows linearly, making it
suitable for large-scale, complex global optimization problems.

5.2. Application of IVYPSO to Engineering Optimization Problems

This section presents the application of the IVYPSO algorithm in solving engineering
optimization problems that involve various inequality and equality constraints. For each
optimization problem, IVYPSO was evaluated in 20 independent runs using a population
size of 30 individuals, with a maximum of 500 iterations. The performance of IVYPSO was
compared with 11 other algorithms, including PSO, IVY, BOA, WOA, GOOSE, HPSOBOA,
FDC_AGDE, dFDB_LSHADE, NSM_BO, dFDB_SFS, and FDB_AGSK. Additionally, three
stability analysis metrics were incorporated: SR, ACTs, and AFEs. SR represents the
proportion of independent runs in which the algorithm successfully found solutions that
satisfy all constraints and reach the global optimum or an acceptable level of precision.
ACTs refers to the average time (in seconds) spent by the algorithm to complete each
optimization task across multiple runs. AFEs indicates the average number of fitness
function evaluations required to complete the optimization task over multiple experiments.

5.2.1. Gas Transmission Compressor Design (GTCD) Problem

Figure 6 illustrates the gas transmission compressor design (GTCD) problem, which
is a representative and practical mechanical design case originally proposed by Beightler
and Phillips [50]. This problem involves determining the optimal values of several design
variables, such as the pipeline length, inlet and outlet pressures, and pipe diameter, with the
objective of minimizing the total cost of a gas pipeline transmission system while ensuring
the delivery of 100 million cubic feet of natural gas per day.

Figure 6. A gas pipeline transmission system for the GTCD problem.

The GTCD problem reflects a realistic and complex engineering scenario widely
encountered in energy and process industries. It poses significant optimization challenges
due to its non-linear, constrained, and multimodal nature. By applying the proposed
IVYPSO algorithm to this problem, we aim to demonstrate its capability to handle real-
world design constraints, achieve cost-effective solutions, and maintain robustness in
practical optimization tasks. This problem has three decision variables: the length L
between two compressor stations; the compression ratio L, at the compressor inlet, where
r = P1

P2
, with P1 being the pressure leaving the compressor station (psi) and P2 being the

pressure entering the compressor station (psi); and D, the internal diameter of the pipeline
(inches). The goal is to find the optimal values for L, r, and D that minimize the C1 value.
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In this problem, the total annual cost of the gas transmission system is defined as in
Equation (24):

minC1(x) = 8.61 × 105x3
− 2

3 x1
1
2 x2
(
x2

2 − 1
)− 1

2

+3.69 × 104x3 − 7.6543 × 108x1
−1

+7.72 × 108x1
−1x2

0.219,

(24)

where x1 = L, x2 = r, x3 = D, subject to:

10 ≤ x1 ≤ 55,

1.1 ≤ x2 ≤ 2,

10 ≤ x3 ≤ 40.

Table 7 presents a comparison of the results for solving the gas transmission compres-
sor design problem using IVYPSO and other algorithms from the literature. The success rate
threshold for this problem was determined to be 1,677,759.2755. The best result achieved by
IVYPSO was L = 24.4960, r = 1.5867, D = 20.0000, with a minimum cost of 1,677,759.2755
and with an SR value of 100%, which required minimal time to complete the task. Table 8
shows a statistical analysis, showing that IVYPSO achieved the lowest average cost of
1,677,759.2755. These results demonstrate that compared to other optimization algorithms,
IVYPSO delivers a superior solution to the gas transmission compressor design problem.

Table 7. The best values obtained by IVYPSO and other competing algorithms for the GTCD problem.

Algorithm L r D Optimal Value SR(%) ACTs AFEs
IVYPSO 24.496 1.5867 20 1,677,759.2755 100 0.1419 15,030

PSO 24.496 1.5867 20 1,677,759.2755 80 0.1187 15,030
IVY 24.496 1.5867 20 1,677,759.2755 80 0.172 15,030
BOA 20 1.1134 20 1,683,684.5457 0 0.1797 30,030
WOA 24.496 1.5867 20 1,677,759.2755 85 0.0938 15,000

GOOSE 32.5256 1.2305 20 1,677,759.2854 0 0.101 15,000
HPSOBOA 21 1.0537 21 1,685,732.6804 0 0.1786 30,030

FDC_AGDE 24.496 1.5867 20 1,677,759.2755 85 0.1087 15,030
dFDB_LSHADE 28.5541 1.1932 20 1,677,783.3132 0 0.0047 500

NSM_BO 24.496 1.5867 20 1,677,759.2755 100 0.3239 15,000
dFDB_SFS 24.496 1.5867 20 1,677,759.2755 80 0.1978 15,000

FDB_AGSK 24.496 1.5867 20 1,677,759.2755 100 0.1845 15,000
Note: The optimal values are highlighted in bold.

Table 8. Statistical assessment of various algorithms applied to the GTCD problem.

Algorithm Mean Best Worst Median Std Rank
IVYPSO 1,677,759.2755 1,677,759.2755 1,677,759.2755 1,677,759.2755 0.0000 1

PSO 1,678,556.6157 1,677,759.2755 1,685,732.6774 1,677,759.2755 2521.4111 7
IVY 1,678,354.4837 1,677,759.2755 1,685,634.2755 1,677,759.2755 1932.6400 6
BOA 1,685,527.8813 1,683,684.5457 1,685,732.7254 1,685,732.6942 647.6821 8
WOA 1,677,759.2760 1,677,759.2755 1,677,759.2777 1,677,759.2756 0.0009 4

GOOSE 2,048,858.2698 1,677,759.2854 5,177,439.6140 1,698,815.7980 1,099,516.1908 12
HPSOBOA 1,685,748.4393 1,685,732.6804 1,685,810.0629 1,685,735.5707 25.3056 9

FDC_AGDE 1,778,373.1947 1,677,759.2755 2,675,925.0653 1,677,759.2755 315,377.5360 11
dFDB_LSHADE 1,678,255.5734 1,677,783.3132 1,679,765.5234 1,678,075.9952 619.2305 5

NSM_BO 1,677,759.2755 1,677,759.2755 1,677,759.2755 1,677,759.2755 0 1
dFDB_SFS 1,694,760.8055 1,677,759.2755 1,762,766.9254 1,677,759.2755 35,842.3723 10

FDB_AGSK 1,677,759.2755 1,677,759.2755 1,677,759.2755 1,677,759.2755 0 1
Note: The optimal values are highlighted in bold.

5.2.2. Three-Bar Truss Design Problem

Figure 7 shows the three-bar truss design problem. The three-bar truss is typically
a simple planar truss structure composed of three rods forming a triangular shape. This
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problem is widely applicable in engineering design, particularly in the field of structural
optimization. The design variables typically include the cross-sectional area or dimensions
of the rods, with the objective of minimizing the total mass of the truss while ensuring com-
pliance with stress and geometric constraints. Such problems effectively reflect real-world
engineering demands for structural safety and material efficiency, making them commonly
used as benchmark problems for evaluating the performance of optimization algorithms.

Figure 7. Schematic diagram of the three-bar truss design.

The total mass of the three-bar truss can be expressed by Equation (25):

minf(x) =
(

2
√

2x1 + x2

)
× H (25)

where x1 = A1, x2 = A2:

g1(x) =

√
2x1 + x2√

2x1 +
2x1x2

x2

P − σ ≤ 0,

g2(x) =
P√

2x1 +
2x1x2

x2

− σ ≤ 0,

g3(x) =
P

x1 +
√

2x2
− σ ≤ 0,

0 ≤ x1, x2 ≤ 1.

where H = 1000 mm, P = 2 kN/cm2,σ = 2 kN/cm2.
Table 9 presents a comparison of the results for solving the three-bar truss design

problem using IVYPSO and other algorithms from the literature. The success rate threshold
for this problem was determined to be 263.8523. The best result obtained by IVYPSO was
A1 = 0.7884, A2 = 0.4081, with a minimum cost of 263.8523 and an SR value of 100%,
and it required minimal time to complete the task. Table 10 provides a statistical analysis,
showing that IVYPSO achieved the lowest average cost of 263.8523. These results indicate
that compared to other optimization algorithms, IVYPSO provides a better solution for the
three-bar truss design problem.
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Table 9. The best values obtained by IVYPSO and other competing algorithms for the three-bar truss
design problem.

Algorithm X1 X2 Optimal Value SR (%) ACTs AFEs
IVYPSO 0.7884 0.4081 263.8523 100 0.1531 15,030

PSO 0.7884 0.4081 263.8523 85 0.1663 15,030
IVY 0.7884 0.4081 263.8523 90 0.2151 15,030
BOA 0.7937 0.3938 263.8849 0 0.2743 30,030
WOA 0.7919 0.3984 263.8611 0 0.137 15,000

GOOSE 0.7884 0.4081 263.8523 100 0.1447 15,000
HPSOBOA 0.8374 0.4669 264.2474 0 0.2783 30,030

FDC_AGDE 0.7884 0.4081 263.8523 100 0.1518 15,030
dFDB_LSHADE 0.7884 0.4081 263.8523 90 0.0058 500

NSM_BO 0.7884 0.4081 263.8523 100 0.357 15,000
dFDB_SFS 0.7884 0.4081 263.8523 100 0.2654 15,000

FDB_AGSK 0.7884 0.4081 263.8523 100 0.2167 15,000
Note: The optimal values are highlighted in bold.

Table 10. Statistical assessment of various algorithms applied to the three-bar truss design problem.

Algorithm Mean Best Worst Median Std Rank
IVYPSO 263.8523 263.8523 263.8523 263.8523 0 1

PSO 263.9375 263.8523 264.7016 263.8523 0.2685 9
IVY 263.8524 263.8523 263.8527 263.8524 6.97 × 10−4 7
BOA 264.1555 263.8787 264.8682 264.0228 0.3227 10
WOA 265.3408 263.8591 268.7184 264.7459 1.8316 11

GOOSE 263.8524 263.8523 264.5934 263.8523 0.2397 6
HPSOBOA 271.5462 264.4945 279.0356 272.9894 4.4763 12

FDC_AGDE 263.8523 263.8523 263.8523 263.8523 0 1
dFDB_LSHADE 263.8573 263.8524 263.8955 263.8527 0.0134 8

NSM_BO 263.8523 263.8523 263.8523 263.8523 0 1
dFDB_SFS 263.8523 263.8523 263.8523 263.8523 0 1

FDB_AGSK 263.8523 263.8523 263.8523 263.8523 0 1
Note: The optimal values are highlighted in bold.

5.2.3. Multiple-Disk Clutch Brake Design Problem

Figure 8 illustrates the multiple-disk clutch brake design problem, a classic engineering
optimization issue that is commonly encountered in automation equipment, mechanical
transmission systems, and the automotive industry [51]. This problem involves optimizing
the design of the clutch and brake system to minimize the stopping time of the brake while
ensuring high operational efficiency and stability. Such design problems are highly relevant
to real-world engineering scenarios, where the balance between performance, efficiency,
and reliability is critical. By addressing this problem, the algorithm’s ability to handle
practical engineering challenges and improve the overall system design is demonstrated,
reflecting its applicability in real-world applications. This problem involves five decision
variables: the inner radius ri in millimeters, outer radius ro in millimeters, disk thickness t
in millimeters, driving force F, and number of friction surfaces Z.

The brake’s stopping time can be expressed by Equation (26):

minf(x) = π
(

x2
2 − x2

1

)
x3(x5 + 1)pm (26)

where x1 = ri, x2 = ro, x3 = t, x4 = F, x5 = Z, subject to:

g1(x) = x2 − x1 − ∆R ≥ 0

g2(x) = Lmax − (Z + 1)(t + δ) ≥ 0

g3(x) = pmax − prz ≥ 0

g4(x) = pmaxVsr,max − przVsr ≥ 0
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g5(x) = Vsr,max − Vsr ≥ 0

g6(x) = Mh − sMs ≥ 0

g7(x) = T ≥ 0

g8(x) = Tmax − T ≥ 0

 

Figure 8. Schematic view of multiple-disk clutch brake design problem.

60 ≤ x1 ≤ 80 mm, 90 ≤ x2 ≤ 110 mm, 1.5 ≤ x3 ≤ 3 mm, 0 ≤ x4 ≤ 1000 N, 2 ≤ x5 ≤ 9

where:

pm = 0.0000078 kg/mm3, pmax = 1 MPa, µ = 0.5, Vsr,max = 10 m/s, s = 1.5, Tmax = 15 s,

n = 250 rpm, M f = 3 Nm, Iz = 55kg/m2, δ = 0.5 mm, ∆R = 20 mm, Lmax = 30 mm,

Mh =
2
3
µx4x5

x3
2 − x3

1
x2

2 − x2
1

N mm, w =
πn
30

rad
s

, Rsr =
2
3

x3
2 − x3

1
x2

2 − x2
1

mm, A = π
(

x2
2 − x2

1

)
mm2,

Ms = 40 Nm, prz =
x4

A
N/mm2, Vsr =

πRsrn
30

mm/s

Table 11 presents a comparison of the results for solving the multiple-disk clutch
brake design problem using IVYPSO and other algorithms from the literature. The success
rate threshold for this problem was determined to be 0.2352. The best result obtained by
IVYPSO was ri = 70, ro = 90, t = 1, F = 1000, Z = 2, with the lowest cost of 0.2352 and
an SR value of 100%, and it required minimal time to complete the task. Table 12 shows a
statistical analysis, showing that IVYPSO achieves the lowest average cost of 0.2352. These
results indicate that compared to other optimization algorithms, IVYPSO provides a better
solution for the multiple-disk clutch brake design problem.



Biomimetics 2025, 10, 342 38 of 41

Table 11. The best values obtained by IVYPSO and other competing algorithms for the multiple-disk
clutch brake design problem.

Algorithm X1 X2 X3 X4 X5 Optimal
Value SR (%) ACTs AFEs

IVYPSO 70 90 1 1000 2 0.2352 100 0.2261 15,030
PSO 70 90 1 1000 2 0.2352 90 0.2117 15,030
IVY 70 90 1 1000 2 0.2352 95 0.2644 15,030
BOA 69.7384 90 1.1944 405.0447 2 0.2842 0 0.3671 30,030
WOA 70 90 1 1000 2 0.2352 100 0.1843 15,000

GOOSE 70 90 1 1000 2 0.2352 90 0.2395 15,000
HPSOBOA 67.2176 91 0.8157 788.6999 1.8812 0.2731 0 0.6078 30,030

FDC_AGDE 70 90 1 1000 2 0.2352 100 0.2211 15,030
dFDB_LSHADE 69.9485 90 1 432.177 2 0.2358 0 0.0117 500

NSM_BO 70 90 1 1000 2 0.2352 100 0.4497 15,000
dFDB_SFS 70 90 1 1000 2 0.2352 85 0.3248 15,000

FDB_AGSK 70 90 1 1000 2 0.2352 100 0.2867 15,000
Note: The optimal values are highlighted in bold.

Table 12. Statistical assessment of various algorithms applied to the multiple-disk clutch brake design
problem.

Algorithm Mean Best Worst Median Std Rank
IVYPSO 0.2352 0.2352 0.2352 0.2352 0 1

PSO 0.2381 0.2352 0.2638 0.2352 0.009 8
IVY 0.2354 0.2352 0.236 0.2352 0.0014 6
BOA 0.3149 0.2842 0.3308 0.3255 0.0234 11
WOA 0.2352 0.2352 0.2352 0.2352 0 1

GOOSE 0.2383 0.2352 0.2531 0.2352 0.006 9
HPSOBOA 0.3264 0.2731 0.3308 0.3308 0.0139 12

FDC_AGDE 0.2352 0.2352 0.2352 0.2352 0 1
dFDB_LSHADE 0.2376 0.2358 0.242 0.2371 0.002 7

NSM_BO 0.2352 0.2352 0.2352 0.2352 0 1
dFDB_SFS 0.2411 0.2352 0.2646 0.2352 0.0124 10

FDB_AGSK 0.2352 0.2352 0.2352 0.2352 0 1
Note: The optimal values are highlighted in bold.

6. Conclusions
The proposed IVYPSO algorithm effectively enhances both the global exploration

and local exploitation capabilities within complex search spaces by integrating ivy growth
variables and dynamic control factors into the classical PSO framework. The ivy growth
variables facilitate diverse search behaviors that prevent premature convergence, while the
dynamic control factors adaptively balance the emphasis between global and local searches
based on fitness evaluations.

Extensive experiments on 26 benchmark functions and three challenging engineering
optimization problems—including the multiple-disk clutch brake design and gas transmis-
sion compressor design—demonstrated that IVYPSO achieves superior solution quality
with rapid convergence. Comparative analyses against ten state-of-the-art optimization
algorithms further confirmed the algorithm’s superiority in convergence accuracy, stability,
and robustness, particularly in handling multi-modal and high-dimensional problems
where the global optimization ability is critical.

This study lays a foundation for further research in several directions. Our future
work will focus on extending IVYPSO to more complex engineering problems and multi-
objective optimization scenarios, especially those involving dynamic, multi-modal, and
high-dimensional environments. Moreover, the incorporation of adaptive parameter tuning
strategies is planned to optimize the design of ivy growth variables and dynamic control
factors, thereby improving the algorithm’s flexibility and performance across diverse
problem domains.



Biomimetics 2025, 10, 342 39 of 41

In addition, hybridizing IVYPSO with other intelligent optimization techniques, such
as genetic algorithms, differential evolution, and simulated annealing, to build multi-
fusion frameworks may offer significant performance enhancements. This would lever-
age complementary algorithmic strengths and further improve the solution quality and
convergence behavior.
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