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Abstract: Software testing identifies potential errors and defects in software. A crucial
component of software testing is integration testing, and the generation of class integration
test orders (CITOs) is a critical topic in integration testing. The research shows that search-
based algorithms can solve this problem effectively. As a novel search-based algorithm, the
sparrow search algorithm (SSA) is good at finding the optimal to optimization problems,
but it has drawbacks like weak population variety later on and the tendency to easily
fall into the local optimum. To overcome its shortcomings, a modified sparrow search
algorithm (MSSA) is developed and applied to the CITO generation issue. The algorithm
is initialized with a good point set strategy, which distributes the sparrows evenly in the
solution space. Then, the discoverer learning strategy of Brownian motion is introduced
and the Levy flight is utilized to renew the positions of the followers, which balances the
global search and local search of the algorithm. Finally, the optimal solution is subjected
to random wandering to increase the probability of the algorithm jumping out of the
local optimum. Using the overall stubbing complexity as a fitness function to evaluate
different class test sequences, experiments are conducted on open-source Java systems,
and the experimental results demonstrate that the MSSA generates test orders with lower
stubbing cost in a shorter time than other novel intelligent algorithms. The superiority
of the proposed algorithm is verified by five evaluation indexes: the overall stubbing
complexity, attribute complexity, method complexity, convergence speed, and running time.
The MSSA has shown significant advantages over the BSSA in all aspects. Among the nine
systems, the total overall stubbing complexity of the MSSA is 13.776% lower than that of
the BSSA. Total time is reduced by 23.814 s.

Keywords: integration testing; test order; sparrow search algorithm; stubbing complexity;
Brownian motion; Levy flight

1. Introduction
Software testing is a primary tool for ensuring software quality, detecting potential

errors and threats in software, and enhancing the user experience [1]. Software testing
consists of five stages: unit testing, integration testing, system testing, and acceptance
testing [2]. Integration testing verifies that there are no errors in the connectivity between
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units. The CITO generation problem, i.e., how classes are integrated into a system in a
certain order after they have been developed independently, is the key issue of integration
testing. Different test orders require different stubbing cost. When testing a module, it is
necessary to simulate the functionality of other modules called by the test module, where
the simulated functional modules are called test stubs. For example, in the ATM system,
which consists of 21 classes, if the class Bank is integrated first, and the class Bank depends
on the classes Status, ATM, and Money, test stubs need to be designed to simulate the
results of their calls to ensure that the class Bank is tested normally. A reasonable test
order can diminish the overall stubbing complexity, the cost of testing and the time of
testers. Therefore, before integration testing, how to arrange the order of class integration
so that the test cost of this test order is minimized as much as possible is a hot spot in
integration testing. The graph-based method [3,4] was initially used to solve the problem
of CITO generation. Kung et al. [5] first developed a graph-based approach to minimize
the number of required test stubs. Le Traon et al. [6] extracted frond edges from each
strongly connected component and removed all of the incoming edges of the node with the
maximal number of incoming or outgoing fronds. Hewett [7] presented an incremental
strategy by including appropriate class candidates into the test order one by one. The
CITO generation problem is an NP-complete problem for which it is difficult to gain an
accurate solution and can be solved by treating the CITO generation problem as an opti-
mization problem. Traditional optimization methods, such as gradient-based optimization
method [8], often have limitations in the face of large-scale, multi-constrained and nonlinear
engineering optimization problems. In recent years, search-based algorithms have been
widely applied to solve engineering optimization problems [9]. These search-based algo-
rithms, such as the genetic algorithm (GA) [10], the particle swarm optimization algorithm
(PSO) [11], the simulated annealing algorithm (SA) [12], the aquila optimizer (AO) [13],
smell agent optimization (SAO) [14], and the arithmetic optimization algorithm (AOA) [15].
Zhang et al. [16] applied PSO to solve the matter of generating CITO. Assunção et al. [17]
put forward a modified non-dominated sorting genetic algorithm for solving the problem
of integration and test order. The algorithm employs an elite strategy to retain the best
individuals that appear in the evolutionary process of each generation, uses the crowding
distance to maintain the diversity of the swarm, and searches for a balance between breadth
seeking and depth seeking, and ultimately selects the CITO according to the criterion
of Pareto optimal criteria. Guizzo et al. [18] employed a hyper-heuristic algorithm to
provide multiple optional combinations of mutation and crossover operations for each
evolutionary iteration, which ultimately resulted in a satisfactory order of class integration
test. Mariani et al. [19] developed an offline hyper-heuristic algorithm called GEMOITO
based on grammatical evolution (GE), which can automatically generate a multi-objective
evolutionary algorithm to solve the CITO generation problem. Zhang et al. [20] presented a
new fitness function to generate best solutions to better solve the CITO generation problems
using GA. Borner and Paech [21] introduced the search method of SA and used attribute
complexity, method complexity and test focus as optimization targets to determine an
optimal integration testing order.

Xue and Shen [22] presented SSA, a novel and effective swarm intelligence optimiza-
tion technique that draws inspiration from the feeding and anti-predator behaviors of
sparrows. The SSA has the merits of simple principle, few arguments, fast convergence
speed, easy implementation, etc., as well as being widely used in the fields of path plan-
ning [23], image classification [24], fault diagnosis [25], power load forecasting [26], etc.
However, the SSA has the defect of premature convergence when solving complex optimiza-
tion problems, especially in the late period of algorithm evolution, the population diversity
is lessened, and it is prone to fall into local extremes. Currently, to improve the compre-
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hensive performance of the SSA, researchers have developed a lot of improvement ways.
Li and Wu [27] introduced the opposition-based learning strategy in the sparrow swarm
initialization stage, and improved the population position update formula with cosine
inertia weight to enhance the optimization accuracy. Ma et al. [28] proposed an enhanced
multi-strategy SSA (EMSSA). The EMSSA uses three tactics to improve the SSA algorithm.
One is to use adaptive-tent chaos mapping to enable high diversity and larger randomness
in the initial group. The second is to introduce a weighted sine cosine algorithm (SCA) at
the defender position update to avoid the algorithm falling into a local optimum. Third, the
algorithm’s search ability is improved by perturbing the current optimal sparrow position
using the triangle similarity principle. A learning SSA was presented by Ouyang et al. [29]
to prevent the algorithm from reaching a local optimum. To strengthen the SSA’s global
search capabilities, the method implements the lens reverse learning strategy during the
discover stage. To lessen the blind search, an enhanced sine cosine technique is imple-
mented at the follower stage. Yan et al. [30] raised an improved SSA, which subdivides
the followers stage into two stages: global search and local search. The volatile helix factor
and the advanced iterative search strategy are added in the two stages, respectively. Liang
et al. [31] accelerated the convergence rate of the algorithm by adaptive weighting, and
the reformative boundary processing strategy improved the convergence precision of the
algorithm to some extent. Zhang and Ding [32] designed the chaotic SSA, which mainly
uses logical mapping, adaptive hyper-parameters and mutation operators to reinforce the
global search ability of SSA. A multi-strategy augmentation and quantum computing-based
SSA was presented by Wu et al. [33]. The algorithm demonstrates its great durability and
broad applicability by performing well in tackling many problems in various dimensions.

To reduce the testing cost of CITO generation, this paper adopts the search-based
method to solve the CITO generation problem. The basic idea of the search-based method
is as follows. Firstly, different initial populations are determined according to different
program scales, and the CITO is mapped to individuals in the population. Then, the fitness
function is established and the degree of the solution represented by each individual is
judged by the fitness function; Finally, determine whether the algorithm satisfies the end
condition or reaches the number of iterations. If not, execute the evolutionary operation
operator to generate a new population, re-judge the degree of superiority of the solution
represented by each individual through the fitness function, repeat the step until the end
conditions are met and reflect the individual with the highest value of the fitness function
as a test order to obtain the optimal test order. If satisfied, the generated class test sequence
is the optimal class test order. The method framework is shown in Figure 1.
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However, this approach can easily fall into local optimization when the number of
classes is large, increasing the search time. SSA, as a new search-based algorithm, has the
advantages of high convergence accuracy, fast convergence speed and strong robustness, and
has been applied in many optimization problems. The CITO problem can be transformed
into an optimization problem. This paper proposes a MSSA to generate the CITO problem.
Firstly, a good point set strategy is utilized to initialize the population so that the sparrows are
uniformly distributed in the solution space, which lays a good foundation for the evolution
of the algorithm. Secondly, the Brownian motion model is applied to the discover update
formula to obtain a larger foraging search range, and the Levy flight is used to update the
follower’s position to improve the local domain search, so as to balance the exploratory
and exploitative capacities of the algorithm. Then, a random wandering strategy is applied
to the optimal solution to avoid the algorithm from falling into the local extremes. Finally,
the overall stubbing complexity is designed as fitness function and the superiority of the
algorithm is verified by nine open source software systems.

The main contributions of this paper are as follows:

• A MSSA is developed, which combines the initialization of the good point set strategy,
the discoverer learning strategy of Brownian motion, the follower learning strategy
of Levy flight, and the optimal solution random wandering strategy. To our best
knowledge, this is the first time to introduce SSA to solve the CITO problem.

• The model of the MSSA to generate CITO is proposed, which includes four modules:
the static analysis module of the software system to be tested, the class test order map-
ping module, the MSSA running module, and the optimal Sparrow mapping module.

• Experiments are conducted on nine open-source Java systems to demonstrate the
superiority of the MSSA.

The rest of this paper is organized as follows. Section 2 provides the background
required, including CITO generation issue and basic SSA. Section 3 presents our proposed
method based on the MSSA for solving the CITO generation problem. The experiments
and results analysis follow in Section 4. Section 5 discusses the limitations of our approach.
Section 6 summarizes this work as well as points out the next research work.

2. Background
This section first introduces the CITO generation issue. Then, some necessary con-

cepts are presented, including test stubs, attribute coupling, method coupling, attribute
complexity, and method complexity. Finally, the BSSA is provided.

2.1. CITO Generation Issue

In object-oriented software systems, complex dependencies are created by message
passing between classes [34]. To achieve different functions, each class has a different level
of complexity and interaction with other classes. Important classes are more closely related
to other classes, and if they have errors, it is easier for them to propagate the errors to the
related classes and affect the function of the whole system. Therefore, in the integration
testing, an important issue is to determine the integration of classes and the sequence of
testing, which is called the CITO generation issue [35].

After determining the test order, software testers inevitably need to build test stubs.
In an object-oriented program, the class being depended upon is called the service class,
the class being served is called the client class, and the client class depends on the service
class. In integration testing, if the service class is tested before the client class, there is no
need to build test stubs because the service class has already been tested. When the client
class is integrated first and the service class has not yet been integrated, testers need to
build test stubs to simulate the functionality associated with the service class. Constructing
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suitable and correct test stubs is very costly, not only time-consuming and labor-intensive,
but also requires a high level of professionalism on the part of the testers. Reducing the
number of test stubs or the complexity of test stubs, and building the appropriate test stubs
at the lowest possible cost can not only reduce the workload, but also improve the testing
efficiency. The problem of CITO generation is to design an optimal order for integrating and
testing classes. This order means that the number of test stubs created and the complexity
of the test stubs are reduced to the minimum possible.

Suppose that a test system consists of n classes C1, C2, . . . , Cn, the CITO generation
issue can be described as finding a class integration order that minimizes the overall cost
of test stubs, i.e., to look for a class arrangement O{1, 2, . . . , n} composed of n classes to
minimize the overall cost of the test stubs that need to be constructed when testing according
to the CITO O(CO1, CO2, . . . , COn)(n > 1). The overall cost of test stub stubcos t(CO1...k)

for test order CO1...k = (CO1, CO2, . . . , COk) is shown in Equation (1).

stubcos t(CO1...k) =
k

∑
i=1

stub(COi, COi−1, . . . , CO1) (1)

where stub(COi, COi−1, . . . , CO1) is the cost of the test stub required to integrate class COi

into class collection {COi−1, . . . , CO1}. stubcos t(CO1...k) is the overall cost of test stub.

2.2. Background Concepts

Definition 1. Test stub. Given two classes i and j, class i depends on class j. When class i is tested
in integration, but class j has not yet been tested in integration, class j is not available during the
testing of class i. At this time, a simulation component is needed to simulate the behavior of class j,
which is called a test stub.

Test stub is generally categorized into generic stub and specific stub. Generic stubs are
usually used to imitate the behavior of an entire class, which tends to add extra overhead,
while specific stubs imitate a specific part of the class, such as a single method needed to
use the class, which cannot be reused. Figure 2 gives a program that includes four classes,
A, B, C, and D. The arrows indicate dependencies. Class A depends on classes B and D,
class B depends on class D, class C depends on class B, and class D depends on class C.
Table 1 lists the generic stubs and specific stubs required by the program.
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Table 1. The stubs required by the four-class program.

Generic Stubs Specific Stubs

B B for A
D D for A

D for B
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Assume that the test order is (A, B, C, D). Since class A depends on classes B and
D, and class B and class D need to be integrated after class A, a generic stub modeling
class B and a generic stub modeling class D are needed for integration of class A. Class B
depends on class D, and since a generic stub for class D has already been established, it
does not need to be constructed again. Similarly, class C depends on class B, and since a
generic stub for class B has already been built, there is no need to build it again. Class D
depends on class C, which has been integrated and does not need additional test stubs. To
sum up, for the test order (A, B, C, D), a total of two generic stubs need to be constructed,
modeling class B and class D, respectively. Since class A depends on classes B and D, when
integrating class A, it is necessary to build two specific stubs to simulate the method called
by class A in class B and the method called by class A in class D, respectively. Similarly,
class B depends on class D. Construct the specific stub of class D for class B. To summarize,
for the (A, B, C, D) test order, three special stubs need to be constructed, i.e., class B for
class A, class D for class A, and class D for class B.

Definition 2. Attribute coupling. If class i depends on class j, there are references to attributes
declared locally by class j in the declaration lists of some methods of class i, or there are pointers to
instances of class j in class i, then class i and class j have attribute coupling.

Definition 3. Method coupling. If class i depends on class j, and class i calls methods of class j,
then class i and class j have method coupling.

Definition 4. Attribute complexity. If class i depends on class j and there exists attribute coupling
between class i and class j, then the value of attribute dependency of class i on class j is called
attribute complexity, denoted as A(i, j).

Definition 5. Method complexity. If class i depends on class j and there is method coupling between
class i and class j, then the method dependency value of class i on class j is called method complexity,
denoted as M(i, j).

2.3. The Basic Sparrow Search Algorithm

Various types of creatures in nature can provide a source of ideas for human devel-
opment, such as swarm intelligence algorithms, which simulate the group behavior of
organisms in nature, and better adapt to the environment through the mutual cooperation
between individuals, and then can constantly use the collective behavior for comprehensive
optimization. The basic SSA (BSSA) is a swarm intelligence optimization algorithm that
simulates the foraging mechanism of sparrows [22]. The model diagram of the BSSA is
shown in Figure 3. The algorithm model contains three types of sparrow individuals,
i.e., discoverers, followers and defenders [36]. The discoverer is responsible for finding
the location with more abundant food in the whole search area and providing foraging
direction for the followers. The follower will constantly monitor the discover, and as soon
as the discover finds food, the follower will follow the discover to grab the food. Defenders
are responsible for monitoring the feeding area, and when a predator is present around
the foraging area, the defenders will immediately issue an early warning, and the entire
population will immediately engage in anti-predator behavior and fly to a safe area.
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Suppose that a population consists of N sparrows in a D-dimensional search space.
The position of the i-th sparrow in the D-dimensional space is Xi = [xi1, . . . xid, . . . xiD],
i = 1, 2, . . . , N. The fitness of the sparrow is denoted as F = ( f (X1), f (X2), . . . , f (Xn)).

The positions of discoverers are modified by Equation (2).

Xt+1
i,j =

{
Xt

i,j· exp(− i
α·Tmax

) i f R2 < ST
Xt

i,j + Q·L i f R2 ≥ ST
(2)

where t is the current iteration, and Tmax is the maximum number of iterations.
Xi,j represents the current position of the i-th sparrow in the j-th dimension. α ∈ (0, 1] is a
random number. Q indicates a random number obeying the standard normal distribution,
and L means a 1 × D matrix with each element is one. R2 ∈ [0, 1] and ST ∈ [0.5, 1] are
alarm value and safety threshold, respectively. When R2 < ST, there are no predators
around the feeding area, and the discoverers can execute a thorough search mechanism.
When R2 ≥ ST, some individual have identified the predator and raised the alarm to other
companions, and all sparrows should move rapidly to other safe places.

The positions of followers are updated by Equation (3).

Xt+1
i,j =

 Q· exp(
Xworst−Xt

i,j
i2 ) i f i > N/2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

P

∣∣∣·A+·L i f i ≤ N/2
(3)

where Xp represents the current optimal location of discoverers. Xworst is the worst location
of sparrows. The parameter A is a 1 × D matrix in which each element is assigned 1 or −1
randomly, and A+ = AT(AAT)

−1. When i > N/2, the follower i does not obtain any food,
is hungry, and needs to move to gain food. When i ≤ N/2, the follower i will fly around
the Xp for foraging.

To defend against predators, 10 to 20 percent of the sparrows from population are picked
up as defenders randomly, and their positions are calculated as shown in Equation (4).

Xt+1
i,j =

Xt
best + β·

∣∣∣Xt
i,j − Xt

best

∣∣∣ i f fi > fg

Xt
i,j + K·(

Xt
i,j−Xt

worst
( fi− fw)+ε

) i f fi = fg

(4)

where Xbest expresses the current best location of the population. β indicates the step-size
control parameter that follows a normal distribution with a mean value of zero and a
variance of one. K ∈ [−1, 1] represents a random number. ε is an arbitrarily small constant
to avoid the denominator from zero. fi is the fitness value of i-th sparrow, while fg and fw

are the best and worst fitness values of the current sparrow population, respectively. fi > f f
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means that the sparrow is at the edge of the population and is vulnerable to predators.
fi = fg demonstrates that the sparrows in the center of the population are aware of the
danger and need to fly to other sparrows to avoid being attacked by predators.

Figure 4 illustrates the flowchart of the BSSA, while its pseudo-code is provided in
Algorithm 1.
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Algorithm 1: Pseudo-code of the BSSA
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3. Methodology
In this section, the proposed MSSA is elaborated and applied to the CITO generation

problem. In Section 3.1, the initialization strategy based on good point set is proposed. The
discoverer learning strategy based on Brownian motion and the follower learning strategy
based on Levy flight are presented in Section 3.2. In Section 3.3, the optimal solution
random wandering strategy is developed. The fitness function is designed in Section 3.4.
Section 3.5 details the model for generating CITO using the MSSA.

3.1. The Initialization Strategy Based on Good Point Set

The BSSA initialize the population in a random way, which leads to the randomness of
the distribution of the population, and easily leads to the SSA falling into the local optimum.
Due to the stochastic function, too many sparrows are generated at the edge of the search
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space, resulting in loss of population diversity and insufficient stability of the algorithm. To
address this problem, this paper uses the good point set technique. The sparrow swarm is
initialized by the good point set strategy, so that the initial sparrow population can be more
evenly distributed in the search space to improve the convergence speed of the algorithm.

Two mathematicians, Hua Luogeng and Wang Yuan, came up with the approach of
good point set. Selecting points with a good point set is much less biased than randomly
selecting points [37]. The principle of a good point set is as follows.

Let Gm be the unit cube in m dimensional Euclidean space, that is x ∈ Gm,
x = (x1, x2, . . . , xm), where 0 ≤ xi ≤ 1, i = 1, 2, . . . , m. Let r ∈ Gm, the deviation φ(n) of the

shape of Pn(k) = (
{

r(n)1 ·k
}

,
{

r(n)2 ·k
}

, . . . ,
{

r(n)m ·k
}
), 1 ≤ k ≤ n, satisfy φ(n) = C(r, ε)n−1+ε,

where C(r, ε) is a constant that solely affects r, ε(ε > 0), then Pn(k) is called the set of good
points, and r is called a good point.

Equation (5) represents mapping the good points on Gm to the sparrow search space.

Xi,j =
{

r(i)j ·k
}
·(ubj − lbj) + lbj (5)

where Xi,j is the position information of the i-th sparrow in the j dimension. ubj and lbj are
the upper and lower bounds of the j dimension, respectively.

Algorithm 2 gives the pseudo-code to initialize sparrow population with good point
set strategy.

Algorithm 2: Pseudo-code for initializing population with a good point set
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1 Begin 
2  Input: population size N , dimension of the search space D ; 
3  Output: population location X ; 
4  For Ni :1=  do 
5     For Dj :1=  do 

6         32 += Dp ; 

7         )/2cos(2)( pjjr π= ; 

8 
 

)1,)(mod()( ijrlbublbX j
i

j
i

j
i

j
i ×−+= ; 

9      End for 
10  End for 
11 End 

  

To verify the superiority of the good point set initialization strategy, set the population
size to 100, and initialize the sparrow population in two-dimensional space. Figure 5a,b show
the effect diagrams of adopting the good point set initialization and the traditional random
initialization, respectively. It can be seen intuitively from Figure 5 that the individuals initialized
by the random approach appear the phenomenon of individual aggregation, which can not
effectively traverse the whole search space, while the sparrow population initialized by the
strategy of the good point set is more uniformly distributed, which can further improve the
convergence rate of the algorithm and avoid falling into the local optimum.
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3.2. Brownian Motion and the Levy Flight Strategy
3.2.1. Brownian Motion and Levy Flight

Brownian motion (BM) refers to the ceaseless, never-ending irregular motion of parti-
cles suspended in a liquid or gas, which plays a vital role in the scientific field [38]. BM is a
stochastic process whose step size depends on a Gaussian distributed probability function
with mean zero and variance one, which is able to cover the search space with a more
uniform and controllable step size. The probability density function of the BM at the point
x is shown in Equation (6).

fB(x; µ, σ) =
1√

2πσ2
exp(− (x − µ)2

2σ2 ) =
1√
2π

exp(− x2

2
) (6)

where the step size of the particle motion is determined by the mean 0, i.e., µ = 0, and the
variance 1, i.e., σ = 1.

Levy flight (LF) is a stochastic process invented by French mathematician Paul Levy in
the 20th century. During Levy flight, the step size in each step obeys the Levy distribution,
which has the characteristics of a heavy-tailed distribution, i.e., higher tail probabilities [39].
The Levy flight typically moves at smaller steps, but occasionally larger jumps can oc-
cur [40]. The probability density of the stabilization process of the Levy flight is defined as
shown in Equation (7).

Lα,γ(x; α, γ) =
1
π

∫ ∞

0
e−γpα

cos(px)dp (7)

where r is the scale factor r > 0, and α represents the distribution exponent, 0 < α ≤ 2.
The trajectory diagrams of BM and Levy flight are shown in Figure 6.
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As can be seen from Figure 6, the BM model has a wider coverage of the motion
trajectory and a more uniform step size in the control area. LF consists of a mixture of many
short steps and occasional long steps. This combination allows for local exploration and
global exploration.

3.2.2. The Discoverer Learning Strategy Based on Brownian Motion

The discoverer should be given a larger foraging search range than the followers
because the BSSA primarily depends on the discoverer to locate food. The discoverer is
also in charge of finding food for the whole population and informing all of the followers
about foraging directions. From the Equation (2) in the BSSA, when R2 < ST, it indicates
that the foraging habitat is free of predators, allowing the discoverer to conduct a thorough
search. If R2 ≥ ST, the current environment is dangerous, and some sparrows have already
detected the predator and alerted the other individuals. At this time, all sparrows need to
fly quickly to other safe places for finding food. In the BSSA, when the warning value is
reached, the discoverer adopts the uniformly distributed random number step size factor
to just move Q units, where Q is a random number conforming to the normal distribution,
which leads to the problem of excessive randomness. If the step size of the movement
is relatively too long, the discoverer will exceed the search boundary frequently, leaving
a large number of sparrows in the entire swarm at the boundary and losing the original
information. The BM model has a wider coverage and a more uniform step size, which
can explore farther regions. To resolve the issue that the search strategy of the discoverer
is too single and random, this paper introduces the BM step-size strategy to change the
discoverer’s location, and the way it changes is shown in Equation (8).

Xt+1
i,j =

{
Xt

i,j· exp(− i
α·Tmax

) i f R2 < ST
Xt

i,j + PR(RB(Xt
best − RBXt

i,j)) i f R2 ≥ ST
(8)

where R is the random number in the interval (0, 1) and RB represents the BM step, P = 1/2.
R2 ∈ [0, 1] and ST ∈ [0.5, 1].

BM is suitable for long-distance random search, while Levy flight with smaller step
size can efficiently and deeply search nearby ground neighborhoods, and with longer step
size can explore other areas. To better balance the exploration and exploitation capabilities
of the algorithm, this paper combines BM with the Levy flight model.

3.2.3. The Follower Learning Strategy Based on Levy Flight

According to the BSSA model, it can be seen that the follower constantly monitoring
the discoverer. When the follower perceives that the discoverer has searched for a better
food area, they will fly to the vicinity of the discoverer in large numbers, which leads
to too high population density near the discoverer, and thus the algorithm is prone to
fall into local extreme values. Levy flight is a special kind of random roaming, whose
step size follows Levy distribution, which can generate large perturbations with a certain
probability, thus enhancing the global search ability of the algorithm. The model can
produce a variety of step sizes, and has certain ergodicity and randomness. Through
high-frequency close detection and low-frequency remote detection, Levy flight is able to
balance local development and global exploration in the search space, effectively reducing
the risk of algorithms falling into local optimal. To avoid the algorithm falling into local
extreme values, this paper proposes a follower learning strategy based on Levy flight,
which improves the evolutionary formula of the follower by means of the Levy flight
model. In this way, not only the search scope of the algorithm is expanded, but also the
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algorithm is avoided to fall into the local optimal. The description of follower position
update based on Levy flight is shown in Equation (9).

Xt+1
i,j =

 Q· exp(
Xworst−Xt

i,j
i2 ) i f i > N/2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

P

∣∣∣· θ

|ω|1/γ i f i ≤ N/2
(9)

where
θ ∼ N(0, σ2

µ) , ω ∼ N(0, σ2
ν ) (10)

where σν = 1.

σµ =

{
Γ(1 + γ) sin(πγ/2)

Γ[(1 + γ)/2]γ2(γ−1)/2

}1/γ

(11)

where γ = 1.5, Γ(x) = (x − 1)!, x belongs to the set of natural numbers.
The feature of small-step tracking of the Levy flight model can help the algorithm to

augment the local domain search, so that the algorithm can fully explore in a more optimal
region and improve the accuracy of the search. Moreover, the features of long jumps of
the model can perturb the population position and the stable path of the algorithm, which
help the algorithm to achieve local search in a wider area, and help the algorithm to jump
out of the local optimum and increase the diversity of the solution. Therefore, the follower
learning strategy based on Levy flight enriches the diversity of population positions, guides
other sparrows to find better positions, and effectively enhances the running efficiency.

3.3. The Optimal Solution Random Wandering Strategy

Although the discoverer learning strategy based on BM and the follower learning
strategy based on LF can maintain the exploration and development capacity of the al-
gorithm, it may still experience premature convergence. In the late iteration of the BSSA,
the sparrows gradually approach the optimal individual, and the diversity of the group
decreases, which can easily fall into the local optimum. To avoid this problem, this paper
proposes the optimal solution random wandering strategy, which performs Cauchy random
wandering, differential evolution random wandering, and Levy flight random wandering
for the individual with the best fitness value in the group to increase the possibility of the
algorithm to jump out of the local optimum.

The Cauchy distribution shows a tendency of protruding in the middle, flattening at
both ends and descending gently, and this perturbation step size can make the population
change more evenly, which improves the ability to jump out of the local optimal solution
and at the same time ensures the convergence ability of the algorithm. The method of
Cauchy random wandering is defined as shown in Equation (12).

Xd
best

′
= Xd

best + F(c; c0, µ)× (Xd
r1 − Xd

r2) (12)

F(c; c0, µ) = 0.5 +
1
π

arctan(
c − c0

µ
) (13)

where Xd
best is the d-dimensional value of the globally optimal sparrow found so far, and

Xd
best

′
is the optimal sparrow after performing Cauchy random wandering. r1 and r2 are

randomly selected from the entire sparrow group, and r1 ̸= r2. µ represents the scale
parameter and µ > 0. c is the random position and c0 is the location parameter of the
peak value of Cauchy distribution. F(c; c0, µ) is a random number produced by the Cauchy
distribution function with µ = 1 and c0 = 0, and its calculation formula is shown in
Equation (13).
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Differential evolution algorithm is iterative through the variation, crossover and
selection operations of the population, which makes the algorithm converge to the global
optimum, and has the advantages of simplicity and efficiency [41]. To boost the convergence
rate of the algorithm, the differential evolution random wandering strategy proposed is
defined as shown in Equation (14).

Xd
best

′
= Xd

best + rand × (Xd
r1 − Xd

r2) + rand × (Xd
r3 − Xd

r4) (14)

where rand is a random number at [0, 1]. r1, r2, r3, and r4 are randomly selected from the
entire sparrow population, and r1 ̸= r2 ̸= r3 ̸= r4.

The Levy flight random wandering strategy is shown in Equation (15).

Xd
best

′
= Xd

best + β1 × L(β2)× (Xd
r1 − Xd

r2) (15)

where r1 and r2 are randomly selected from the whole population, and r1 ̸= r2. µ and
v denoted as the normal distribution.

β1 = 0.01 +
1

1 + e(40 t
Tmax )−20

(16)

L(β2) =
µ∣∣∣v|1/β2

(17)

µ ∼ N(0, σ2
µ) , v ∼ N(0, σ2

ν ) (18)

where σv = 1, σµ is shown in Equation (11).
The specific steps of the optimal solution random wandering strategy are shown in

Algorithm 3.

Algorithm 3: Pseudo-code for random wandering optimal solution
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( ) ( )22
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The specific process of the strategy for optimal solution random wandering is as follows.
Step 1: Record the current number of iterations t;
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Step 2: If the number of iterations t can be divided by 3, the location of the best sparrow
is wandered according to Equation (12);

Step 3: If the number of iterations t is divisible by 3 and the remainder is 1, the best
sparrow wanders according to Equation (14);

Step 4: If the number of iterations t is divided by 3 and the remainder is 2, the best
sparrow wanders according to Equation (15).

In the process of the MSSA search, along with the number of iterations, the introduction
of three optimal solution random wandering strategies can better avoid the algorithm from
falling into local extremes. Among them, Cauchy wandering allows the step length of the
best sparrow move at a constant speed, Levy flight wandering can make the step length of
the optimal sparrow increase, and Differential evolution wandering can reduce the step
length of the optimal sparrow. The three random wandering strategies cooperate with each
other to avoid premature convergence of the algorithm.

3.4. Construction of the Fitness Function

In object-oriented software systems, due to the complex dependencies between classes,
one needs to spend lots of effort to establish test stubs to simulate the service required by the
object under testing, and the construction of test stubs is a major overhead in determining
the test order of class integration. Test stub complexity SCplx is used to measure the cost
of building a test stub. The lower the complexity of the test stub, the less costly the test. For
two classes i and j with dependencies, if test stubs need to be constructed, the individual
test stub complexity SCplx(i, j) is the weighted sum of squares of the attribute complexity
A(i, j) and the method complexity M(i, j), as shown in Equation (19).

SCplx(i, j) =

√
WA ×

(
A(i, j)

)2
+ WM ×

(
M(i, j)

)2
(19)

where SCplx is test stub complexity. WA and WM are the weights of attribute complexity
and method complexity, and WA + WM = 1. A(i, j) and M(i, j) denote the results after
normalization of attribute complexity and method complexity, respectively. The normalization
is performed to allow comparability between the attribute complexity and method complexity.
The calculation formulas of A(i, j) and M(i, j) are shown in Equations (20) and (21).

A(i, j) =
A(i, j)

A(i, j)max − A(i, j)min
(20)

M(i, j) =
M(i, j)

M(i, j)max − M(i, j)min
(21)

where A(i, j) is the attribute complexity and represents the total number of attribute
dependencies between classes i and j. M(i, j) is the method complexity, representing the
total number of method dependencies between class i and class j.

For a test order O, the overall stubbing complexity is shown in Equation (22).

OCplx(O) =
n

∑
i=1,j=1

SCplx(i, j) (22)

where n represents the total number of classes in the test order.
When solving the CITO generation problem using the MSSA, the quality of the sparrow is

evaluated by the individual fitness function, where the sparrows represents the class integration
test orders. The cost of obtaining the CITO is measured by the overall stubbing complexity.
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Therefore, the quality of the sparrow can be evaluated by the overall stubbing complexity. The
fitness function f itness of the sparrows is represented as shown in Equation (23).

f itness = OCplx(O) =
n

∑
i=1,j=1

SCplx(i, j) (23)

3.5. The Modified Sparrow Search Algorithm for the Class Integration Test Order Generation Model

The CITO generation method of the MSSA mainly includes four modules, as shown in
Figure 7.
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(1) The static analysis module of the software system to be tested

The system to be tested is statically analyzed to obtain the inter-class dependencies,
including class name, member variable information, and member method information, and
the attribute complexity A(i, j) and method complexity M(i, j) between classes are calculated.

(2) The class test order mapping module

All the classes contained in the source system are arranged, and the class test orders
is mapped to sparrows in the sparrow population, so that each position of a sparrow
corresponds to a class test order. The specific steps for mapping a class test order to the
position of a sparrow individual are shown in Algorithm 4.
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Algorithm 4: Pseudo-code for mapping the class test order to the individual position
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In Algorithm 4, line 4 initializes the sparrow positions and line 5 obtains the number
of classes in the test order. Lines 6 through 10 map sparrow positions for n classes. The
position of the i-th class in list_classes obtained in lines 7 and 8, which in turn obtains the
index value of the i-th class, and line 9 finds the class information of the i-th position in a
CITO. Finally, the position of a CITO in a one-dimensional space is obtained.

(3) The MSSA running module

The parameters of the MSSA are set and the sparrow swarm is initialized. The fitness
function is calculated and the position of the sparrow is recorded. The optimal position of
the sparrow is selected through the evolutionary update of the MSSA. The flowchart of the
MSSA is shown in Figure 8, and the detailed steps of the MSSA are shown in Algorithm 5.
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(4) The optimal sparrow mapping module

According to the mapping relationship, the optimal sparrow is mapped to its corre-
sponding class test order, then the test order is the optimal test order.

The specific steps for mapping sparrow positions to the class integration test orders
are shown in Algorithm 6.

In Algorithm 6, line 4 generates the list_classes of classes arranged in ascending order
according to the sum of the number of attributes and the number of methods and counts
its number. Lines 5 to 11 compute the order of integration test for the class corresponding
to the sparrow position. Lines 6 and 7 obtain the position of the class in the class chain list
by dividing the corresponding position information by the number of class permutations
at that position. Line 8 adds the class to the liked list list_order, and line 9 deletes the class
from the chain list. Line 10 obtains the position information of the remaining classes, and
loops through the remaining classes to obtain the position information of the remaining
classes. Lines 12 and 13 add the last class to the CITO list_order.
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Algorithm 6: Pseudo-code for mapping the individual position to the class test order
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4. Experiments
This section describes the experimental evaluation of CITO generated by the MSSA

proposed in this paper. Section 4.1 provides the information about the software system
to be tested. Section 4.2 introduces the experimental environment and the parameter
setting of the comparison algorithm. Section 4.3 presents the experimental results of
this paper and analyzes the experimental results from the aspects of the overall stubbing
complexity, attribute complexity, method complexity, convergence speed, running time,
and effectiveness.

4.1. Experimental Subjects

To verify the performance of the proposed method on the CITO generation problem,
nine Java systems are selected as experimental subjects, and the system details are shown
in Table 2. Columns 1 to 6 in the table indicate that the program name, program description,
number of classes included in the program, number of dependencies between classes,
number of loops, and number of lines of code (LOC), respectively. The data in the table
can be analyzed by Soot (http://www.sable.mcgill.ca/soot/, accessed on 2 May 2024).
Elevator is a simulation system for elevator operation. SPM is a system used to simulate
security patrol and monitoring. ATM is a system that simulates the automatic withdrawal
of money from a bank. DEOS is an operating system kernel simulator. ANT (http://jakarta.
apache.org, accessed on 2 May 2024) is a utility to update and build java applications.
DEOS is an operating system kernel simulator. Email-spl (Email) is an email tool. BCEL
(http://jakarta.apache.org/bcel/index.html, accessed on 2 May 2024) is a user-friendly
system for analyzing, creating and manipulating Java class files. DNS (http://www.xbill.
org/dnsjava/, accessed on 2 May 2024) is a Java-based domain name service system.
Notepad_spl (Notepad) is a code editor. Elevator, DEOS, Email and Notepad come from
the open source program systems on the SIR (software-artifact infrastructure repository,
http://sir.unl.edu, accessed on 2 May 2024) web site. SPM, ATM, ANT, BCEL and DNS are
derived from Briand et al. [42] and other benchmark systems. The programs under testing

http://www.sable.mcgill.ca/soot/
http://jakarta.apache.org
http://jakarta.apache.org
http://jakarta.apache.org/bcel/index.html
http://www.xbill.org/dnsjava/
http://www.xbill.org/dnsjava/
http://sir.unl.edu
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come from different application fields with different functionalities. The number of lines
of code ranges from 934 to 6710, the number of classes ranges from 12 to 65, the number
of dependencies ranges from 27 to 294, and the number of dependency loops ranges from
4 to 416,091. The variability in the complexity of these programs makes the test subjects
well representative. For the larger and more complex system, it can be decomposed into
several subsystems by decomposition, and the class test order for each subsystem can be
found separately.

Table 2. Evaluation datasets.

System Description Classes Dependencies Cycles LOC

Elevator Classic elevator scheduling algorithm 12 27 23 934
SPM Security patrol monitoring 19 72 1178 1198
ATM Automated teller machine 21 67 30 1390
DEOS Operating system kernel simulator 25 73 520 2215
ANT A Java based build tool 25 83 654 4093
Email Email tool 39 61 38 2276
BCEL Byte code engineering library 45 294 416,091 3033
DNS Domain name system 61 276 16 6710

Notepad Code editor system 65 141 227 2419

Taking the ATM system as an example, there are 21 classes in this program and the code
occupies 1390 lines. The information of the classes of this system is shown in Table 3. The
static analysis of the ATM system using Soot tool yields inter-class attribute dependency
values and method dependency values, as shown in Tables 4 and 5. The numbers in
Tables 4 and 5 corresponds to the numbers in Table 3. The vertical number in the table
represents the source class, the horizontal number represents the target class, and the cross
value between the two represents the dependency value between them. For example,
(2,1) = 2 in Table 4 represents that the attribute dependency value of No. 2 Keyboard class
and No. 1 Display class is 2. In Table 5, (2,1) = 1, which means that the method dependency
value of No. 2 Keyboard class and No. 1 Display class is 1, etc., and a space indicates that
there is no attribute and method dependency between the two classes. The space in the
table indicates that there is no attribute and method dependency between the vertical and
horizontal classes.

Table 3. ATM system information.

Number Class Number Class

0 ReceiptPrinter 11 WithdrawlTransaction
1 Display 12 DepositTransaction
2 Keyboard 13 TransferTransaction
3 CardReader 14 InquiryTransaction
4 OperatorPanel 15 GUILayout
5 EnvelopeAcceptor 16 QuestionDialog
6 CashDispenser 17 ATMMain
7 ATM 18 ATMApplet
8 Bank 19 Money
9 Session 20 Status

10 Transaction

Table 6 shows the information of inter-class dependencies of the system under testing,
including the maximum value, mean value and total number of dependencies of attribute
dependencies and method dependencies.
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Table 4. Attribute dependence of the ATM system.

Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1
1 1
2 2 1
3 2
4 2 1
5
6
7 13 9 3
8 13 8
9 13 13 4
10 13 13 9 2
11 13 13 9 1 2
12 1 2
13 13 13 9 1 1
14 13 13 9 1 1
15
16 13 13 9
17 1
18 1
19
20

Table 5. Method dependence of the ATM system.

Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 4
1
2 1 1
3 2
4 2 1
5
6
7 1 2 1 3
8 7
9 7 2 2 2 2 2
10 2 1 2
11 4 4 2 1
12 4 4 2
13 3 3 2
14 2 3 2
15
16 1
17 1
18 1
19
20
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Table 6. Dependencies of the system under testing.

System
Attribute Dependencies Method Dependencies

Total
Maximum Mean Total Maximum Mean Total

Elevator 4 1.62 34 25 6.32 158 192
SPM 21 7.97 462 8 2.41 135 597
ATM 13 6.59 277 7 2.39 86 363
ANT 31 9.14 585 14 2.9 177 762
DEOS 4 2.04 26 15 3.28 223 249
Email 22 3.13 72 40 4.18 222 204
BCEL 8 2.52 454 4 1.55 369 823
DNS 10 4.35 766 8 1.92 328 1094

Notepad 8 1.88 102 37 1.74 181 283

4.2. Experiment Settings

The experimental running environment is Intel i7 CPU 2.6 GHz (Intel Corporation,
Santa Clara, CA, USA), RAM 8 GB, Windows 10 operating system, miniconda3 interpreter
4.10.3, PyCharm 2021.2.3 development environment. To verify the performance of the
proposed approach, the PSO algorithm [11], the cuckoo search algorithm (CS) [43], the
firefly algorithm (FA) [44], the bat algorithm (BA) [45], the SCA [46], the harris hawk
optimization algorithm (HHO) [47], the BSSA [48], and the MSSA are applied in the
generation of the CITO. Comparative analysis is conducted from five aspects: the overall
stubbing complexity, attribute complexity, method complexity, convergence speed, and
running time. To ensure the effectiveness of the comparison algorithm, some parameters
of the proposed algorithm in this paper are set the same as other algorithms, and the
experimental parameter setting are as shown in Table 7.

Table 7. Various comparison algorithm parameter settings.

Algorithms Parameters

PSO wmax = 0.9 wmin = 0.4 c1 = 2 c2 = 2
CS Pa = 0.02 α = 0.15 λ = 1.5
FA β0 = 2 γ = 1 α = 0.2
BA a = 0.9 γ = 0.7 fmin = 0 fmax = 2

SCA a = 2 r2 ∈ [0, 2π] r3 ∈ [−2, 2] r4 ∈ [0, 1]
HHO E0 ∈ [−1, 1] J ∈ [0, 2] β = 1.5
BSSA PD = 0.2 SD = 0.2 ST = 0.8
MSSA PD = 0.2 SD = 0.2 ST = 0.8

4.3. Experimental Results and Analysis
4.3.1. The Overall Stubbing Complexity

To guarantee experiment fairness, each algorithm is solved twenty times on its own.
There can be a maximum of 200 iterations and a population size of 100. When calculating
the fitness function, the values of both WA and WM are set to 0.5. The best value, worst
value, mean value and standard deviation (SD) of each algorithm after running 20 times
on 9 systems are recorded, and the experimental results are shown in Table 8 and Figure 9.
In Table 8, the first column is the experimental subject, the second column represents the
evaluation metrics of the algorithms, and columns 3 to 10 show the experimental results of
various comparative algorithms. For each experimental subject, the first row is the average
value of the overall stubbing complexity obtained by the algorithm, the second row is the
optimal value of the overall stubbing complexity obtained by the algorithm. The third row
shows the worst value of the overall complexity of test stubs obtained by the algorithm,
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and the fourth row shows the standard deviation of the optimization results. In Figure 9,
the horizontal axis represents the individual experimental objects, i.e., ANT, ATM, BCEL,
DEOS, DNS, Elevator, Email, Notepad, SPM, nine software systems. The vertical axis
represents the overall complexity of the corresponding test stubs for the class test orders
generated by the PSO, the CS, the FA, the BA, the SCA, the HHO, the BSSA and the MSSA.
Meanwhile, Table 9 is the result of the Wilcoxon signed rank test on the data in Table 8. The
symbols “+”, “−”, and “=“ indicate that when comparing two algorithms, the performance
of the first algorithm is better, worse, or equal to that of the second algorithm. The “gm”
represents the performance measure of the first algorithm relative to the second algorithm.

The lower the complexity of the test stub, the less expensive the test will be. As can
be seen from Table 8, the overall stubbing complexity of the MSSA in generating CITO on
nine test systems is lower than that of the BSSA, the PSO algorithm, the FA, the BA, and the
HHO algorithm. The search performance of the MSSA is better than that of the BSSA, which
indicates that the improvement strategy of this paper for the BSSA is effective, and that the
optimization results of the MSSA can outperform most of the novel intelligent algorithms.

Table 8. Comparative results of the overall stubbing complexity.

System Statistics
Algorithm

PSO CS FA BA SCA HHO BSSA MSSA

Elevator

Mean 1.86 1.84 2.03 2.20 1.85 3.52 2.16 1.84
Best 1.79 1.76 1.85 1.97 1.76 1.94 1.79 1.75

Worst 1.95 1.89 2.27 2.37 1.93 3.91 2.72 1.91
SD 0.05 0.04 0.09 0.13 0.04 0.54 0.06 0.04

SPM

Mean 3.75 3.37 4.03 4.88 3.82 3.61 4.04 3.45
Best 3.40 2.99 3.35 4.05 3.58 2.99 3.52 3.23

Worst 4.16 3.80 4.99 6.37 4.19 4.08 4.56 3.89
SD 0.22 0.27 0.46 0.62 0.19 0.30 0.33 0.23

ATM

Mean 2.53 2.54 3.30 3.83 2.65 2.69 3.12 2.43
Best 2.17 2.29 2.26 3.02 2.32 2.27 2.31 2.19

Worst 2.82 2.74 3.52 4.90 2.94 2.98 3.32 2.53
SD 0.16 0.12 0.17 0.44 0.18 0.21 0.25 0.11

ANT

Mean 2.59 2.45 2.99 3.41 2.39 2.55 2.78 2.54
Best 2.16 2.14 2.13 2.69 2.17 2.31 2.54 2.27

Worst 2.79 2.65 2.92 4.36 2.57 2.82 3.01 2.76
SD 0.15 0.14 0.21 0.48 0.12 0.15 0.18 0.15

DEOS

Mean 3.81 3.63 4.32 4.94 3.71 3.86 4.02 3.59
Best 3.28 3.20 3.96 4.18 2.92 3.33 3.79 3.33

Worst 4.18 4.02 4.84 5.39 4.05 4.46 4.27 3.86
SD 0.28 0.24 0.62 0.36 0.33 0.28 0.41 0.29

Email

Mean 0.81 0.73 1.33 1.20 0.78 0.81 0.92 0.72
Best 0.66 0.65 1.10 1.05 0.70 0.62 0.68 0.54

Worst 0.89 0.81 1.85 1.43 0.91 0.92 1.03 0.76
SD 0.06 0.05 0.20 0.11 0.06 0.07 0.09 0.04

BCEL

Mean 11.62 11.29 11.75 11.98 11.14 11.16 11.37 10.50
Best 10.90 10.45 11.00 11.98 10.71 10.33 10.94 9.82

Worst 11.98 11.95 13.63 11.98 11.59 11.98 11.98 11.18
SD 0.51 0.40 0.60 0.00 0.26 0.47 0.57 0.31

DNS

Mean 8.63 8.14 9.31 10.39 8.94 8.64 9.15 7.30
Best 7.34 7.20 6.53 8.63 7.34 6.95 6.19 5.82

Worst 9.63 9.11 10.27 12.80 10.05 9.65 10.54 8.77
SD 0.73 0.70 0.86 1.57 0.76 0.75 0.91 0.63

Notepad

Mean 1.98 1.85 2.07 2.50 1.85 1.90 1.93 1.68
Best 1.83 1.77 1.76 1.90 1.80 1.77 1.72 1.57

Worst 2.17 1.96 2.41 3.09 1.94 2.17 2.18 1.99
SD 0.10 0.07 0.24 0.30 0.04 0.15 0.23 0.14
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Table 9. Wilcoxon test results for algorithm simulation experiments.

Wilcoxon
Rank-Sum-Test

MSSA
vs. PSO
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vs.
CS

MSSA
vs.
FA

MSSA
vs.
BA

MSSA
vs.

SCA

MSSA
vs.

HHO

MSSA
vs.

BSSA

Elevator + = + + + + +
SPM + − + + + + +
ATM + + + + + + +
ANT + − + + − + +
DEOS = + + + + + +
Email + + + + + + +
BCEL + + + + + + +
DNS + + + + + + +

Notepad + = + + = + +
+/−/=/gm 8/0/1/8 5/2/2/3 9/0/0/9 9/0/0/9 7/1/1/6 9/0/0/9 9/0/0/9

From Tables 8 and 9, it can be seen that the MSSA proposed in this paper outperforms
the other seven algorithms on nine systems. Among them, the proposed algorithm outper-
forms the PSO algorithm on eight systems, has no difference in performance with the PSO
algorithm on the DEOS system; the MSSA is better than the CS algorithm on five systems,
worse than the CS algorithm on the SPM and ANT systems, and no difference on Elevator
and Notepad systems; the MSSA outperforms the FA, the BA, the HHO and the BSSA on
all nine systems; the MSSA outperforms the SCA on seven systems, has worse performance
than the SCA on the ANT system and has no difference in performance with the SCA on
the Notepad system.

The MSSA outperforms the SCA on ATM, BCEL, DEOS, DNS, Elevator, Email, and
SPM, a total of seven test systems. Among them, on ANT, the MSSA is inferior to the
SCA. On Notepad, the MSSA is worse than the SCA in terms of worst value and standard
deviation, but better than the SCA in terms of mean value and best value. The MSSA
outperforms the CS algorithm on ATM, Email, BCEL, and DNS, a total of four test systems.
On Elevator, DEOS, and Notepad systems, the MSSA and CS algorithms have the same
optimization seeking performance, while the MSSA is worse than the CS algorithm on the
SPM and ANT systems.

As can be seen in Figure 9, the algorithm has a lower test stub cost for obtaining CITO
on the Elevator, Email and Notepad systems due to the fact that the number of classes
in Elevator is 12, which is relatively small and the number of dependencies is low, and
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the number of dependencies in Elevator is 27, which is relatively small. The number of
dependencies in Email is 61, which is relatively small. Although the Notepad system
contains 65 classes, the number of classes is the largest, but its number of dependencies is
141 and the attribute and method dependencies are relatively simple, making it less costly
to test stubs.

The complexity of the test stub is relatively high when the algorithm seeks for opti-
mization in the BECL and DNS systems to obtain the CITO, this is because the BECL and
DNS systems contain the largest number of classes, up to 45 and 61, respectively, and the
number of dependencies of these two systems, 294 and 276, respectively. The greater num-
ber of classes increases the optimization space for the algorithm. The higher the number of
dependencies, the more complex the system, the higher the overall stubbing complexity.

The overall stubbing complexity of the algorithm is in the medium when the CITO
is obtained on the ATM, ANT, DEOS and SPM systems. The number of classes for SPM
is 19, the number of classes for ATM is 21, and both ANT and DEOS have 25 classes. The
number of dependencies for the ATM, ANT, DEOS, and SPM systems are 67, 83, 73, and 72,
respectively. The number of classes and the number of dependencies for these four systems
do not differ much, and all of them are in the relative middle position, so that the cost of
their tests remains in the middle of the range as well.

In summary, the larger the system size, for example, on the BECL and DNS systems,
the MSSA is more able to maintain superior search performance. The BSSA is prone to
getting stuck in local extremes, and often the optimal solution at this time is not the actual
optimal solution in the solution space, which weakens its global search ability and prevents
it from escaping from local optima. The BSSA is unable to find a better CITO, while the
MSSA is able to find a better CITO by introducing three optimal solution random wandering
strategies along with the number of iterations. The algorithm introduces three kinds of best
solution random wandering strategies in each iteration along with the number of iterations,
which can search around the current position to jump out of the local optimum, avoid the
phenomenon of premature convergence of the algorithm, and finally find the optimal value.
The overall stubbing complexity of the MSSA for generating the CITO on nine test systems
is lower than that of the BSSA, the PSO algorithm, the FA, the BA, and the HHO algorithm.
The MSSA, on the one hand, uses the good point set initialization technique, which increases
the quality of the initial population and distributes it uniformly over the solution space.
Conversely, this is because the MSSA balances the global optimization search and local
optimization capabilities by introducing BM and LF strategy in the iterative process.

4.3.2. Attribute Complexity

To further analyze the complexity of algorithms to generate CITO, the attribute com-
plexity spent by each algorithm to generate CITO is calculated, and the experimental results
are shown in Table 10, Figures 10 and 11. The first column in Table 10 is the system under
testing, and columns 2 to 9 show the attribute complexity of the PSO, CS, the FA, the BA,
the SCA, the HHO, the BSSA, and MSSA algorithms on nine experimental objects Elevator,
SPM, ATM, ANT, DEOS, Email, BCEL, DNS, and Notepad. The data in each cell of the table
represent the minimum to maximum range of attribute complexity obtained by executing
the algorithm 20 times.
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Table 10. Attribute complexity comparison results.

System
Algorithm

PSO CS FA BA SCA HHO BSSA MSSA

Elevator [8, 9] [9] [9, 10] [9, 11] [9, 10] [9, 19] [9, 13] [9, 9]
SPM [58, 89] [49, 72] [60, 103] [68, 132] [52, 111] [63, 128] [58, 110] [48, 78]
ATM [30, 38] [31, 39] [35, 52] [44, 74] [40, 138] [31, 149] [38, 102] [30, 37]
ANT [48, 76] [47, 74] [63, 95] [55, 111] [70, 105] [50, 124] [51, 103] [45, 82]
DEOS [6, 12] [7, 13] [14, 31] [8, 15] [13, 29] [10, 32] [12, 22] [6, 10]
Email [7, 13] [6, 10] [8, 34] [7, 21] [11, 57] [11, 44] [8, 31] [6, 15]
BCEL [78, 100] [53, 111] [72, 155] [93, 140] [116, 281] [128, 347] [66, 143] [77, 96]
DNS [68, 106] [73, 112] [113, 154] [122, 170] [121, 502] [154, 318] [89, 150] [71, 101]

Notepad [6, 12] [5, 7] [14, 66] [9, 20] [10, 26] [13, 64] [5, 22] [5, 7]
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As can be seen from Table 10, Figures 10 and 11, the attribute complexity of the MSSA
for generating CITO is lower than that of the BSSA in nine systems, namely, Elevator, SPM,
ATM, ANT, DEOS, Email, BCEL, DNS, and Notepad, which illustrates the effectiveness of
the improvement strategy of the BSSA.

For the Elevator system, the attribute complexity of the MSSA for generating CITO is
slightly higher than that of the PSO algorithm, consistent with the CS algorithm, and lower
than that of the FA, the SCA, the BA, the BSSA, and HHO algorithms. For the Email system,
the MSSA generates CITO with higher attribute complexity than that of the CS algorithm,
but lower than that of the other six algorithms. The attribute complexity of generating
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CITO by various comparison algorithms from low to high is as follows: the CS algorithm,
the MSSA, the PSO algorithm, the BA, the BSSA, the FA, the HHO algorithm, and the SCA.

For the SPM and ANT systems, the minimum value of the attribute complexity of the
MSSA for generating CITO is lower than the other seven algorithms, but the maximum
value of the attribute complexity for generating CITO is higher than the CS algorithm. For
the BECL system, the maximum value of the attribute complexity for generating CITO
using the MSSA is lower than the other seven algorithms, but the minimum value of
the attribute complexity of generating CITO are higher than the CS algorithm. For the
DNS system, the maximum value of attribute complexity of the MSSA is lower than the
other seven algorithms, but the minimum value of attribute complexity is higher than the
PSO algorithm.

For ATM, DEOS and Notepad systems, the MSSA generates class integration test
orders with lowest attribute complexity compared with other algorithms. Among them, for
the Notepad system with the largest number of classes, the attribute complexity of the CS
algorithm to generate class integration test orders is the same as that of the MSSA, and the
attribute complexity range is [5, 7]. It shows that the MSSA shows good performance in
large-scale systems.

For the ATM system, the attribute complexity of the MSSA to generate the CITO
is lower than that of the PSO algorithm, which is lower than that of the CS algorithm,
which is lower than that of the FA, which is lower than that of the BA, which is lower
than that of the BSSA, which is lower than that of the SCA, which is lower than that of the
HHO algorithm. For the DEOS system, the attribute complexity of various comparison
algorithms for generating CITO is, in ascending order, the MSSA, the PSO algorithm, the
CS algorithm, the BA, the BSSA, the SCA, the HHO algorithm, and the FA. For the Notepad
system, the order of complexity of the attributes of each algorithm for generating CITO
from low to high is: the MSSA, the CS algorithm, the PSO algorithm, the BSSA, the BA, the
SCA, the HHO algorithm, and the FA. It can be seen that the MSSA, the PSO algorithm and
the CS algorithm spend relatively low attribute complexity in three systems ATM, DEOS
and Notepad.

Overall, the MSSA has low attribute complexity and low testing cost when solving the
problem of CITO generation.

4.3.3. Method Complexity

To further analyze the cost of various comparison algorithms for generating CITO,
the method complexity information of generating CITO by each algorithm is analyzed
in the experiment, and experimental results are shown in Table 11, Figures 12 and 13. In
Table 11, the first column is the system under testing, and the second to ninth columns are
the maximum and minimum values of the method complexity spent on generating CITO
for each of the comparison algorithms running 20 times.

From Table 11, Figures 12 and 13, the method complexity of the MSSA for generating
CITO on the nine systems is lower than that of the BSSA, indicating the effectiveness of the
algorithmic improvement strategy. For Elevator, DEOS, Email, BECL, DNS and Notepad
systems, the attribute complexity of the MSSA for generating CITO is lower than the other
seven algorithms. Among them, in the Email system, the CS algorithm and the BSSA
generate CITO with the same method complexity, both of which are the lowest. It shows
that the MSSA has the lowest method complexity for generating CITO on most of the
systems and the MSSA has the best performance.

For the ATM system, the method complexity of the MSSA for generating CITO is
slightly higher than that of the CS algorithm, but lower than that of the other six algorithms.
For the ANT system, the method complexity of the MSSA for generating CITO is higher
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than that of the PSO algorithm, but lower than that of the other six algorithms. For the
SPM system, the maximum value of method complexity of the MSSA to generate CITO
is higher than the CS algorithm, but the minimum value of method complexity of the
MSSA is lower than the other seven algorithms. It shows that the MSSA, the CS algorithm
and the PSO algorithm have lower method complexity for generating CITO compared to
other algorithms.

Table 11. Method complexity comparison results.

System
Algorithm

PSO CS FA BA SCA HHO BSSA MSSA

Elevator [18, 33] [17, 25] [20, 30] [25, 34] [17, 32] [27, 125] [19, 36] [18, 26]
SPM [22, 32] [20, 31] [24, 37] [30, 48] [26, 45] [30, 56] [23, 41] [19, 32]
ATM [11, 19] [11, 15] [13, 23] [13, 27] [14, 45] [13, 36] [12, 51] [11, 18]
ANT [30, 42] [33, 42] [34, 51] [36, 70] [47, 74] [40, 73] [35, 67] [31, 51]
DEOS [48, 61] [43, 67] [66, 126] [55, 84] [73, 109] [64, 118] [59, 117] [40, 55]
Email [24, 39] [22, 34] [38, 145] [34, 57] [71, 131] [62, 129] [27, 71] [22, 34]
BCEL [92, 109] [96, 109] [102, 121] [109, 123] [104, 198] [99, 241] [101, 139] [90, 106]
DNS [59, 84] [53, 74] [80, 100] [75, 114] [92, 163] [88, 152] [61, 94] [49, 68]

Notepad [60, 82] [73, 78] [67, 119] [61, 94] [80, 100] [63, 100] [66, 84] [56, 72]
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Overall, the MSSA requires low method complexity in solving the CITO generation
problem, and the cost of testing is less expensive.



Biomimetics 2025, 10, 195 29 of 36

4.3.4. Convergence Speed

To observe the optimization process of different comparison algorithms on the prob-
lem of CITO generation in detail, the overall stubbing complexity of generating CITO is
statistically varied with the number of iterations, and the convergence curves of some
systems are plotted, as shown in Figures 14–18. The convergence curves in Figures 14–18
represent the average test stub complexity of each algorithm in 200 iterations during the
algorithm run. Where, the horizontal axis represents the number of iterations, and the ver-
tical axis is the overall test stubbing complexity consumed by each comparison algorithm
to generate CITO.
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As can be seen from the convergence curve in Figures 14–18, the overall complexity of
the test stubs decreases with the increase in the number of iterations, which verifies that
the intelligent optimization algorithm can effectively solve the CITO generation problem.
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From the convergence speed of the algorithm, the MSSA has a higher convergence
speed and convergence accuracy than the BSSA, and it is not easy to fall into the local
optimum, which indicates the effectiveness of the improvement strategy in this paper.
In the early stage of algorithm iteration, the MSSA adopts the good point set strategy to
initialize the swarm, which has advantageous over the random initialization strategy of the
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BSSA, making the overall complexity of the test stubs decrease rapidly. In the middle stage
of the iteration, the optimization ability of the BSSA decreases and the convergence speed
slows down, while the BM and Levy flight strategies adopted by the MSSA enable the
algorithm to balance global optimization and local optimization, and the overall stubbing
complexity continues to decline. In the later stage of iteration, the BSSA is already at a
steady state and the algorithm falls into the local extreme value, making it difficult to
reduce the overall stubbing complexity. However, the optimal solution random wandering
strategy of the MSSA makes the algorithm able to escape from the local extreme value,
improves the convergence rate of the algorithm, and ultimately obtains the lowest overall
complexity of the test stubs.

For SPM and ATM with a relatively small system scale, the MSSA, the CS algorithm
and the PSO algorithm perform well in the optimization search process. For ANT with
the medium system size, the MSSA, the SCA and the PSO algorithm perform well in the
optimization search process. For BCEL and DNS, which have a relatively large system
scale, the MSSA, the SCA, the CS algorithm and the PSO algorithm perform well in the
optimization search process. In particular, in the late iteration of the algorithm, the other
algorithms converge slowly and are in a stagnant state, while the optimal solution random
wandering strategy of the MSSA makes the algorithm get rid of stagnation, and the overall
complexity of the test stubs continues to decrease, which also shows that the MSSA has a
better chance in the optimization search process. It also shows that the MSSA has prominent
advantages when the system scale is large.

In conclusion, the MSSA has high precision and stability in the process of solving
the CITO generation problem, and can quickly jump out of the local optimal solution
and converge to the global optimal solution in the optimization process. Therefore, the
improvement method proposed can effectively improves the global search ability, avoids
the occurrence of premature maturity, and prevents the algorithm from falling into the local
optima during the iteration process.

4.3.5. Running Time

For the various comparison algorithms, the time taken by them to generate the CITO is
measured and the results are shown in Table 12 and Figure 19. In Table 12, the first column
shows each system under testing, and the second to ninth columns are the time consumption
required by each comparison algorithm to solve the problem of CITO. In Figure 19, the hori-
zontal axis represents the experimental subjects and the vertical axis is the time consumption
used by each comparison algorithm. In Table 12, the unit of time is seconds.

Table 12. Time consumption of various comparison algorithms.

System
Algorithm

PSO CS FA BA SCA HHO BSSA MSSA

Elevator 1.004 2.067 2.652 2.759 1.085 0.779 1.411 1.059
SPM 2.489 4.816 6.335 8.159 2.668 1.826 3.578 2.936
ATM 2.948 5.723 7.653 8.199 3.225 2.268 4.334 3.646
ANT 4.189 8.011 9.422 11.874 4.560 3.149 6.406 5.286
DEOS 4.225 8.037 9.678 11.720 4.602 3.108 6.448 5.372
Email 9.975 19.495 22.876 28.365 10.958 7.608 8.949 6.416
BCEL 13.232 25.821 29.350 36.527 14.150 10.358 15.896 11.676
DNS 24.306 47.800 60.892 72.791 26.141 17.212 25.000 17.174

Notepad 27.413 52.760 61.349 78.079 29.509 24.475 31.210 28.234
Average 9.976 19.392 23.356 28.719 10.766 7.865 11.470 9.089
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As can be seen from Table 12 and Figure 19, the algorithm running time increases as
the system scale increases. The Elevator system has 12 classes, and the average run time
required to optimize to the test order using the MSSA is 1.059 s, and the Notepad system
contains 65 classes, and the average run time required to optimize to the test order using
the MSSA is 28.234 s. Since classes are the basic elements that make up the test order, the
running time is closely related to the number of classes. The larger the number of classes in
the system under testing, the larger the size of the search space, the slower the individuals
update their own positions, and the more difficult the optimization of the algorithm, thus
consuming more time.

In terms of average run time, the MSSA runs in less time than the BSSA in all nine test
systems, indicating that the improvement strategy of the BSSA effectively improves the
performance of the algorithm. The average run time of the MSSA is less than the other
six algorithms in each system, while the BA consumes the most average run time.

4.3.6. Complexity Analysis

Suppose that the population size is N, the dimension of the search space is D, the
maximum number of iterations is Tmax, the proportion of discoverers in the population is
PD, the proportion of followers in the population is JD, and the proportion of defenders in
the population is SD.

For the BSSA, the time complexity of the algorithm is O(N × D × Tmax).
The time complexity analysis of the MSSA is as follows. First, the time complexity

of initialization with a good point set is O(N × D). Second, the time complexity of the
discoverer position update based on BM is O(N × D× Tmax × PD). Then, the complexity of
the position update formula for followers based on LF is O(N ×D×Tmax × JD). Finally, the
time complexity of the optimal solution random wandering strategy is O(Tmax). Through
the above analysis, the time complexity of the MSSA is O(N × D) + O(N × D × Tmax ×
PD) + O(N × D × Tmax × JD) + O(Tmax) = O(N × D × Tmax). It can be seen that the
complexity of the MSSA and the time complexity of the BSSA is on the same order of
magnitude, and there is no additional consumption.

5. Discussion
Integration testing is a basic activity in software testing, especially in object-oriented

software development. Determining the order of the classes to be integrated, i.e., the CITO
generation problem, is important but computationally challenging. The research shows that
the search-based algorithm can design the CITO with low test stubbing complexity, thus
reducing the cost of software testing. This paper presents a CITO generation method based
on the MSSA. Experimental results show the superiority of the proposed method in terms
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of the overall stubbing complexity, attribute complexity, method complexity, convergence
speed, and running time for all systems. As with other empirical studies, there are some
validity threats to the experiment. From the perspective of external validity, due to the
limitation of external factors, it is impossible for any method to completely test and evalu-
ate all the programs at any time. To further verify the feasibility and effectiveness of the
MSSA and improve the persuasiveness of the experimental results, this paper selects nine
experimental subjects from SIR, an authoritative repository of software engineering infras-
tructures. The number of classes in the selected systems ranges from 12 to 65, the number
of inter-class dependencies ranges from 27 to 294, the number of inter-class loops ranges
from 16 to 416,091, and the number of lines of code ranges from 934 to 6710. These systems
range from different sizes and loop densities, and are representative of industry-recognized
benchmark procedures, and the experimental results obtained are feasible. From the per-
spective of internal validity, the experimental results will be slightly different with different
parameter settings of the intelligent optimization algorithm. The parameter settings of the
algorithm in this paper are based on existing research and extensive experiments. To avoid
the impact of randomness on the experimental results as much as possible, the results
of this experiment are selected as the average of 20 times for each group of experiments,
which also further proves the effectiveness of this method.

6. Conclusions
The CTTO problem is one of the fundamental issues in class integration testing, and

the automatic generation of CITO has theoretical value and application prospects for
the intelligence of software testing. The search-based approach is an important way to
determine the test order for class integration testing. In this paper, a novel CITO generation
method based on the MSSA is proposed, taking the overall stubbing complexity as the
evaluation metric. The good point set initialization strategy makes the initial population
uniformly distributed in the solution space, which provides a solid foundation for the
algorithm evolution. Brownian motion and Levy flight strategy enable the algorithm
to balance the exploration and exploitation ability during the evolution process, which
effectively guides the evolution of the algorithm. The optimal solution random wandering
strategy increases the probability of the algorithm jumping out of the local extremes, and
improves the search efficiency of the algorithm. Experimental results indicate that the
proposed method generates CITO with less costly test stubs.

It has been found that the MSSA has some effects on CITO generation, but there are
still some shortcomings. Firstly, when dealing with systems containing more classes, the
solution space of sparrows may be too large, and it can easily fall into the local optimal
solution. Secondly, this paper is based on static dependency of CITO, did not consider the
dynamic dependency between classes, resulting in inaccurate results, need to be studied in
the future work.

In addition, the effectiveness of the proposed approach is verified in systems of
different scales, there is still some distance from actually applying it to real large-scale
programs in different languages to carry out the research. How to combine the method
in this paper with real large-scale programs to be tested remains to be further explored in
the future. In addition, we plan to conduct experimental comparisons with other multi-
objective algorithms, in order to find better solutions in future work.
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Abbreviations
The following abbreviations are used in this manuscript:

AO Aquila optimizer
AOA Arithmetic optimization algorithm
CITO Class integration test order
SSA Sparrow search algorithm
MSSA Modified sparrow search algorithm
GA Genetic algorithm
PSO Particle swarm optimization algorithm
SA Simulated annealing algorithm
GE Grammatical evolution
EMSSA Enhanced multi-strategy SSA
SCA Sine cosine algorithm
BSSA Basic sparrow search algorithm
BM Brownian motion
LF Levy flight
LOC Lines of code
CS Cuckoo search algorithm
FA Firefly algorithm
BA Bat algorithm
HHO Harris hawk optimization algorithm
SAO Smell agent optimization
SD Standard deviation
SIR Software-artifact infrastructure repository
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