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Abstract: The former Kingdom of Granada, comprising the provinces of Granada, Malaga, and
Almeria (GMA), was once inhabited for over 700 years (711-1492 AD) by a North African population,
which influenced its creation and establishment. The genetic data on 15 autosomal short tandem
repeats (STRs) in 245 unrelated donor residents were examined in order to assess any possible
admixture. As the two surnames in Spain follow an inheritance similar to the Y chromosome, both
surnames of all 245 unrelated individuals were queried and annotated. The Spanish Statistics Office
website was consulted to determine the regions with the highest frequency of individuals born
bearing each surname. Further, several heraldry and lineage pages were examined to determine the
historical origin of the surnames. By AMOVA and STRUCTURE analysis, the populations of the
three provinces can be treated genetically as a single population. The analysis of allele frequencies
and genetic distance demonstrated that the GMA population lay in the Spanish population group
but was slightly more similar to the North African populations than the remainder of the Spanish
populations. In addition, the surnames of most individuals originated in Northern and Central Spain,
whereas most surnames had higher frequencies in Southern Spain. These results confirm that the
GMA population shows no characteristics that reflect a greater genetic influence of North African
people than the rest of the populations of the Iberian Peninsula. This feature is consistent with the
historical data that African inhabitants were expelled or isolated during the repopulation of the
region with Spaniards from Northern Spain. The knowledge of present populations and their genetic
history is essential for better statistical results in kinship analyses.

Keywords: genetic variation; Kingdom of Granada; population genetics; Southern Spain; autosomal
STRs; genetic legacy; distance analysis; structure

1. Introduction
1.1. Historical Aspects

The genetic legacy of the current population of the Iberian Peninsula was influenced
by many invaders. For example, the Basque Country presents a genetic structure probably
rooted in the Neolithic/Chalcolithic period (Giinther et al. 2015) The invasion of the area
that lies south of the Peninsula by North African populations for almost 800 years left a
significant genetic footprint on this territory (Brion et al. 2003).

The present-day provinces of Granada, Malaga, and Almeria, as well as portions of
Cadiz, Jaén, Cérdoba, and Sevilla, were all a part of the former Kingdom of Granada.
Granada was the capital; it was one of the most flourishing cities in Europe during the 14th
and 15th centuries (Chandler 1987).

Granada was established by the primitive Iberian tribes who founded Iliberir, which
later became Illiberis under the Ancient Roman rule of Hispania. With the decline of the
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Western Roman Empire in the 5th century, the Visigoths preserved the importance of the
city and established it as a military stronghold for 300 years (415-711) invasions (Garzon
1980; Bueno 2004).

The first signal of African invaders was in 711 when Berbers arrived at the Iberian
Peninsula and occupied the region of Granada, known as Iliberir, which concluded in the
Caliphate of Cérdoba. In 1013, the Zirid dynasty expanded their dominance over the region,
expelling the Berbers, and founded Ilbira in 1025. The Zirid kingdom spread out to the
entire territory of the Kingdom of Granada in order to avoid future invasions invasions
(Garzon 1980; Bueno 2004). With the growth of the kingdom in 1090, a huge part of the
Iberian Peninsula was reigned by the Zirid dynasty, known as Al-Andalus. After the loss
of the Battle of Navas de Tolosa in 1212, Al-Andalus was reduced to the Nasrid Kingdom
of Granada, to what today corresponds to Granada, Malaga, Almeria, and some parts of
Cérdoba, Sevilla Jaén, and Cadiz. The Nasrid dynasty was the longest-lasting Muslim
dynasty in the Iberian Peninsula. Finally, the Kingdom of Granada came to an end with
the conquest of the city of Granada by the Catholic Monarchs Ferdinand II and Isabel I in
1492 invasions (Garzon 1980; Bueno 2004).

Although Muslims signed capitulations to adhere to the religion of the kingdom, they
were forced to convert to Christianity or emigrate. Once the Moriscos” belongings were
expropriated, it became imperative to repopulate the region with new inhabitants from
several regions of the Peninsula. The repopulation began in 1571 and persisted until 1595,
a total of 12,546 families repopulated 270 areas (Bueno 2004). On 9 December 1609, Philip
III signed the expulsion order of all Moriscos from Spain (Garzon 1980; Bueno 2004). In
1833, after 314 years of existence and with the separation of the provinces of Almeria and
Malaga, the former Kingdom of Granada finished invasions (Garzon 1980; Bueno 2004).

Thus, during the creation of the Kingdom of Granada and during its existence, people
of various religions and regions cohabited. The coexistence of Muslims, Jews, and Christians
resulted in a pluralism that is evident in the architecture, culture, and folklore of the present-
day cities of Granada, Malaga, and Almeria.

1.2. Genetic Aspects

Studies based on ALU sequences discovered sub-Saharan gene traces in north Mediter-
ranean populations, suggesting continuous interactions between both coasts coasts (Gonzalez-
Pérez et al. 2010). The fact that genetic traits and certain specific haplotypes have been
found along the north coast of the Mediterranean supports the idea that gene flow in
this region is related to the first trans-Mediterranean sailings and stayed homogeneous
while trade slave lasted into the late 17th century, rather than being a result of Islamic
expansion (S. VII to S. XV) coasts (Gonzalez-Pérez et al. 2010). The analysis of genome-wide
SNP data from over 2000 individuals has allowed the characterization of broad clinal
patterns of recent gene flow between Europe and Africa that have a considerable effect
on the genetic diversity of European populations, especially in the southwest European
populations (Botigué et al. 2013). Though, contrary to what might be expected based on
historical data, a gradient exists from south to north of North African genetic influence;
most genetic influence is found in Galicia and northern Castilla (>20%). The main North
African gene frequencies gradient is observed between the west and east, where smaller
proportions are detected. In addition, recent studies based on autosomal SNPs (Bycroft et al.
2019) and Y chromosome lineages (Rey-Gonzalez et al. 2017) show that the Andalusian
population does not particularly group with North African populations more than other
Iberian populations (Larmuseau and Ottoni 2018). After the Reconquest, the Moors were
disseminated homogeneously in the Peninsula, but their final expulsion in 1609 was much
more effective in some provinces of Spain; Valencia, and Western Andalusia, while in
Galicia and Extremadura, the population dispersed and integrated into the society (Adams
et al. 2008).

Kinship analysis in forensics is based on the calculation of several kinship indices
and likelihood ratios. These statistics are calculated based on allele frequency data for the
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studied set of STR markers from the population to which the individuals belong. The use
of the appropriate allele frequency population data is fundamental to assure the inference
of relationships between two individuals.

The main objective of this study was to detail the genetic variations in the populations
of Granada, Malaga, and Almeria by examining 15 short tandem repeats and, thus, establish
their phylogenetic positions with respect to those of other European and North African
populations in the literature and to determine whether the possible North African genetic
influence is higher than in the rest of Iberian Peninsula populations and to create specific
allele frequency population data for the Southeast Spanish population.

2. Results
2.1. Autosomal STRs Allele Frequencies

The distribution of the observed allele frequencies of the 15 STR loci is shown in Table 1,
which also lists the power of discrimination (PD), power of exclusion (PE), and observed
(Ho) and expected (Ht) heterozygosis. The most informative markers were D18551 and
FGA; the least descriptive marker was TPOX. The combined discriminatory power and the
combined exclusion power for the entire population were 1—5.55362-10-18 and 99.9997%,
respectively.

Table 1. Allele frequencies of the Identifiler STR loci in the GMA population sample. Forensic
summary statistics, observed and expected heterozygosity, and deviation from Hardy—Weinberg
equilibrium (HWE).

Allele  D8S1179 D21S11 D7S820 CSFIPO D3S1358 THO1  D13S317 D16S739 D2S1338 D19S433 VWA TPOX  D18S51 D5S818 FGA
6 0.004 0.218
6.3 0.002
7 0.033 0.002 0.159
7.3 0.002
8 0.006 0.131 0.008 0.147 0.161 0.022 0.484 0.004
9 0.018 0.131 0.014 0.188 0.061 0.118 0.135 0.022
9.3 0.271
10 0.086 0.280 0.291 0.010 0.041 0.047 0.080 0.006 0.080
11 0.096 0.202 0.319 0.002 0.302 0.251 0.006 0.278 0.012 0.354
12 0.118 0.171 0.297 0.290 0.339 0.109 0.002 0.024 0.182 0.327
12.2 0.002
13 0.294 0.047 0.056 0.004 0.090 0.190 0.246 0.002 0.154 0.197
13.2 0.008
14 0.233 0.002 0.012 0.076 0.051 0.031 0.371 0.116 0.159 0.014
14.2 0.016
15 0.127 0.300 0.004 0.145 0.129 0.129 0.002
15.2 0.035
16 0.020 0.235 0.002 0.045 0.041 0.282 0.117
16.2 0.012
17 0.002 0.171 0.247 0.006 0.229 0.104 0.002
17.2 0.002
18 0.200 0.086 0.169 0.055 0.016
19 0.014 0.114 0.061 0.045 0.063
20 0.147 0.010 0.016 0.129
21 0.039 0.016 0.211
22 0.029 0.004 0.134
22.2 0.004
Allele  D8S1179 D21S11 D7S820 CSF1IPO D3S1358 THO1  D13S317 D16S739 D2S1338 D19S433 VWA TPOX  D18S51 D5S818 FGA
23 0.098 0.146
23.2 0.004
24 0.098 0.153
24.2 0.002
25 0.086 0.090
26 0.004 0.008 0.033
26.2 0.002
27 0.018 0.004 0.014
28 0.113 0.002
28.3 0.002
29 0.192
30 0.307
30.2 0.027
31 0.061
31.2 0.102
32 0.010
32.2 0.122
33 0.002




Genealogy 2023, 7, 29

4 of 14

Table 1. Cont.

332 0.029
34.2 0.004
35 0.004
Locus  D8S1179 D21S11 D7S820 CSF1PO D3S1358 THO1  D13S317 D16S739 D2S1338 D19S433 VWA TPOX  D18S51 D5S818 FGA
PD 0.940 0.947 0.939 0.866 0.916 0.926 0.924 0.915 0.965 0.912 0.934 0.832 0.966 0.875 0.964
PE 0.577 0.677 0.526 0.449 0.562 0.562 0.540 0.484 0.725 0.474 0.491 0.332 0.766 0.451 0.708
PIC 0.790 0.670 0.790 0.670 0.740 0.720 0.750 0.730 0.850 0.680 0.780 0.610 0.860 0.670 0.804
Hops 0.788 0.841 0.759 0.714 0.780 0.780 0.767 0.735 0.865 0.730 0.739 0.633 0.886 0.714 0.857
exp 0.814 0.827 0.816 0.725 0.781 0.798 0.784 0.770 0.868 0.767 0.807 0.665 0.873 0.725 0.865
p 0.633 0.193 0.134 0.079 0.904 0.585 0.634 0.613 0.594 0.223 0.093 0.124 0.632 0.425 0.502

Hops, observed heterozygosity; Hexp, expected heterozygosity; PD, power of discrimination; PE, power of
exclusion; PIC, polymorphism information content; P, HWE, Fisher’s exact test p-value executed with 100,000 steps
in the Markov chain and 10,000 dememorization steps. None of the markers deviated from the Hardy—Weinberg
equilibrium, and all had normal values of heterozygosis but no signs of linkage between loci.

2.2. Population Substructure

The hypothesis of a disparate genetic structure between the three provinces was
tested by AMOVA (Supplementary Table S1). No significant genetic substructure was
detected between subpopulations (Supplementary Table S2); only 2.32% of the variation
was observed among the populations (p-value 0.00238).

These results were confirmed by STRUCTURE analysis. No evidence of any significant
genetic substructure was observed between the clusters of the GMA population. The model
with the highest posterior probability value was K =1 (In P[D] = —12,981.88), compared
with K =3 (In P[D] = —13,300.52), implying that the genetic data favor a single cluster for
the three subpopulations.

2.3. Population Cross-Comparisons

Correspondence analysis was performed in Statistica v9.1 for South Europe and North
African populations (Figure 1). To simplify the interpretation of the data, the figure omits
markers’ data and shows only population results. Two central groups could be detected in
the figure: the Spanish populations in red and the North African populations in blue. The
GMA population lay in the Spanish group, next to the Catalan and Andalusian populations.

2D Plot of Row Coordinates; Dimensions: 1x 2
Input Table (Rows x Columns): 13 x 28
Standardization: Row and column profiles
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Figure 1. Two-dimensional plot of correlation analysis to assess the association between allele
frequencies and populations.
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The Nei, Reynold, and Cavalli-Sforza genetic distances were calculated with the
Gendist application to decipher the genetic relationships that appeared, based on the
genome-wide autosomal markers, between the GMA populations and 12 other populations
from the literature (Supplementary Table S3) by considering the allele frequencies of the
13 STR CODIS loci. Nonmetric multidimensional scaling (MDS) was performed using IBM
SPSS Statistics 20 to graphically plot the genetic distance matrix (Figure 2). Dimension 1
clearly separated North African populations (Arabs from Morocco, Berbers from Boubhria,
Berbers from Asni, and Berbers from Kesra, Tunisia, Upper Egypt, Turkey, and Syria),
located in the negative area, from South European populations (Basque Country, Catalonia,
northeast Spain, and general population from all Andalusia and GMA from Spain), located
in the positive area.
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Dimension 1

Figure 2. Multidimensional scaling plot applied to the Nei (Fst) genetic distance; stress value 0.19979,
RSQ = 0.83546.

To complement these analyses, STRUCTURE was used to determine whether any
broad genetic structure existed between the GMA population and the worldwide popula-
tion dataset. The model with the highest posterior probability value was at K =5 In P[D]) =
—94172.89 and Delta K = 20.4368 (Supplementary Table S4). In this analysis, whereas nearly
all individuals showed membership in only predominant clusters that corresponded to
geographical affiliation, the Moroccan population showed contributions by several clusters.
For example, all European samples exhibited a distinct “European” cluster (Figure 3, in red),
Somalis formed an “East African” cluster (green), and South Africans were represented by
an East African component and a South African component (purple). Libya represented its
own cluster (light blue) due to the high consanguinity rates for this population (Elmrghni
et al. 2012). The correlation between clusters and populations was not distinct for the
Moroccan sample; however, individuals showed partial membership in several clusters
(European and sub-Saharan) due to the ethnic admixture that built this population (Arabs,
Berbers, and Sahrawi) (Bouabdellah et al. 2008). These results implicate the existence
of identities that do not have any geographic, linguistic, or ethnic affiliation. The GMA
population distinctly belongs to the European cluster without an African component.
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Figure 3. Structure analysis at K = 5 for nine populations. Average individual assignments to clusters
for structure analyses. Each individual is represented by a thin vertical line, which is partitioned
into K colored segments that represent the estimated membership fractions in each K cluster (upper
figure). Average population assignment to clusters for structure analysis (bottom figure).

2.4. Surnames

In the sample of 245 individuals, 266 different surnames were recorded, 197 of which
were singletons; the remaining 69 surnames ranged in absolute frequency from 2 to 23
(Supplementary Table S5).

In Spain, there are 26,223 surnames with a frequency of over 20, according to the 2021
census (Instituto Nacional de Estadistica, www.ine.es, accessed on 11 April 2023). The most
frequent surname in the population is Garcia (3.71%). Figure 4a shows the distribution
of the nonsingleton surnames in the sample and their respective values in the entirety of
Spain and their weighted averages in Granada, Malaga, and Almeria—the three frequency
distributions were similar. On a national scale, 29 of those repeated surnames occurred at
frequencies of lower than 0.001, and those of 5 surnames were <0.0001. On a provincial
scale, the corresponding values were 19 and 2, respectively.

The population was differentiated into eight subgroups based on their geographical
location and historical origin (Figure 5). The surnames of most individuals originated in
Northern and Central Spain. A total of 37% of the surnames originated from the center of
Spain, where the crown of Castilla reigned; 35% came from the region that lies north of
Spain, where an important Celtic cultural influence can be observed; and 10% was derived
from Aragon versus 4% from Catalufia and 7% from Andalucia, the former Kingdom of
Granada (Figure 5a). However, considering the regions with the highest frequency of
individuals born bearing each surname, 37% of the surnames are most frequently seen in
Andalucia, compared with 22% from Castilla, 20% from the north of Spain, and 10% from
other regions, such as the Canary Islands (Figure 5b).

Finally, 10 of the 266 surnames in the sample had an Arabic etymological origin (8 first
surnames and 4 s surnames, 2 of them in both the first and second names), 8 of which were
unique to each group. The surnames in both the first and second surnames were as follows:
Simon in four individuals (three first surnames and one second surname) and Medina in
two individuals (one in each surname). Figure 3b shows the distribution of the 10 surnames
with Arabic etymological origin in the sample and their respective values in the entirety of
Spain and in Granada, Malaga, and Almeria—the five frequency distributions were similar.
In addition, 7 of the 10 individuals were born in the province with the highest frequencies
for each surname.
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Figure 4. (a) Frequency distribution of the most common GMA surnames, (b) frequency distribution
of surnames with Arabic etymological origin. Values in GMA sample were compared with those
in the weighted average of Granada, Malaga, and Almeria provinces and Spain (Statistics of the

Continuous Census; 1 January 2021; INE).
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Figure 5. Distribution of the surnames from the population of the study according to (a) their origin
and (b) the regions with the highest frequency of individuals born bearing each surname.

3. Discussion

Many groups have studied the genetic relationships between North African and South
European people (Capelli et al. 2009; Plaza et al. 2003) and those in the Iberian Peninsula
(Brion et al. 2003; Bycroft et al. 2019; Adams et al. 2008; Pérez-Lezaun et al. 2000; Bertranpetit
and Cavalli-Sforza 1991; Bosch et al. 2001) to determine the genetic legacy that remains in
present-day populations. To detail the proposed existence of genetic relationships between
South Iberian populations and North African invaders, the population of the provinces
that comprised the former Kingdom of Granada was analyzed and compared with other
Spanish and North African populations.

Prior to this comparison, to treat the samples as a single population or three inde-
pendent groups, AMOVA and STRUCTURE analysis were performed. A comprehensive
geographical coverage of the three current provinces was performed to select the samples
included in this study, comprising both coastal and inland towns as far as a proportional
distribution of samples from the capital cities of the provinces. No subdivisions were
seen in terms of the geographical origin of the samples, as evidenced by the STRUCTURE
analysis. Samples could not be grouped into more than one cluster, and few variations
between populations were observed by AMOVA. This finding is consistent with historical
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and sociocultural expectations based on the shared origin of these populations with regard
to their geographical proximity.

In the first level of the comparison, based on the allele frequencies, the GMA popula-
tion fell within the Spanish populations (Figure 1). In addition, the population from Basque
Country lay farther from the rest of the Spanish population due to the differences between
the D135317 (allele 8), TPOX (allele 12), and TH01 markers (allele 9.3); data in Supplemen-
tary Table S6. The use of a large number of SNPs confirms that Basques are differentiated
from other European populations (Rodriguez-Ezpeleta et al. 2010), confirming its position
in the correlation analysis.

Similar results were obtained in the study of genetic distances by MDS. Two clusters
were observed, coinciding with the geographical distribution of the populations. Dimension
1 clearly separated the North African from Spanish populations. The GMA population
clustered with other Spanish populations (Figure 2).

Based on the study of the 15 autosomal STRs, in the distance analysis, the North
African populations had little influence on the GMA population (Figure 2), not higher than
in other Iberian Peninsula populations. It is difficult to fathom that few African components
survived despite 700 years of occupation. The similarity between the GMA and European
populations—specifically, the Spanish populations—rendered the identification of the
differences between them difficult. Further, the STRUCTURE analyses confirmed these
results (Figure 3). The similarity might be attributed to the lack of genetic interaction
between the Muslim population that inhabited the territory and the Spanish conquerors.
Historical data indicate that the Muslim people who inhabited the Kingdom of Granada
were expelled or isolated and that few were Christianized and remained in the region. In
addition, after occupation of the city of Granada by the Spaniards in 1492, people were
taken from the north to inhabit the region, thus isolating the Muslims further. These data
are supported by the results on the origin of the surnames of the individuals, wherein
the surnames that originated in the north or center of Spain are more common today in
the south.

North African ancestry in Europe and, in particular, in the Iberian Peninsula has been
broadly studied. Genome-wide SNP data from over 2000 North African and European
individuals show that recent North African ancestry is highest in Southwestern Europe,
with levels rising to 20% (Botigué et al. 2013). Studies based on autosomal single nucleotide
polymorphisms in populations of the Iberian Peninsula show that North African ancestry
does not reflect proximity to North Africa or even regions under more extended Muslim
control; the highest amounts of North African ancestry found within Iberia are in the west
(Bycroft et al. 2019), supporting previous studies based on Y chromosome binary markers.
These studies determined that the Islamic rule of Spain left only a minor contribution to the
current Iberian Y chromosome pool (Bosch et al. 2000), such that the highest proportions
of North African ancestry are found in Galicia and Northwest Castile (Adams et al. 2008).
Similar results have been observed in a detailed analysis of Y chromosome STR markers
in the same population (Saiz et al. 2019). In addition, recent mitochondrial DNA analysis
based on 7611 control region sequences revealed that typical sub-Saharan and North
African lineages are slightly more prevalent in South Iberia, although at low frequencies
(Barral-Arca et al. 2016).

Furthermore, genomic data from 45 individuals dated between the 3rd and the 16th
centuries reveal that current populations from the south of the Iberian Peninsula hold
less North African ancestry than the ancient Muslim burials, reflecting the expulsion of
Moriscos and repopulation from the north (Olalde et al. 2019).

Even though the microsatellites used in this study were selected for forensic studies
because of their high degree of variation within populations, their levels of interpopulation
variation are relatively low but sufficient to assess recent genetic relationships between
populations. This makes them a useful tool in population genetic studies based on migra-
tory movements that occurred in the last centuries (Gaibar et al. 2012; Dahbi et al. 2023).
However, studies with other lineage polymorphisms, such as mitochondrial DNA or Y
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chromosome polymorphisms, are necessary to fully support the results obtained with
autosomal markers.

In Spain, the use of surnames became widespread among the Christian population
in the 10th century but did not expand throughout the population until the 12th century.
However, until the Council of Trent (1545-1563), informal and lax rules on surnames were
established. The introduction of surnames during the Middle Ages coincides with the
reconquest of the territory that was under Muslim rule.

The wide range of surnames in the GMA samples is supported by the history of this
region. Historical data indicate that the Moors who inhabited the Kingdom of Granada
were expelled and isolated. Few of them converted to Christianity and remained in the
region; those who did were known as new Christians. During this period, Muslims and
Jews adopted Christian surnames, as well as the male inheritance system of these names.
Later, after the occupation of the city of Granada by the Spaniards in 1492, the Moors were
relegated to the zone of the Alpujarra until 1570, from where they were expelled. All of
these regions were repopulated with people from the north and center of the Peninsula.
There was no contact between new Christians and old Christians. In 1609, all Moors and
new Christians were expelled from the Iberian Peninsula to North Africa.

The tremendous isolation of the Moriscos and the little contact between them and the
new settlers are reflected in our results on surnames. These patterns explain how most
surnames had a Castilian or Galician origin, whereas most surnames had higher frequencies
in Southern Spain. A total of 12.57% of surnames with the highest number of individuals
who were born in the south of the Peninsula were Galician, Asturian, or Cantabrian in
origin (Figure 5b). Among them, there are such names as Carmona, Cubero, Ferrén, Montes,
Padial, Rojas, and Santiago; i.e., nowadays surname Padial is mostly represented in the
province of Granada, 11.04%, but it has no representation in Galicia. Conversely, 18.03%
of surnames with the highest number of individuals who were born in the south of the
Peninsula came from the center of the Peninsula, Castilla Ledn, and Castilla la Mancha,
such as Burgos, Castillo, Dominguez, Guerrero, Leén, and Romero (Figure 5b). Finally,
7.65% of surnames with the highest number of individuals who were born in the south
of the Peninsula were Navarrese—Aragonese in origin—e.g., Aragon, Cortés, Navas, and
Soto (Figure 5b). Although many languages have historically been spoken in the Iberian
Peninsula—Castilian, Portuguese, Galician, Basque, Catalan, Arabic, and Hebrew, giving
rise to certain characteristic surnames—most of the Spanish population has surnames of
Castilian-Leones origin, which predominate the entire Spanish province (Calderon et al. 2015).

4. Materials and Methods
4.1. Population Sample

Buccal cell swabs were collected from 245 unrelated adult males and females in
Granada (94), Malaga (72), and Almeria (79), spanning at least three generations, and all
four grandparents were born in the sampling area. The origins of the samples are shown in
Supplementary Figure S1.

4.2. Autosomal STR Typing

Genomic DNA was isolated with phenol/chloroform/isoamyl alcohol extraction
and proteinase K digestion and purified on Amicon 100 (Millipore). The extracted DNA
was quantified on a 0.8% agarose gel. The samples were amplified using the AmpFISTR
Identifiler and AmpFISTR Identifiler Plus kits (Applied Biosystems, Foster City, CA, USA)
under manufacturer’s recommendations (Applied Biosystems 2015). Alleles were separated
and detected on an Applied Biosystems ABI 310 genetic analyzer. Fragment sizes were
analyzed using GeneMapper ID-X v1.1 (Applied Biosystems, Foster City, CA, USA). The
alleles were named according to the number of repeated units based on the sequenced
allelic ladder (ISFG recommendations) (Bér et al. 1997).
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4.3. Statistical Analysis

Allele frequencies, heterozygosity (H), polymorphism information content (PIC),
power of discrimination (PD), power of exclusion (PE), matching probability (MP), and
typical paternity index (TPI) were calculated for each locus using STRAF 1.0.5 (Gouy and
Zieger 2017). Hardy—Weinberg proportion and linkage disequilibrium between pairs of
loci were tested in Arlequin v3.5.1.2 (Excoffier and Lischer 2010) by exact test based on
10,000 shuffling experiments, and for detecting disequilibrium between STR loci, an inter-
class correlation criterion for 2-locus associations was used. Analysis of molecular variance
(AMOVA) was performed with Arlequin v3.5.1.3. AMOVA measures the proportion of
variance within and between populations or groups of populations. Genetic differentiation
and genetic distance (Fst) coefficients for the populations of Granada, Malaga, and Almeria
were calculated using Arlequin v3.5.1.3 (Excoffier and Lischer 2010). Published allelic
frequency data and genetic profiles from several populations were compiled. Additional
information on these populations is summarized in Supplementary Table S1.

Autosomal STR allele frequencies were used to calculate genetic distances with the
Gendist application included in the Phylip v3.69 informatics package (Felsenstein 2004). To
generate a more appropriate representation of the distances, genetic distances (the Nei,
Reynold, and Cavalli-Sforza genetic distance matrices) were summarized graphically by
nonmetric multidimensional scaling (NM-MDS) (Kruskal 1964) using IBM SPSS Statistics
20 (IBM Corp., Armonk, NY, USA). Correspondence analysis was performed with Statistica
v9.1 (Statsoft Inc., Tulsa, OH, USA) to understand the association between allele frequencies
and populations. Two markers were eliminated due to a lack of data in certain populations
(D251338 and D195433).

STRUCTURE v2.3.1 (Falush et al. 2007; Hubisz et al. 2009) was used to implement
the estimation of the proportions of individual ancestries. Replicate runs of STRUCTURE
using different burn-in periods and interactions were performed. For all simulations
and calculations, no-admixture and admixture models were assumed, including prior
population information, and the correlation between groups was determined with allele
frequencies. The estimations were calculated with a burn-in period of 50,000 interactions,
followed by an additional 100,000 interactions (K = 1 to 10), and a model of independent
allele frequencies was specified. Structure analysis was replicated 10 times for each choice,
and posterior probabilities for each K were computed for each set of runs. The 10 replicates
for each choice of K were evaluated using CLUMPP (Jakobsson and Rosenberg 2007). The
combined clustering result was visualized with DISTRUCT 1.1 (Rosenberg 2004).

4.4. Surname Study

As surnames in Spain follow an inheritance similar to the Y chromosome, both sur-
names of all 245 unrelated individuals were queried and annotated. The Spanish Statistics
Office website (www.ine.es/en, accessed on 11 April 2023) was consulted to determine
the regions with the highest frequency of individuals born bearing each surname. Further,
several heraldry and lineage pages were examined to determine the historical origin of the
surnames. The population was divided into eight subgroups and classified by surname
origin and the birthplace of the bearer. Surnames were compared with an available list of
Spanish surnames of Arab origin (Calvo Baeza 1990).

5. Conclusions

The former Kingdom of Granada comprised the current territories of Granada, Mélaga,
and Almeria, behaving as a whole population in regard to its genetic structure.

The analysis of genetic information with regard to the surnames indicated that the
expulsion of the inhabitants of the former Kingdom of Granada and the repopulation of
the region were so thorough that it was difficult to note any significant traces of the genetic
legacy of the former inhabitants when compared to the genetic North African influence
found in the rest of the populations of the Iberian Peninsula.
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Autosomal STRs have been widely used in molecular anthropology as an informative
ancestry tool for reconstructing human expansion, helping to understand the evolutive
history of human populations, and to assess population origins, migrations, and misce-
genation. The results of this study illustrate how interdisciplinary collaboration among
forensic DNA typing tools such as autosomal STR typing, population genetics analysis,
and onomastics may be useful to understand how populations have evolved, sometimes
even illuminating obscure episodes in history.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ genealogy7020029/s1, Figure S1: Geographical distribution of the 245 samples, Table S1:
AMOVA design and results from 245 individuals; Table S2: Population pairwise FSTs (above diagonal)
and p-values (below diagonal), Table S3: Complete list of populations used in the present study
for comparative analysis, Table S4: Evanno table from the 10 replicate runs of Structure calculated
with Structure Harvester, Table S5: Observed surnames in the GMA population, Table S6: Allele
frequencies of the populations used for Correspondence Analysis for those alleles that make that the
Basque Country.
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