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Abstract: Through this study, it has been possible to establish an accurate prediction of the physical
characteristics, biogeographical origin, and genealogical ancestry of a previously obscured historical
figure: The Princess Lady Leonor of Castile (1256–1275), one of the legitimate daughters of the
Spanish King Alfonso X “The Wise”. The genetic analysis of External Visible Characteristics in the
mummified remains attributed to this Princess has allowed determining her origin by mitochondrial
and nuclear DNA analysis, and her physical appearance for hair, eyes, and skin color by autosomal
SNPs. The results show that the mummified remains correspond to a young European woman with
black hair, green-hazel eyes, and white skin. Her physical appearance has not been possible to be
compared with any pictorial source, but the biogeographical analysis results are consistent with the
historiographic genealogical information.

Keywords: ancient DNA; biogeographical origin; mitochondrial DNA (mtDNA); Alfonso X of Castile
“The Wise”; external visible characteristics (EVCs); History of Spanish royalty; genealogy

1. Introduction

The present work will shed some light on the ancestry and physical appearance of
Princess Leonor of Castile. To this commitment, we have applied ancient DNA techniques.
We understand ancient DNA, which has a low quantity and quality of DNA molecules
due to its significant age. Not always antiquity is the main cause of DNA degradation, but
when we face up to any potential critical sample, like in this case, it must be implemented
special analysis conditions and authenticity criteria (Gomes et al. 2019).

In a colloquium about kinship and legitimation, the Portuguese historian J. Mattoso
(2011) referred to the importance of the Medieval research of words and language to
understand the modalities and evolution of discourse, since those voices would be “a
bit like mitochondrial DNA and chromosome Y, which is transmitted from generation
to generation, and therefore, always keep some vestiges of previous generations”. He
was referring to the fact that these genetic lineage markers are transmitted unaltered from
generation to generation to trace people’s genealogy.

Beyond the fortunate metaphor of Mattoso, in the field of Medieval and Modern
History, the application of Genetics has also changed, with the DNA analysis of individ-
uals found in the necropolis, but also, for obvious reasons, of sets of remains from royal
pantheons, for example from Aragon (Martínez Jarreta 2018) or Hungary (Olasz et al. 2019).
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Works oriented to the identification of controversial characters are already frequent (Salerno
et al. 2005; Haeusler et al. 2016) or to establish kinship among individuals buried together
(Gomes et al. 2020; Gamba et al. 2011), without neglecting the detection of individuals
related to skeletons with signs of serious diseases (Alves-Cardoso et al. 2022). Nowadays, it
is even possible to determine the physical appearance of individuals by the genetic analysis
of their skeletal remains (Gomes et al. 2017, 2020). Today it can be said, as Larmuseau and
Bodner (2018) have pointed out, that genealogical genetic analyses have, above the merely
anecdotal, significative biological, historical, social, and educational importance.

On this occasion, we present the study carried out on the remains of the Infanta Leonor,
daughter of King Alfonso X the Wise, as a part of a project for the conservation, restoration,
and dissemination of her remains and sepulcher.

Leonor of Castile, an Unknown Princess

The Spanish Princess Leonor of Castile (1256/1257–1275) was the fourth daughter
of eleven legitimate sons and daughters of Alfonso X “The Wise” (Spain, 1221–1284)
and the Queen Violante of Aragón (1236–1300) (de Salazar Acha 1990). On one hand,
there is certain conflicting information about the life of Princess Leonor from different
sources (González González and Iriarte 1993; Gutierrez Baños 2014). On the other hand, no
registered graphical documents about her physical appearance have survived our days.

Concerning her biogeographical origin, the genealogy of her family is summarized in
Figure 1. In summary, in this figure (Figure 1), it is possible to observe that, according to
the historical sources, princess Leonor of Castile was fundamentally European and to some
extent with Eastern Mediterranean ancestry.

However, it is interesting to analyze in more depth the maternal lineage of Lady
Leonor due to the exclusively maternal lineage inheritance of one of the genetic markers
studied in this work, mitochondrial DNA (mtDNA). Most of the maternal lineage of Lady
Leonor is summarized in Figure 2.

The princess died when she was 19 years old of unknown causes (Martínez Santamarta
and Robert 2010). She probably died in Montpellier (France); however, Alfonso X ordered
that Leonor’s remains be buried in the Royal Monastery of Saint Dominic of Caleruega
(Burgos, Spain), where they were located up to the beginning of this research (Gutierrez
Baños 2014).

The present study revolves around two objectives: on one hand, to determine the
biogeographical origin of the remains to prove if the predicted biogeographical origin
is consistent with the supposed European Princess’ ancestry; and, on the other hand, to
determine the most likely pigmentation phenotype (skin, eyes, and hair pigmentation) of
Lady Leonor of Castile.
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Figure 1. Genealogical tree of Lady Leonor of Castile. Figure 1. Genealogical tree of Lady Leonor of Castile.
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Figure 2. Maternal lineage Biological tree of Lady Eleanor of Castile. The scheme shows all the family members within Princess Eleanor’s maternal lineage with 

whom they share the same mitochondrial DNA. 

Figure 2. Maternal lineage Biological tree of Lady Eleanor of Castile. The scheme shows all the family members within Princess Eleanor’s maternal lineage with
whom they share the same mitochondrial DNA.
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2. Materials and Methods

On June the 10th, 2014, the opening of the sarcophagus containing the mummified
remains of Lady Leonor of Castile was carried out. Previously, the coffin had been subjected
to a Helical Computed tomography and EDX analysis (Energy Dispersive X-Ray Analysis,
an x-ray technique used to identify the elemental composition of materials) (Pastor et al.
2021). Subsequently, the coffin was opened and the remains found wrapped in a piece of
white fabric. Through the first stage of the research, the clothing and other objects were
removed to be analyzed and reconstructed.

To perform the genetic analysis, there were selected two well-preserved teeth: the
lower left second premolar 1LDC1 and the lower left first molar 1LDC2 (Figure 3).
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Figure 3. Selected samples to perform the genetic analysis.

Genetic analyses were performed in two specialized aDNA laboratories, hereinafter,
Laboratory 1 (at Health Legislation, Psychiatry, and Pathology Department. Medicine
Faculty. Complutense University of Madrid) and Laboratory 2 (at Medicine and Odon-
tology Faculty, Santiago de Compostela University); both yearly tested and certified by
GHEP-ISFG (Spanish and Portuguese speaking group of the International Society of Foren-
sic Genetics).

DNA extraction was performed in Laboratory 1 following Gomes et al. (2015). Follow-
ing this method, sample 1LDC1 and sample LDC2 were analyzed in separate processes.
Sample 1LDC1 was pulverized, and the DNA from 1LDC2 was extracted without the phys-
ical destruction of the piece. And hereinafter, both sample DNA extracts were processed
separately to replicate results.

(a) The amplification of the DNA regions of interest supplied us with two different kinds
of information: biogeographical origin and externally visible characteristics (EVCs).

Biogeographical origin analysis: To study the individuals’ most probable origin, it was
taken into account two kinds of information: nuclear and mitochondrial DNA (mtDNA).
To predict the most probable biogeographic origin with nuclear information, the SNPforID
34-Plex forensic ancestry test was used to analyze 34 SNPs (Phillips et al. 2007; Fondevila
et al. 2013). The PCR conditions are collected in Table 1. After the analysis in an ABI 3500
Genetic Analyzer (ThermoFisher SCIENTIFIC), biogeographic SNPs allele information
was analyzed using GeneMapper™ Software 5 (ThermoFisher SCIENTIFIC, Waltham,
MA, USA).

Finally, statistical parameters and the most probable biogeographical region were
obtained with the software The Snipper app. suite v.2.5 (Phillips et al. 2007), considering
the dataset for three major populations: Europe, Africa, and East Asia. This analysis was
performed in Laboratory 2.

To analyze the maternal origin by mtDNA and determine the most probable hap-
logroup(s), both HV1 and HV2 regions were analyzed in Laboratory 1.
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Table 1. The SNPforID 34-Plex PCR conditions.

PCR Conditions Cycling Protocol

Final Concentration Volume (mL)

Buffer 1 X 0.615
BSA 3.2 mg/mL 0.615 95 ◦C 15 min
Cl2Mg 6.3 mM 1.615 95 ◦C 30 s

35 cyclesdNTPs 0.625 mM 0.4 60 ◦C 50 s
Primer Variable 2 65 ◦C 40 s
TaqGold 0.5 U 0.1 65 ◦C 6 min
DNA n/a 1–4 mL

There were performed the amplification of 294 bp of the Hypervariable region I
(HVRI) (positions 16,105–16,399) (Fernández 2005) and 345 bp of the Hypervariable region
II (HVRII) (positions 55–400) (Martínez-Labarga and Rickards 1999). These regions were
selected and incorporated into four overlapping PCRs using the Multiplex PCR kit of
Qiagen® (Hilden, Germany). The analysis was performed in duplicate for each of the
selected samples. The amplification results were tested by electrophoresis on agarose gels
and positive amplification results were purified with ExoSAP-IT™ PCR Product Cleanup
Reagent (Thermo Fisher Scientific, Waltham, MA, USA) (Exo-SAP®). Sequencing products
were visualized on an ABI3730 (Life Technologies: Carlsbad, CA, USA) automated capillary
electrophoresis sequencer.

The capillary electrophoresis results were analyzed with the aid of the software
Chromas® (http://technelysium.com.au/), and compared to the rCRS (Anderson et al.
1981; Andrews et al. 1999) applying Mutation Surveyor® V.4.0.6 software (Softgenetics,
State College, PA, USA) (Mutation Surveyor® software n.d.). Genetics analyses. After
haplotype determination, the most probable haplogroup(s) were determined by searching
on the HaploGrep 2 online application (van Oven and Kayser 2009; van Oven 2015), on
EmPOP mtDNA database v4/R11 (Huber et al. 2018; Parson and Dür 2007), on mtDNA
manager (Lee et al. 2008), and Phylotree phylogenetic tree (van Oven and Kayser 2009; van
Oven 2015). Finally, there was performed a search of close mtDNA haplogroups in the
AmtDB database.

(b) For the external phenotypic prediction, 35 SNPs were analyzed in Lab 2 to calculate
the most probable hair, skin, and eye color pigmentation, using the primers and PCR
conditions of Ruiz et al. (2013) (Maroñas et al. 2014). The EVCs PCR conditions are
collected in Table 2. For each externally visible characteristic (EVC), the hypothe-
ses considered were (a) iris pigmentation (brown, intermediate, and blue); (b) hair
pigmentation (fair versus dark, and for the color pigmentation (red, blond, brown,
and black); and (c) skin pigmentation (white, intermediate, and black) (Maroñas
et al. 2014). Statistical analysis was performed with the online Snipper app suite v2.5
software (Phillips et al. 2007).

Table 2. EVCs PCR conditions.

PCR Conditions Cycling Protocol

Final Concentration Volume (mL)

buffer 1 X 0.625 95 ◦C 15 min
BSA 3.2 mg/mL 0.625
Cl2Mg 6.3 mM 1.625 95 ◦C 30 s

35 cyclesdNTPs 0.625 mM 0.43 60 ◦C 50 s
primer Variable 1.5 65 ◦C 40 s
TaqGold 0.5 U 0.1
DNA n/a 1–4 uL 65 ◦C 6 min

http://technelysium.com.au/
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Along with the full analytical procedure, pre-PCR, PCR, and post-PCR procedures
were performed in three physically separated and isolated areas. Ancient DNA laboratories
were equipped with UV light lamps (254 nm) to ensure a sterile environment for the reliable
analysis of ancient DNA samples. Additionally, all laboratory equipment was routinely
irradiated with UV light and thoroughly cleaned with bleach (70%) before and after each
experiment. All experimental analyses were conducted by a single researcher to reduce
the chances of staff DNA contamination; additionally, the access to these laboratories was
limited to two people during the whole time the analyses were carried out. All laboratory
procedures (sample preparation, extraction, and PCR) were performed wearing disposable
laboratory coveralls (masks, caps, glasses, shoe covers, and gloves). DNAse and RNase-free
reagents and consumables were also employed. The possibility of modern DNA contami-
nation was monitored with extraction blanks and at least three PCR-negative controls were
included per DNA amplification round. So, authenticity criteria were followed, consider-
ing the laboratories’ infrastructures, methodology, and interpretation of the results. Also,
before the genetic analysis, two biochemical assays on macromolecular preservation were
performed by the archaeological team, as recommended by Pääbo (Pääbo et al. 2004). To
monitor exogenous mitochondrial DNA contamination of the samples, genetic profiles
were recovered from all the people involved in sample manipulation (Table 3).

Table 3. Researchers’ mitochondrial DNA profiles.

Laboratory Staff Mitochondrial DNA Haplotype

RESEARCHER A 16362C 55G 150T 239C 263G 309.1C 309.2C 315.1C
RESEARCHER B 263G 315.1C
RESEARCHER C 16145A 16172C 16222T 16261T 16305T 73G 242T 263G 295T 309.1C 315.1C
RESEARCHER D 263G 315.1C
RESEARCHER E 16126C 16294T 16296T 16304C 73G 263G 315.1C
RESEARCHER F 73G 263G 315.1C

3. Results

At Laboratory 1, all the PCR reactions performed have provided quality mtDNA
sequences without molecular damage or trace of contamination. Furthermore, all the
obtained results were consistent among them. This fact provides further strength to the
obtained results. Combining the different PCR amplifications has allowed us to determine
the next consensus mtDNA haplotype: 16224C 16311C 73G 195C 263G 315.1C (range:
16,105–16,569; 1–390). This result was obtained at least twice from each sample and mtDNA
fragment, always with the same result. Subsequently, the obtained results were analyzed
to determine the mitochondrial haplogroup, and it was determined as K1a4a1a, with a
private mutation on position number 195 of HRVII.

Concerning the amplification of 34 autosomal SNPs for biogeographical assignment
carried out at Laboratory 2, results can be seen in Table 4. This table also shows the obtained
LR results performed to discern if the individual belongs to a European, Sub-Saharan Africa,
East of Asia, American or Oceanian population.

The autosomal SNPs analysis suggests a European origin in the same way as the
mtDNA analysis.

Finally, the results of the EVC genetic analysis carried out in Laboratory 2 are sum-
marized in Table 5. To determine each one of the physical characteristics studied, we
performed the same methodology employed in the biogeographical origin analysis.

In light of these results, the most probably physical appearance of the Princes was
black hair, green-hazel eyes, and white skin.
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Table 4. Autosomal SNPs results for the Biogeographical origin analysis and Likelihood Ratio results
of the statistical comparison of the alleged origins one against another. In columns, we can observe
the SNP (single nucleotide polymorphisms) analyzed and the obtained results obtained for each one.
At the bottom of the table, it is possible to view the Likelihood ratio (LR) results obtained to discern
if the individual belongs to a European, Sub-Saharan Africa, East of Asia, American or Oceanian
population, showing that the most probable biogeographical origin is European, attending to the
different origin hypothesis.

SNP RESULT SNP RESULT SNP RESULT
rs5997008 C rs773658 C rs2026721 G
rs2304925 GT rs10141763 A rs4540055 A
rs917118 G rs182549 CT rs1335873 A
rs1321333 T rs1573020 A rs16891982 C
rs2814778 C rs896788 C rs730570 T
rs1024116 A rs2065160 A rs1886510 NN
rs7897550 C rs2572307 G rs5030240 C
rs722098 AG rs2303798 C rs3827760 A
rs10843344 CT rs2065982 A
rs12913832 AG rs3785181 C
rs239031 NN rs881929 NN
rs2040411 AG rs1498444 A
rs1978806 T rs1426654 T

LIKELIHOOD RATIO RESULTS

HYPOTHESIS LR

H1: European origin vs. H2: American origin LR = 1.95 × 1016 vs. 1
H1: European origin vs. H2: Asia origin LR = 1.02 × 1018 vs. 1
H1: European origin vs. H2: North-African origin LR = 10382,18 vs. 1
H1: European origin vs. H2: Sub-Saharian origin LR = 2.18 × 1031 vs. 1

Table 5. EVCs SNPs results and Likelihood Ratio results of the statistical comparison of the EVCs one
against another. In columns, we can observe the SNP (single nucleotide polymorphisms) analyzed
and the obtained results for each. At the bottom of the table, it is possible to view the Likelihood ratio
(LR) results obtained to discern the different external visible characteristics (EVCs) studied: eyes,
skin, and hair colors.

Iris Eye Color System Hair Color System Skyn Color System

SNP RESULT SNP RESULT SNP RESULT

rs12913832 AG rs1129038 NN rs10777129 NN
rs1129038 NN rs11547464 NN rs13289 C
rs11636232 CT rs12913832 AG rs1408799 G
rs12203592 C rs12931267 C rs1426654 A
rs12896399 A rs1805006 C rs1448484 A
rs1393350 G rs1805007 NN rs16891982 C
rs1667394 CT rs1805008 G rs2402130 A
rs16891982 C rs1805009 G rs3829241 C
rs1800407 C rs28777 NN rs6058017 NN
rs4778232 G rs35264875 A rs6119471 C
rs4778241 GT rs4778138 CT
rs7183877 A rs7495174 CT
rs8024968 G

LIKELIHOOD RATIO RESULTS

HYPOTHESIS LR HYPOTHESIS LR HYPOTHESIS LR

H1: Dark hair vs.
H2: Light hair LR = 487.06 vs. 1

H1: Green-hazel eyes vs.
LR = 26.71 vs. 1

H1: White skin vs. LR = 7.54 ×
105 vs. 1H2: Brown eyes H2: Intermediate

skin
H1: Black hair vs.
H2: Brown hair LR = 2.65 vs. 1

H1: Green-hazel eyes vs. LR = 2.64 × 106

vs. 1
H1: White skin vs. LR = 1.98 ×

1010 vs. 1H2: Blue eyes H2: Black skin
H1: Black hair vs.
H2: Red hair LR = 215.63 vs. 1
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4. Discussion

We have determined that the human remains studied belong to mtDNA haplogroup
K1a4a1a, a typical European haplogroup nowadays, this finding indicates a typical Euro-
pean or Middle East biogeographical ancestry; this is consistent with the European maternal
lineage origin of the Princess. As regards ancient DNA, the earliest reported appearance
of this haplogroup was dated around 8000 years B.P. in Tell Ramad (Siria) (Fernandez
et al. 2014). Also, human remains belonging to haplogroup K have been discovered, which
date around 7500–7300 B.P. One of the most popular findings was Ötzi (5000 B.P.), which
precisely belongs to the K1 haplogroup (Rollo et al. 2006). Through searching on the AmtDB
database of the K1a4a1a haplogroup, no individuals were found with the same haplogroup.
Nevertheless, also in AmtDB, the closest haplogroup found in Medieval populations was
located in Hungary (Vai et al. 2019). K1a clade (group of individuals who share the same
lineage, K1a) was also present during Middle Ages in Germany (Veeramah et al. 2018).
If we search the broader K1, it was also present during Middle Ages in Italy (Amorim
et al. 2018; Vai et al. 2019), Spain (Olalde et al. 2019), and Poland (Stolarek et al. 2018); but
the largest presence of K1 mtDNA haplogroup was located in Hungary. These results are
consistent with the mtDNA family tree of Leonor Princess (Figure 2).

Moreover, autosomal SNPs analysis supports this European origin too. This second
analysis furthermore provides a broader view of the Princess’ origins, since the analyzed
SNPs have been inherited through both the maternal and the paternal lineage and are
consistent too with the historical genealogy of Lady Leonor´s family, with mainly European
roots (Figures 1 and 2). The matching results for the prediction of biogeographical origin
obtained through the two different methodologies employed, provide greater strength to
the concluded ancestry.

It could be interesting to compare Lady Leonor´s mtDNA haplotype to that of any
person belonging to this maternal genealogy tree. However, it has not been possible to
find any previously generated genetic data from other individuals from this maternal
lineage. However, the mtDNA and YSTRs profiles of her grandmother´s grandfather, the
Hungarian king Bela III, is well known (Olasz et al. 2019); unfortunately, this information is
not comparable to our results. Nevertheless, the newly obtained data can provide relevant
information to complete the genetic familiar genealogy.

Moreover, the feature that genetic evidence supports as most likely white skin pig-
mentation seems also to support a possible European origin for the studied remains.

From the paleogenetic point of view, this work confirms the feasibility of genetics
to establish the kinship and physiognomic features of individuals. Determining that
she is most likely to have white skin, green-hazel eye color, and black hair. Thereby, the
Princess obscured in the documentation acquires some visibility. In addition, its haplogroup,
K1a4a1a, has been obtained, establishing an eventual link with other royal houses currently
under investigation (Olasz et al. 2019).

Certainly, from a historical point of view, the knowledge of notable characters is not
today one of the main objectives of investigations, but the realization of restoration and
conservation works constitutes new potential sources, usable from different disciplines
and prospects. In this sense, the present study has an experimental nature, of exploration
possibilities, with which some bases are laid whose use will be greater when other similar
ones that allow comparative approaches are published.

Working with these royalties sometimes allows for written descriptions of their physi-
cal appearance and sometimes even preserved remains—such as the nails of the blonde
Norwegian princess Kristín Hákonardóttir, during some time Leonor’s mother’s rival,
whose tomb was opened last century (Vargas Blanco 1968), and sometimes there are also
some “portraits”, such as the miniatures of the monarchs, queens or princess collected in
the cardboards of the cathedrals from Oviedo and Compostela, which confront genetic
inferences, but, as has been said, none of Lady Leonor seems to be known until now. In
general, the possibilities of identification will be greater from the Late Middle Ages, with
the progressive display of the pictorial portrait.
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The viability of the comparisons also grows in the case of investigations such as
those mentioned above of the royal pantheons of Hungary and Aragon. Although there
were partial pantheons in San Isidoro (León, Spain) and Las Huelgas (Burgos, Spain), for
complex historical reasons (Arias Guillén 2015) a single royal pantheon was not formed in
the whole of the Crown of Castile that could have facilitated this type of genetic research,
it is not impossible to carry it out, taking advantage—as in the present case—projects
of rehabilitation of scattered graves. The location of the characters of the dynasties—for
example, Leonor’s maternal grandmother and transmitter of her mitochondrial DNA,
Violante of Hungary, Aragonese Queen buried in the Royal Monastery of Santa María de
Vallbona (Lérida, Spain)—may serve for the constitution of a genetic database. In this sense,
the genetic analysis of Leonor of Castile comes to join those already available for some of
his relatives, such as Bela III of Hungary and Agnes de Châtillon, grandparents precisely
from the aforementioned maternal grandmother of Leonor (Olasz et al. 2019).
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