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Abstract: Since the beginning of the second industrial revolution, the use of tanks for the storage of
petroleum products ensured the permanent supply of equipment that depended on fossil fuel derived
from petroleum, either for direct consumption or as an element for power generation. For correct
operation, periodic cleaning of these confined spaces was required, being a common practice for the
direct exposure of operators to explosive atmospheres. Currently, there are many industries that keep
this kind of deposit, and cleaning works are considered of high occupational risk. In this context,
the question arises as to whether human–machine collaboration thanks to the technologies that
compose Industry 5.0 can mitigate these risks while generating a sustainable balance by optimizing
costs and protecting the environment. In the present work, the analytic hierarchy process (AHP)
method is used to prioritize the requirements that should be compiled to establish safe protocols in
tank cleaning works, solving the multi-criteria problem. Results prove that a couple of alternatives
improve the working conditions of the people involved in this process: the chemical cleaning and the
robotic cleaning, which approximately accounts for two thirds of the decision. These requirements
are aligned with the Industry 5.0 paradigm, encouraging the use of robots for high-risk processes,
and influencing human behavior. In addition, cost reduction is achieved without compromising on
quality of service or delivery schedule, thus enabling a circular economy that promotes occupational
safety in company policies.

Keywords: occupational safety; safety requirements; tank cleaning; AHP; Industry 5.0; robotic cleaning

1. Introduction

The Technological Revolution, as the Second Industrial Revolution was called, intro-
duced new technological systems, the most significant of which was electric power [1].
However, advances in manufacturing and production technology allowed the widespread
adoption of technological systems, even in the petroleum industry [2]. These developments
necessitated the use of storage tanks that, either for direct consumption or for power genera-
tion, ensured the supply of petroleum products for equipment that depended on them [3].

For proper operation, periodic cleaning of these confined spaces is required [4], either
due to production needs or maintenance work. In this context, direct exposure of operators
to explosive atmospheres is a common and risky practice [5]. Currently, many industries
maintain this type of tank, which leads to considering these cleaning works as a high
occupational hazard [6]. Since these spaces are not designed for the permanent occupation
of workers, it is necessary to consider the special measures to be taken in the case of
specific tasks, because of they are characterized by a lack of oxygen [7], as well as by the
presence of flammable substances and chemical contaminants [8]. Statistical data on fatal
accidents in this sector in the period between 1980 and 1990 indicated a ratio of 0.69 deaths
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per 100,000 workers per year in the United States [9]. By 2011, these data had not improved,
with four out of five incidents involving multiple fatalities [10]. This was due to the fact that,
on most occasions, the rescue personnel involved were not trained in the risks associated with
entering these spaces [11], given that, for each person requiring rescue, up to three rescuers
are required [12]. The high occupational hazard involving industrial cleaning is present in
different project stages: in the study phase, during execution and commissioning, and also in
the facilities that are in service (maintenance, repair, and periodic inspections, among others),
affecting different sectors such as the industrial [13], petrochemical [14], and naval [15].

Integration of enabling technologies reduces risks and increases safety and production
levels [16]. However, the singularity of many industrial cleaning processes requires a
combination of the resourcefulness of human expertise in collaboration with efficient,
intelligent, and accurate machines, to obtain reliable solutions [17,18]. In this context, the
new paradigm of Industry 5.0 becomes essential [19] to consider safety, environmental,
quality, and cost-optimal issues, placing the wellbeing of the industrial worker at the
center of the production process [20]. These new concerns have been taken into account in
other industrial cleaning processes, such as in food production [21], manufacturing [22], or
coating and painting [23].

Tank cleaning includes the association of hazardous work, as stated in Spain in Annex I
of Royal Decree 39/97 [24]. These activities include work in explosive risk environments,
work with fuel transfers, work in confined spaces and work with chemical substances,
and work with machines and electrical and/or mechanical tools, among other jobs. These
cleaning tasks consist of the removal of residues formed by the storage of oil over time.
Therefore, cleaning must be carried out inside the tank, once the tank is free of gas and
ensuring the entry of the operators [25]. The removal of these sludges and sediments can
be performed using manual methods or various technologies, with the help of chemicals,
mechanical devices, and/or water [26]. Figure 1 shows a classification of the different
methodologies that can be used.
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Figure 1. Tank cleaning methods. Adapted from [26].

First, manual cleaning, which consists of an intervention methodology based on the
manual removal of the residues removed with hand tools (usually shovels), once specialized
technicians have certified the absence of gas and the fluids have been removed by means of
vacuum trucks or pneumatic or volumetric pumps, electrically or hydraulically operated
but with explosion protection. This procedure requires access to the tank by qualified
personnel with appropriate protection and the use of tools and equipment that are not
capable of producing sparks. Fortunately, this type of cleaning is being used today in more
and more specific cases where the characteristics of the tank or other external conditions do
not allow the use of another methodology, due to the time needed to complete the entire
procedure and the exposure of the operators to carry it out [27,28].
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Next, the cleaning of deposits by biotechnological methods, based on the use of mi-
croorganisms fed by hydrocarbons, which decompose the oil. In this way, it is also possible
to use these oil wastes as food for the plant world [29], while at the same time control-
ling pollution [30]. However, these are very time-consuming (although environmentally
friendly) processes, so their applicability is very limited.

Then, chemical cleaning, which consists of adding chemical reagents to the waste to be
removed, with the intention of oxidizing the organic compounds present in the waste [28].
However, these can deteriorate the tank coating, reducing its useful life or adding (costly)
activities to recover its functionality. In addition, they generate enormous amounts of
noxious water. Therefore, most current studies focus on optimizing the cleaning parameters
to increase their efficiency [31], while improving their sustainability [32], reducing water
consumption and/or using more innocuous products.

Finally, mechanical cleaning, which can be performed with purely mechanical equip-
ment or using hydromechanical solutions, which in turn can include chemical products [33]
or not [34]. These processes have evolved with technological advances up to the incorpora-
tion of robotic systems [35–37]. It should be noted that these methods manage to eliminate
the entry of people into the tanks to be cleaned, making these cleaning operations safer tasks.

Based on these methods that can be applied to the cleaning of petroleum tanks, this
article aims to:

• Define and prioritize the requirements that should be used to establish (safer) protocols
for cleaning petroleum product tanks.

• Select a case study (defining the type of substance to be stored, the type of storage
tank, etc.), in which to perform the methods selected.

• Assess two types of alternative cleaning procedures to conventional (manual) tank
cleaning, with the potential to minimize worker exposure to rarefied and/or explosive
atmospheres: chemical cleaning and mechanical (robotic) cleaning.

The case study begins with the sizing of an integral system for degassing, degreasing,
and cleaning of such storage tanks. For the efficient storage of products such as crude
oil and its derivatives, different types of storage tanks, usually metallic, are required. In
addition, if large volumes are stored, cylindrical tanks with a vertical axis at atmospheric
pressure are usually used. In addition, these tanks require a self-supporting fixed roof that
can absorb the loads generated by the live loads plus their weight, in accordance with API
650 standard [38] and the complementary technical instruction MI IP-02 [39].

The evaluation of alternative cleaning procedures is realized using the multi-criteria
decision method analytic hierarchy process (AHP). In this way, it will be possible to reflect
by applying structured reasoning until a reliable result is reached for the establishment
of the cleaning protocol. Both alternatives perform the cleaning of vertical shaft tanks for
the storage of petroleum products with the purpose of minimizing the risks inherent to
the activity, from the entry into confined spaces [40] to the projection of particles [41] and
even musculoskeletal disorders [42], increasing the safety and health of the workers in the
different actions involved with respect to manual cleaning.

2. Materials and Methods
2.1. Case Study

This research has opted for a case study because it enables the selection of the object of
the study and the real scenario [43]. The case study is a research method that has been used by
many authors [44–47]. When only limited theoretical knowledge exists, an inductive research
strategy leading to emerging theory from a case study constitutes a good starting point [48].
This is based on multiple sources of evidence to study contemporary events in their real
context when the phenomenon and the context are difficult to separate [49], which can
replace experiments and analysis of archival information [50]. Building theory from a case
study is a research strategy that involves using the case to create theoretical constructs,
propositions, and/or midrange theory empirical evidence [51]. A theoretical sampling
of single cases is straightforward. Cases are chosen because they are unusually revela-
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tory, extremely exemplary, or because they represent unique opportunities for gaining
research insights [52]. For the interested reader, Eisenhardt and Graebner provided the
keys to building a solid case study [53].

The study will focus on the cleaning of a vertical shaft tank, with the dimensions
compiled in Table 1.

Table 1. Tank characteristics.

Feature Value

Inner diameter 28 m

Height 18 m

Internal floor area 615.75 m2

Internal area ferrules 1582 m2

Total area to be cleaned 2197 m2

Effective capacity 10,000 m3

Ferrules 9 units

Ground manhole 2 units

Roof manhole 1 unit

The type of cleaning taken as a reference is manual cleaning. The first alternative to be
analyzed is chemical cleaning. This procedure is based on the recirculation of preheated
chemical solutions, which accelerates and improves their chemical attack which, added to
the mechanical attack produced by the physical impact caused by the projected solution,
irrigates, and falls down the surface (walls) of the tank to the drainage well, from where it
is collected by pumping it to the decantation tank, as shown in Figure 2.
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In detail, the aim is to eliminate the remains of fuel oil/gas oil, degreasing and cleaning
the walls, floor, and roof of the storage tank. This is achieved by recirculation of water
solution with marine dispersant [54], through impact with hot water at low pressure (10 bar),
and high flow (42 m3/h), projected by a rotating head with 360◦ impact coverage [55],
whose movement is shown in Figure 3, as a result of a simulation performed with Scanjet
Tank Cleaning Simulator software.
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This type of cleaning method differs significantly from the manual method in several
respects. Firstly, with respect to the use of a marine dispersant instead of the usual chemical
products. Products such as caustic soda, sodium carbonate or trisodium phosphate have
been replaced by a marine dispersant, composed of aliphatic solvents and surfactants. In
this way, toxicity is reduced by providing bio-degradability [54]. Moreover, the use of the
injector eliminates the entry of operators into the confined space, while considerably reducing
cleaning time, reducing energy costs, and simplifying the wastewater treatment process.

The second cleaning alternative to consider is to apply a solution of water plus de-
greasing product by means of a magnetic robot directed from the outside, as shown
in Figure 4. This robot, like the one shown in Figure 5, operates at high pressure, between
120–140 kg/cm2, and projects at 1 cm from the nets, forming 1 m sweeping columns, as
shown in Figure 5. In this way, both chemical (described above) and mechanical cleaning is
achieved, thanks to the impact of the jet of aqueous solution at a short distance, so that the
tank can be emptied from the tank’s drainage well.

In this case, the daily work output using this process can be estimated at 200 m2/day.
In addition, to this competitive advantage, together with those previously mentioned
related to mechanical cleaning, must be added the possibility of being able to carry out
occasional reworking, as opposed to the need to repeat a complete washing cycle in the
case of chemical cleaning.

2.2. Multicriteria Decision

The choice of a safe protocol that meets the proposed objectives is made by analyzing
two alternatives (chemical cleaning and robotic cleaning) to manual cleaning. To make an
informed decision, a multi-criteria decision tool is selected. In this context, the analytical
hierarchy process (AHP) method is a very popular discrete multi-criteria decision tool [56,57].
The AHP is applied through the construction of hierarchical structures, in which the first



Safety 2023, 9, 6 6 of 20

hierarchical level consists of the problem goal, the next hierarchical levels encompass the
decision criteria and subcriteria, and, finally, the last level contains the alternatives. For
allocating weights to the decision criteria and subcriteria, paired comparisons are made
(criterion vs. criterion) by knowledgeable members of a panel. In addition, the method
allows measuring the degree of inconsistency, thus providing confidence in the resolution
of the method [58,59]. Therefore, the AHP tool will be used to prioritize decision making in
which there may be multiple objectives, criteria, participants, and different alternatives of
any kind. This method has been successfully tested to resolve and prioritize issues related
to worker safety and health in different sectors [60,61]. Figure 6 shows the phases into
which this process is divided.

The process for applying the AHP method begins with the definition of the problem to
be addressed. In this research, the goal is to determine the requirements to improve safety
in the cleaning of (vertical) storage tanks for petroleum products. Once the problem has
been defined, and to apply the AHP method, it is necessary to disaggregate the problem
into multiple and different criteria to help explore the decisions that matter and to discover
when there may be conflict between criteria or between stakeholders on these criteria, until
a hierarchical order is established, as shown in Figure 7.
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To do this, the first step is to apply the principle of hierarchical construction, establishing
the different levels required. In this way, level 1 will focus on the objective, level 2 will be
composed of the criteria and subcriteria necessary for the evaluation of the problem, and
level 3 will present the possible alternatives. Levels 1 and 2 are composed of the criteria
and subcriteria listed in Table 2. In this regard, although the AHP method can accept an
unlimited number of entries at the criteria and subcriteria levels, only a limited number of an-
alyzed criteria and alternatives can assure an appropriate precision of obtained results [62,63].
This number can be defined as 7 +/− 2 (which means 9 maximum) [64], commonly referred
to as Miller’s law. If a higher number of items are compiled, an analytical method (elimi-
nating less important criteria based on expert evaluations) or a deductive one (eliminating
less important criteria accordingly to the particularity of the analyzed subject and the
evaluation of criteria variability in time) can be applied [65].

When establishing the criteria, in accordance with the purpose of the study, safety
appears as the first criterion, broken down into nine subcriteria ranging from exposure
(focus) to the associated risks to which the worker is exposed when working in confined
spaces. However, although safety is the main criterion for the definition of a tank cleaning
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protocol that improves the safety of the people involved, the consideration of factors such
as collaboration between people and machines, the delegation of mechanical, dangerous,
and routine tasks, speed and quality or environmental respect, typical of applying the
principles of Industry 5.0, means that the decision must consider other points of view.

Table 2. Identification of criteria and subcriteria.

Id Criteria Id Subcriteria

SA Safety

SA1 Worker exposure time

SA2 Contact with toxic products

SA3 Postural/accessibility

SA4 Ventilation

SA5 Falls to different levels

SA6 Overexertion

SA7 Bumps

SA8 Traps, collisions, cuts, etc. . . .

SA9 Electrical contact

PE Performance

PE1 Time

PE2 Cost

PE3 Scope

EN Environment

EN1 Water footprint

EN2 Waste management

EN3 Generation of dust/polluting particles in the air

EN4 Application of sustainable technology

Therefore, the second criterion is performance (of the cleanup operation), supported
by the subcriteria associated with the most basic constraints of an undertaking, such as cost,
time, and scope [66], defined as the tasks necessary to perform each of the alternatives. As a
third criterion, the environment is included, evaluating different sub-criteria associated with
the development of the objective of the study. Water footprint is considered necessary to be
included because it has an important weight in the development of the three alternatives to
be evaluated, as well as regulatory waste management, which includes both the amount
of waste and the ease of its removal (recycling, treatment, etc.), the generation of dust
or particles in the air, which goes beyond that which the workers themselves could be
affected, and, finally, the application of sustainable technology. In this sense, both the
EMAS regulation [67] and the international standard UNE-EN ISO 14001 [68], encourage
the use of the most advanced existing technology that is appropriate for the objective of
organizations to establish a correct environmental policy, thus demonstrating a commitment
to the continuous improvement of environmental performance, provided that it is feasible
and economically viable.

Once the criteria have been defined, these criteria and their corresponding subcriteria
can be weighted to determine how they will influence the interest of each of the alternatives.
These subcriteria are the requirements that the selected protocol must incorporate. For
this purpose, the role of decision-maker corresponds to a panel of experts. This panel is
represented by a multidisciplinary team composed of experts from each area involved. Pri-
oritization begins with pairwise comparisons of elements at the same level. Each criterion,
subcriteria, or alternative i is compared with each criterion, subcriteria, or alternative j
following a decision scale called the Saaty scale [69], shown in Table 3, although a national
scale can also be used if a quantitative variable is being assessed. The assessments are made
by taking a value of the decision-making team reached by consensus.
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Table 3. Saaty Scale for AHP method.

Intensity Definition Explanation

1 Equal importance Equal contribution to the objective

3 Moderate importance Experience and judgement slightly favor one over another

5 Strong importance Experience and judgement strongly favor one over another

7 Very strong importance One is favored very strongly over another

9 Extreme importance The evidence favoring one over another is the highest

2, 4, 6, 8 Intermediate values Judgements between defined prior intensities

Reciprocals For reverse comparison Opposite judgments on previously defined intensities

The consensus values compose the pairwise matrix shown in Equation (1). They must
meet three conditions: homogeneity (the elements of the main diagonal are equal to 1),
reciprocity (aij × aji = 1), and transitivity (aij × ajk = aik).

Aw =


a11 · · · a1j · · · a1n
· · · · · · · · · · · · · · ·
aj1 · · · aji · · · ajn
· · · · · · · · · · · · · · ·
an1 · · · ani · · · ann

 (1)

Once the pairwise matrices for criteria, subcriteria and alternatives have been com-
piled, the columns of each matrix are summed, and their values normalized. Then, the
average of the rows is calculated to obtain the eigenvector representing the relative impor-
tance of the criteria compared in each of the pairwise comparison matrices, resulting in
the best approach [70]. However, the principle of logical consistency must be applied to
validate these results. The AHP method measures the consistency of each judgment by
means of the consistency ratio (CR), which is the ratio between the consistency index (CI)
shown in Equation (2) and the consistency index of a random matrix (RI) shown in Table 4.

CI =
λmax − n

n − 1
(2)

where λ represents the average of the eigenvector values of each matrix and n the dimension
of the matrix.

Table 4. Index ratio values based on the order of the comparison matrix.

n 1 2 3 4 5 6 7 8 9

RI 0 0 0.525 0.882 1.115 1.252 1.341 1.404 1.452

Once this value is obtained, it is related with respect to the random consistency index
shown in Table 4, resulting in the consistency ratio, as shown in Equation (3).

CR =
CI
RI

(3)

Based on the results obtained, it will be assessed whether or not to accept them,
according to the maximum percentages shown in Table 5. If CR exceeds these threshold
values then the judgments should be reviewed [71].
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Table 5. Maximum percentages of the consistency ratio CR.

n CRmax

2 0%

3 5%

4 8%

≥5 10%

Where n represents the dimension of the matrix. Once the consistency has been
verified, the weights are then calculated. These weights represent the relative importance
of each criterion (also defined as the priorities of the different alternatives with respect to a
given criterion), which is calculated by solving Equation (4).

λmax × wi =
n

∑
j=1

aijwj (4)

where w represents the criteria weights (eigenvectors) and λmax the principal eigenvector.
The weights of each level are then calculated using the geometric mean. In order to unify
the priorities to achieve a global calculation of them, all the answers of the respondents are
synthesized after agreement, according to Equation (5) where G represents the geometric
mean of each factor in the hierarchy, a represents the weight achieved by the expert panel
and n the order of each pairwise comparison matrix.

G =


(1 × · · · × a1i × · · · a1n)

1
n(

aj1 × · · · × aji × · · · aj1n
) 1

n(
anj × · · · × ani × · · · 1

) 1
n

 (5)

Finally, all that remains is to calculate the global priority weight of each parameter
(Wp) by applying Equation (6), where i indicates the level of the hierarchy, Wf indicates the
local priority weighting of the factor and Wc of the category.

Wpi = Wfi × Wci (6)

3. Results and Discussion

In order to validate what was stated in the previous section, the first step is the
selection of experts, which will be made up of people with extensive experience in the field
of industrial cleaning from different perspectives. Therefore, a group of experts has been
considered, made up of six people from different disciplines: mechanical engineer, chemical
engineer, environmentalist, site manager, site contractor, and technician in occupational
risk prevention, with the condition that they have at least a master’s degree in occupational
risk prevention and experience in industrial tank cleaning of more than ten years. As stated
before, agreements are reached by consensus, for which a meeting is organized, in which
the researchers have no voice or vote but lead the session.

This panel of experts receives the problem by the researchers, as shown in Figure 8:
a summary of the structure followed in the method composed of the criteria, subcriteria,
and alternatives that will be evaluated below. They will be responsible for making decisions
based on the value judgments made on the pairwise comparisons of the problem shown. To
do so, the six experts meet, moderated by the researchers. At the meeting, the researchers
explain the process and the experts discuss each of the comparisons until a consensus is
reached, at all three levels.
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The criteria are then compared in pairs. Table 6 shows the results obtained by consensus
after one round of discussion for this comparison, which also reflects the scale chosen, as well
as the consistency of the comparison. Further details are provided in Appendix A (Table A1).
This table shows how, among the three criteria established, safety stands out above the
others (72%), due to the fact that the weighting given by the experts considers safety as a
key factor to be considered in relation to the type of work researched [60,61]. The second
order of weighting established by the experts is the environment (19%), with performance in
last place (9%), broken down into time, cost, and scope. As expected, waste disposal, the water
footprint, and the generation of dust and/or particles polluting the environment are issues on
which society is working to improve every day, as reflected in the opinion of the experts [29,72].

Table 6. Criteria comparison matrix (dimensions).

Criteria SA PE EN Eigenvector Weight

SA 1 8 4 3.175 0.727

PE 1/8 1 1/2 0.397 0.091

EN 1/4 2 1 0.794 0.187
CR = 0.00%.

Likewise, all the results of the pairwise comparisons between the subcriteria (set of
potential requirements into which each criterion is broken down), together with the scale
chosen and the corresponding consistency, are shown in Appendix A (Tables A2–A4).
Consensus for subcriteria comparisons is reached after two rounds of discussion. As a
summary, Table 7 shows the weights of these two levels decided by the panel of experts.

Finally, after the expert pairwise comparison of the alternatives for each of the sub-
criteria by the panel of experts, the final decision is made. These comparisons are also
shown in Appendix A (Tables A5–A20). Consensus for alternative comparisons is reached
after four rounds of discussion. As a result, Figure 9 shows the degree of adequacy of each
alternative to the set of subcriteria and criteria (requirements), based on the objective set.
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Table 7. Criteria and subcriteria local weighting summary.

ID Criteria ID Subcriteria Subcriteria Weight Criteria Weight

SA Safety

SA1 Work exposure time 35%

72%

SA2 Contac with toxic products 12%

SA3 Postural/accessibility 8%

SA4 Ventilation 5%

SA5 Falls to different level 19%

SA6 Overexertion 3%

SA7 Bumps 3%

SA8 Traps, collisions, cuts, etc. . . . 3%

SA9 Electrical contact 11%

PE Performance

PE1 Time 14%

9%PE2 Cost 14%

PE3 Scope 72%

EN Environmental

EN1 Water footprint 30%

19%
EN2 Waste management 54%

EN3 Dust generation/particulate air pollutants 12%

EN4 Application of sustainable technology 4%
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Figure 9. Hierarchical alternatives.

Regarding the alternatives to choose from, robotic cleaning was the best rated by the
panel, according to the result obtained (approximately 63% of the decision). Therefore, it
is the first option in the hierarchical decision. Among the advantages of robotic cleaning,
the reduction in personnel, equipment, and water consumption must be stressed. On
the contrary, although it takes longer to perform the tasks than chemical cleaning, spot
repairs can be undertaken if any areas are not properly cleaned, whereas chemical cleaning
would have to be repeated in full. However, the advantages outweigh the disadvantages,
ranking it as the best option [35–37]. Furthermore, these advantages are aligned with
the environmental criterion. In fact, it is the alternative that best reflects the common
objective of international environmental standards regarding the promotion of the most
advanced technology as long as it is appropriate, feasible, and economically viable for the
implementing organization [67,68].

The alternative of chemical cleaning was the second rated (approximately 26%), quite
distant from the previous one, but it also greatly reduces the hazard [73], and the total
cleaning work time, although it requires a greater supply of water, generates a greater
amount of residues, and requires repeating the entire process if it is not perfectly clean
at first instance (which cannot be determined until the work is completed). However,
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these parameters are still under study, in order to achieve greater efficiency [31,32]. Finally,
manual cleaning was the worst rated by the panel (approximately 11%), endorsing the
current trend that reserves it for certain jobs when it is not possible to use any of the
previous procedures [27]. These results add to those that advocate Industry 5.0 as a solution
to reduce occupational hazards in industrial processes, replacing routine, monotonous, and
dangerous jobs by other more skilled ones [74].

According to the weighting of criteria and subcriteria compiled in Table 6, the use
of robotic cleaning completely eliminates worker exposure time. This subcriterion is the
one with the highest weighting (approximately 25% of the global weight). It also directly
affects others, such as falls to different levels (approximately 14% of the global weight),
which is the second most important one, contact with toxic products (approximately 9%
of the global weight), and contact with electric current (approximately 8% of the global
weight), among others. On the other hand, waste management is another subcriterion
to be considered (approximately 10% of the global weight), which is the most important
environmental issue. Regarding the performance criterion, the scope is the most important
factor (approximately 7% of the global weight), over and above time and cost, given the
importance of properly performing the task, so as not to have to repeat the process, not to
reduce the quality of the stored product and not to shorten the useful life of the tanks.

4. Conclusions

The industrial cleaning of petroleum tanks is placed in the group of dangerous activi-
ties, which can endanger the safety and health of the workers involved, including potential
rescuers. Therefore, it is necessary to study the risks involved in such industrial cleaning
operations and to evaluate the different alternatives available on the market that enables
the hazard (exposure to occurrence, consequence of occurrence, and probability of occur-
rence) to be reduced to a minimum, while also providing compliance with environmental
regulations without losing sight of the performance (in terms of cost, time, quality, and/or
scope) that the activity entails.

In order to deal with this demanding situation, the intervention of experts in the field
who can contribute from each area involved (promoters, contractors, clients, prevention
services, labor inspectors, etc.), is unavoidable. Because they have different interests,
their viewpoints may conflict. In this context, resorting to the methodology of analytical
hierarchies means that these conflicts can be resolved on the basis of the procedures required
to perform them. The AHP method provides the weighted selection of the alternatives
proposed to improve the occupational safety of those involved without undermining the
paradigm that Industry 5.0 represents.

In addition, based on a bibliographic search of different potential alternatives, three
of them stand out: manual cleaning, which is taken as a base reference for comparison,
chemical cleaning with marine dispersant, and mechanical cleaning with magnetic robots.
These alternatives have been studied from three criteria: the safety of the parties involved,
the performance of the operation, and the degree of environmental impact. From the
result of the application of the multi-criteria decision process, it has been concluded that
mechanical cleaning using robots is the best option, standing out from the others in all the
criteria and subcriteria established to improve the health and safety of workers, rescuers,
and other people involved. This is followed by chemical cleaning as the second choice,
leaving manual cleaning in last place, which, as has been shown, would only be used in
cases where the other two options are impossible to be applied.

It can be noted that the proposed approach faces each requirement independently, so
it does not consider the different interrelations among activity needs. In addition, although
this research provides several inputs to define safer protocols that take into account per-
formance goals and environmental affairs, future research faces several challenges and
constraints because of the heterogeneity of the tanks to be cleaned and the regulatory
framework to be applied. Although the proposed framework was designed for the case of
the model and methods of vertical shaft tank cleaning, future research should focus on the
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development and study of autonomous technology for operations in other areas, such as
ship tank cleaning, using the study carried out in this article as a basis.
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Appendix A

Table A1. Criteria comparison matrix.

Criteria SA PE EN Eigenvector Weight (Wt)

SA 1 8 4 3.175 0.727

PE 1/7 1 1/2 0.397 0.091

EN 1/4 2 1 0.794 0.182
CR = 0.00% < 5%.

Table A2. Safety subcriteria comparison matrix.

Criteria SA1 SA2 SA3 SA4 SA6 SA7 SA8 SA9 SA10 Eigenvector Local Wt Global Wt

SA1 1 4 5 6 3 7 7 7 4 4.292 0.348 0.253

SA2 1/4 1 2 3 1/2 4 4 4 1 1.537 0.125 0.091

SA3 1/5 1/2 1 2 1/3 3 3 3 1/2 0.988 0.080 0.058

SA4 1/6 1/3 1/2 1 1/4 2 2 2 1/3 0.642 0.052 0.038

SA6 1/3 2 3 4 1 5 5 5 2 0.406 0.033 0.024

SA7 1/7 1/4 1/3 1/2 1/5 1 1 1 1/4 0.406 0.033 0.024

SA8 1/7 1/4 1/3 1/2 1/5 1 1 1 1/4 0.406 0.033 0.024

SA9 1/7 1/4 1/3 1/2 1/5 1 1 1 1/4 1.318 0.107 0.078

SA10 1/4 1 2 3 1/2 1 4 4 1 4.292 0.348 0.253

CR = 5.00% < 10%.

Table A3. Performance subcriteria comparison matrix.

Criteria PE1 PE2 PE3 Eigenvector Local Wt Global Wt

PE1 1 1 1/5 0.585 0.143 0.010

PE2 1 1 1/5 0.585 0.143 0.010

PE3 5 5 1 2.924 0.714 0.050
CR = 0.00% < 5%.
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Table A4. Environment subcriteria comparison matrix.

Criteria EN1 EN2 EN3 EN4 Eigenvector Local Wt Global Wt

EN1 1 1/2 3 7 1.800 0.301 0.056

EN2 2 1 6 9 3.224 0.538 0.101

EN3 1/3 1/6 1 5 0.726 0.121 0.023

EN4 1/7 1/9 1/5 1 0.237 0.040 0.007
CR = 0.13% < 8%.

Table A5. Comparison of alternatives matrix for subcriterion SA1.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 1/4 1/9 0.303 0.066 0.014

CC 4 1 1/4 1.000 0.217 0.045

RC 9 4 1 3.302 0.717 0.149
CR = 3.51% < 5%.

Table A6. Comparison of alternatives matrix for subcriterion SA2.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 1/6 1/9 0.265 0.061 0.005

CC 6 1 1/2 1.442 0.333 0.029

RC 9 2 1 2.621 0.606 0.052
CR = 0.88% < 5%.

Table A7. Comparison of alternatives matrix for subcriterion SA3.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 1/6 1/9 0.265 0.061 0.004

CC 6 1 1/2 1.442 0.333 0.020

RC 9 2 1 2.621 0.606 0.036
CR = 0.88% < 5%.

Table A8. Comparison of alternatives matrix for subcriterion SA4.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 1/6 1/9 0.265 0.061 0.002

CC 6 1 1/2 1.442 0.333 0.013

RC 9 2 1 2.621 0.606 0.024
CR = 0.88% < 5%.

Table A9. Comparison of alternatives matrix for subcriterion SA5.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 1/5 1/9 0.281 0.063 0.008

CC 5 1 1/3 1.186 0.265 0.033

RC 9 3 1 3.000 0.672 0.082
CR = 2.77% < 5%.
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Table A10. Comparison of alternatives matrix for subcriterion SA6.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 1/2 1/9 0.382 0.076 0.002

CC 2 1 1/7 0.659 0.131 0.003

RC 9 7 1 3.979 0.793 0.021
CR = 2.07% < 5%.

Table A11. Comparison of alternatives matrix for subcriterion SA7.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 1/8 1/9 0.240 0.054 0.001

CC 8 1 1/2 1.587 0.357 0.009

RC 9 2 1 2.621 0.589 0.015
CR = 3.51% < 5%.

Table A12. Comparison of alternatives matrix for subcriterion SA8.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 1/4 1/9 0.303 0.066 0.002

CC 4 1 1/4 1.000 0.217 0.006

RC 9 4 1 3.302 0.717 0.019
CR = 3.51% < 5%.

Table A13. Comparison of alternatives matrix for subcriterion SA9.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 2 7 2.410 0.592 0.045

CC 1/2 1 5 1.357 0.333 0.026

RC 1/7 1/5 1 0.306 0.075 0.006
CR = 1.35% < 5%.

Table A14. Comparison of alternatives matrix for subcriterion PE1.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 1/4 1/9 0.303 0.066 0.0009

CC 4 1 1/4 1.000 0.217 0.0030

RC 9 4 1 3.302 0.717 0.0100
CR = 3.51% < 5%.

Table A15. Comparison of alternatives matrix for subcriterion PE2.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 1/4 1/9 0.303 0.066 0.0009

CC 4 1 1/4 1.000 0.217 0.0030

RC 9 4 1 3.302 0.717 0.0100
CR = 3.51% < 5%.
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Table A16. Comparison of alternatives matrix for subcriterion PE3.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 1/7 1/9 0.251 0.057 0.0040

CC 7 1 1/2 1.518 0.346 0.0241

RC 9 2 1 2.621 0.597 0.0417
CR = 2.07% < 5%.

Table A17. Comparison of alternatives matrix for subcriterion EN1.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 2 1/6 0.693 0.143 0.0080

CC 1/2 1 1/9 0.382 0.079 0.0044

RC 6 9 1 3.780 0.779 0.0438
CR = 0.88% < 5%.

Table A18. Comparison of alternatives matrix for subcriterion EN2.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 1/4 1/9 0.303 0.066 0.0066

CC 4 1 1/4 1.000 0.217 0.0219

RC 9 4 1 3.302 0.717 0.0722
CR = 3.51% < 5%.

Table A19. Comparison of alternatives matrix for subcriterion EN3.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 1/2 1/9 0.382 0.076 0.0017

CC 2 1 1/7 0.659 0.131 0.0030

RC 9 7 1 3.979 0.793 0.0180
CR = 2.07% < 5%.

Table A20. Comparison of alternatives matrix for subcriterion EN4.

Option MC CC RC Eigenvector Local Wt Global Wt

MC 1 1/6 1/9 0.265 0.061 0.0005

CC 6 1 1/2 1.442 0.333 0.0025

RC 9 2 1 2.621 0.606 0.0045
CR = 0.88% < 5%.
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