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Abstract: Safety researchers increasingly recognize the impacts of task-induced fatigue on vehicle 

driving behavior. The current study (N = 180) explored the use of a multidimensional fatigue meas-

ure, the Driver Fatigue Questionnaire (DFQ), to test the impacts of vehicle automation, secondary 

media use, and driver personality on fatigue states and performance in a driving simulator. Second-

ary media included a trivia game and a cellphone conversation. Simulated driving induced large-

magnitude fatigue states in participants, including tiredness, confusion, coping through self-com-

forting, and muscular symptoms. Consistent with previous laboratory and field studies, disposi-

tional fatigue proneness predicted increases in state fatigue during the drive, especially tiredness, 

irrespective of automation level and secondary media. Similar to previous studies, automation 

slowed braking response to the emergency event following takeover but did not affect fatigue. Sec-

ondary media use relieved subjective fatigue and improved lateral control but did not affect emer-

gency braking. Confusion was, surprisingly, associated with faster braking, and tiredness was as-

sociated with impaired control of lateral position of the vehicle. These associations were not mod-

erated by the experimental factors. Overall, data support the use of multidimensional assessments 

of both fatigue symptoms and information-processing components for evaluating safety impacts of 

interventions for fatigue. 

Keywords: fatigue; driver behavior; driving simulator; automation; media use; alertness;  

vehicle control 

 

1. Introduction 

Parts of the data reported in this article have previously been published as a conference 

proceedings paper [1]. This article reports substantial new findings on individual differences 

in fatigue response and performance. The safety impacts of driver fatigue are substantial and 

well-known. Cognitive fatigue induced by prolonged driving can lead to impairments in at-

tention and performance during the daytime, beyond impacts of sleep loss and circadian 

rhythms [2,3]. Professional drivers, including truck and taxi drivers, report prolonged driving 

time as a major influence on fatigue [4]. Task-induced driver fatigue has been highlighted be-

cause of interest in vehicle automation. At SAE Level 3 automation [5], the driver may be re-

quired to resume control following an extended period of automated driving. Even short pe-

riods of full automation can induce large magnitude increases in fatigue and loss of alertness 

prior to resuming manual driving [6], raising safety concerns. This article addresses individual 

differences in susceptibility to fatigue states resulting from automation. We report a study that 

investigated trait predictors of multiple state fatigue dimensions during automated driving 

and state correlates of driver performance. 
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1.1. Individual Differences in Fatigue: Traits and States 

Individual differences are expressed in both the driver’s stable disposition to become 

fatigued, and the immediate experience of transient fatigue states. Traits associated with 

fatigue-proneness interact with situational factors, including drive duration, cognitive 

workload, and monotony, to produce fatigue states [7]. Research has often used scales for 

sleepiness to assess fatigue, but it is important to distinguish mental fatigue produced by 

the task from sleepiness; these two states differ in their causes and in behavioral or symp-

tomatic outcomes [8]. Task-induced state fatigue can be characterized within the multidi-

mensional model of stress that differentiates task engagement, distress, and worry [9]. 

Both driving simulator and on-road studies show that longer drives tend to elicit lower 

task engagement and higher distress. Prolonged driving also increases some aspects of 

worry, including cognitive interference from concerns about task performance [10]. There 

is an important distinction between active fatigue, associated with cognitive overload, and 

passive fatigue, associated with boredom when workload is low [11,12]. Both active and 

passive fatigue are associated with tiredness and task disengagement that escalates over 

time, whereas active fatigue additionally provokes emotional distress [6]. 

More fine-grained analyses of fatigue state dimensions have been conducted in occupa-

tional and clinical contexts [13,14]. Tiredness is the most salient feature of the state, but fa-

tigued individuals also commonly experience loss of motivation, distraction, concerns about 

performance, and bodily discomfort [15–17]. Hitchcock and Matthews (2005) [18] differenti-

ated four distinct conceptual aspects of driver fatigue, summarized in Table 1. First, there are 

core emotional–motivational symptoms including tiredness, task disengagement, and effort-

minimization. Second, physical symptoms include muscle fatigue, eyestrain and other so-

matic disturbances. Third, fatigue may be associated with cognitive disturbances including 

loss of alertness, distractibility, confused thinking, and metacognitive awareness of impair-

ment. Fourth, drivers attempt to cope with adverse states through a variety of behavioral and 

self-regulative strategies [19,20]. In the case of fatigue, these strategies include maintaining 

personal comfort by minimizing task effort and trying to elevate arousal through strategies 

such as playing music or blasting cold air. Building on an earlier effort [21], Hitchcock and 

Matthews (2005) [18] developed the Driving Fatigue Scale (DFS) to assess multiple fatigue di-

mensions within each conceptual category. 

Table 1. Four conceptual elements of driver fatigue states. 

Conceptual Category Symptoms Performance Impact Safety Implications 

Core affective-motiva-

tional symptoms 

Tiredness, sleepiness, de-moti-

vation 

Loss of attentional resources, 

slowed response, reduced on-

task effort 

Impaired attention to traffic 

environment 

Physical 

Muscle stiffness and discom-

fort, visual disturbance, head-

ache 

Source of distraction 
Direct impact of distraction on 

safety unknown 

Cognitive 

Mind-wandering, confusion, 

intrusive thoughts, perfor-

mance concerns 

Cognitive interference associ-

ated with loss of working 

memory and resources 

Impaired attention to traffic 

environment 

Coping 
Self-arousal, comfort seeking, 

mental withdrawal 
Mixed–depends on strategy Mixed–depends on strategy 
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There is an extensive literature on personality trait correlates of fatigue, across mul-

tiple contexts. Studies based on the Five Factor Model of personality [22] have found that, 

overall, neuroticism is associated with higher fatigue, whereas extraversion, conscien-

tiousness, openness, and agreeableness are related to lower fatigue [23]. In task perfor-

mance contexts, low conscientiousness is the most consistent predictor of acute fatigue 

states [24]. However, standard personality measures do not adequately capture driving-

specific traits that influence the driver’s state responses to the challenges of operating a 

vehicle [25]. 

The Driver Stress Inventory (DSI) was developed to address this limitation and assess 

traits specific to the driving context [26]. The DSI assesses five driving trait dimensions 

associated with dislike of driving, aggression, thrill-seeking, hazard monitoring, and fa-

tigue-proneness. These scales correlate with various safety-relevant stress and perfor-

mance criteria in both laboratory and field studies [19,27,28]. For example, the fatigue-

proneness scale consistently predicts symptoms of state fatigue and task disengagement 

[10]. Other DSI factors related to vulnerability to negative mood states, including aggres-

sion and dislike of driving, also predict elevated fatigue [10,21]. Furthermore, the transac-

tional model of driver stress and fatigue [19] proposes that trait factors influence state 

fatigue through biasing cognitive stress processes, i.e., appraisal and coping. In general, 

drivers who use avoidant coping in preference to task-focused coping are more vulnerable 

to task fatigue. In contrast, appraising the driving task as a stimulating challenge tends to 

counter development of fatigue states [6]. In this context, trait fatigue-proneness may in-

fluence whether the driver’s style of appraisal and coping during prolonged driving tends 

to exacerbate or mitigate fatigue [29]. 

1.2. Fatigue and Vehicle Automation 

Driver fatigue issues have been highlighted in relation to safety in automated vehi-

cles. At higher levels of automation [5], the driver’s role changes from active vehicle op-

eration to monitoring vehicle status and maintaining readiness to resume manual control. 

The task underload and monotony associated with automation monitoring elevates driver 

passive fatigue and threatens the driver’s ability to manage resumption of normal driving 

[12,30]. Studies of automation impacts show effects on both subjective fatigue [31,32] and 

performance indices, including loss of vigilance [33,34], slowed secondary task reaction 

time [31] and delayed manual takeover [35]. 

The authors’ previous studies [36] used a driving simulator to investigate the build-

up of subjective fatigue during automated driving, and the impact of automation on speed 

of response to an emergency event soon after manual takeover. Saxby et al. (2013) [6] com-

pared the effect of full vehicle automation (passive fatigue) with an active fatigue manip-

ulation that exposed the driver to frequent, strong wind gusts. Both active and passive 

fatigue manipulations lowered task engagement (more strongly for passive fatigue), but 

only active fatigue elevated distress and workload. Passive but not active fatigue was as-

sociated with slowed braking response to the emergency event of a slow-moving van pull-

ing out in front of the driver. Drivers given voluntary control over automation use re-

mained fatigued and were slow to respond to the emergency event, highlighting the ad-

verse safety impact of full vehicle automation [37]. 

Additional tasks secondary to driving may counter fatigue associated with the un-

derload states that result from monotonous driving. Gershon, Ronen, Oron-Gilad and Shi-

nar (2009) [38] had drivers complete a monotonous 140 min simulated drive during which 

variability in lane position and speed increased with time on task, suggesting progressive 

impairment in vehicle control over time. They developed an interactive trivia game that 

mitigated performance deficits. Aspects of the driving task itself, such as speed regulation, 

can also be gamified to counteract fatigue [39]. Similarly, two studies [40,41] showed that 

an additional word-association task enhanced lane-keeping and reduced fatigue effects. 

A simulated interaction with a virtual digital assistant improved subjective energy and 
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multiple aspects of performance [42]. A subsequent study using this method suggested 

benefits were greater for drivers more actively engaged with the assistant [43]. 

Studies of countermeasures designed specifically to counteract automation-induced 

fatigue are few. A simulator study of automated driving [30] compared the impacts of a 

quiz game and a monotonous monitoring task on manual takeover, both requiring 

touchscreen responses to visual stimuli. The more engaging quiz task speeded initial brak-

ing response to a crashed vehicle in the driver’s lane. The additional task manipulation 

had no effect on subjective sleepiness. Neubauer, Matthews and Saxby [44] found that 

both texting and engaging in spoken conversation during the automated phase of a drive 

were effective in preventing slowed braking to an emergency event following manual 

takeover. However, engaging in a phone conversation immediately following takeover 

had no impact on braking speed in the same paradigm [45]. Secondary media use is prom-

ising for mitigating automation-induced fatigue, as for fatigue in general, but its impacts 

appear to vary with modality of stimuli and scheduling of media use across automated 

and manual phases of driving [36]. 

1.3. Decomposing Fatigue Processes 

A further challenge for understanding fatigue impacts in the automated vehicle is the 

multiplicity of paths through which fatigue states may impair performance. Much task-in-

duced fatigue research, especially in vigilance paradigms, shows temporal deterioration in 

attention consistent with an attentional resource model [46] that poses a threat to automated 

vehicle operation [33,34]. Supporting the resource model, fatigue-related impairments are 

most prevalent when cognitive workload is high [47]. Psychophysiological studies of fatigue 

and vigilance using hemodynamic [48] and electroencephalographic (EEG) measures [49,50] 

show temporal declines in brain activity consistent with the workload/resource model. 

However, the role of temporal resource depletion in driver fatigue impairments is 

uncertain, especially in states of passive fatigue that are associated with low workload. If 

workload is low, resource availability may be sufficient to maintain performance even if 

the resource pool becomes depleted. An alternative hypothesis is that the fatigued driver 

becomes reluctant to exert effort [51]. Fatigue leads to a lowering of performance stand-

ards and task strategies that minimize effort, such as responding reactively rather than 

proactively [16]. Matthews and Desmond (2002) [52] tested resource depletion and effort-

minimization hypotheses against one another in a driving simulation study of induced 

fatigue. Results decisively supported the effort-minimization account of performance def-

icits, which were seen only in lower workload conditions. Thus, in passive fatigue states, 

failure to exert sufficient effort may have stronger safety impacts than lack of resources. 

Other possible mechanisms for fatigue effects include mind-wandering [53] and impair-

ment in visual search [54]. 

Safety in the automated vehicle may be affected by multiple fatigue processes acting 

simultaneously. Consistent with this suggestion, studies have shown dissociations be-

tween different fatigue responses. Both Atchley et al. (2014) [41] and Neubauer et al. 

(2012c) [44] found that additional tasks improved performance in the fatigued driver, but 

they did not mitigate loss of subjective task engagement, a primary state fatigue symptom. 

Additionally, Saxby et al. (2013) [6] found that passive fatigue, provoked by automation, 

lengthened reaction time to an emergency event but did not reduce variability of lateral 

position in the interval immediately prior to the event. That is, quality of vehicle control 

was not diagnostic of alertness. There is similar ambiguity over the role of individual dif-

ference factors. Task engagement may index both resource availability, as demonstrated 

in vigilance studies [24,47,55], and task-directed effort, as evidenced by less neglect of po-

tential targets in a multi-UAV simulation [56]. 
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1.4. Study Aims 

The overall aim of the study was to investigate influences on individual differences in 

fatigue states in the automated vehicle, and their associations with driving performance. The 

study used a driving simulator that was configured to contrast driving with full automation 

and normal driving under manual control [6,44,45]. The current study also added a partial 

automation condition in which speed was automated to test generalization of results, given 

evidence for fatigue-related impacts of partial automation [57]. The levels of automation thus 

corresponded to SAE Levels 0 (manual), 1 (partial: brake/acceleration support), and 3 (full). In 

addition, two forms of secondary media were manipulated to test the impact of additional 

tasks on fatigue. One group of participants answered trivia questions at two stages of the 

drive, similar to [38], while a second group engaged in a cell phone conversation. A third con-

trol group had no exposure to secondary media. 

In all conditions, vehicle control reverted to manual in the last five minutes of the 

drive. In this interval, drivers were required to respond to an unexpected hazard, a slow 

vehicle pulling out in from of them. Multiple factors influence braking speed when the 

driver takes over control following a period of automated driving including distraction 

from non-driving tasks, hazard criticality, traffic complexity, and design features of the 

automation [58–60]. The effects of these factors on braking response time are mediated by 

multiple physical, visual, and cognitive processes, including gaze redirection, situation 

evaluation, and action selection and execution [61,62]. The present study aimed to test 

how automation and secondary media impacted emergency braking speed in a simple, 

controlled scenario; differentiating component processes was beyond the current scope. 

The DSI [26] was used to assess driver traits including fatigue proneness, and the 

DFQ [18,63] assessed driver fatigue and stress states. This design supported investigation 

of the following research issues. 

1.4.1. Influences on Driver Fatigue States 

We tested the impact of the experimental manipulations on multiple fatigue state 

dimensions, and whether these effects were moderated by individual differences in fa-

tigue proneness. Based on our previous studies (e.g., [6]), we expected that automation 

would elevate driver fatigue, with full automation having a stronger effect than partial 

automation. Previous studies show that secondary media can mitigate driver fatigue 

[31,38] and so we anticipated that both the trivia game and cell phone conversation would 

reduce subjective fatigue. We expected that the trivia game would have stronger benefits 

for subjective state, because gamification has been shown to benefit driver engagement 

[39,64]. 

1.4.2. Individual Differences in State Fatigue Response 

We expected that the DSI fatigue proneness dimension would be associated with a 

stronger fatigue response across all conditions, as in previous studies (e.g., [10]). At the trait 

level, fatigue proneness is linked to the tendency to use avoidant coping strategies [26]. Auto-

mation-induced fatigue increases avoidance and is associated with reduced task-focused cop-

ing [6]. Based on these findings, we hypothesized that fatigue-prone drivers would be espe-

cially vulnerable to automation fatigue and, therefore, would show larger benefits from sec-

ondary media use that elevates cognitive workload. We tested for differences in DSI predictors 

of the multiple aspects of fatigue assessed by the DFQ on an exploratory basis. 
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1.4.3. Automation and Media Influences on Driver Performance 

Our previous simulation studies showed that automation-induced fatigue reliably 

slows braking response to an emergency event occurring soon after manual takeover 

[6,37]. We tested for replication of this effect and its generalization to partial automation. 

We also found that the fatigue effect is mitigated by responding to texts during a period 

of automated driving [44]. Thus, we anticipated that the secondary media, especially the 

trivia game, would speed response to the emergency event, following manual takeover. 

In normal driving, with full manual control, induced driver fatigue impairs lateral 

control of the vehicle, especially under low workload [52]. We assessed the standard de-

viation of lateral position (SDLP) during two phases of the first 40 min of the drive in 

manual and partial automation conditions. We anticipated that secondary media would 

mitigate fatigue effects and reduce SDLP, similar to previous studies [38,40–42]. 

1.4.4. Individual Differences in Driver Performance 

Subjective fatigue states, including low task engagement, have been linked to both 

reduced resource availability [55] and reduced task-directed effort [56]. We anticipated 

that subjective fatigue states would be associated with slowed emergency braking, as well 

as higher variability in lateral position in manual and partial automation conditions. The 

diagnosticity of fatigue states for performance impairment may vary with task demands, 

but it is hard to tease apart the roles of resource availability and effort-regulation. There-

fore, we tested, on an exploratory basis, whether fatigue state–performance associations 

were moderated by secondary media and vehicle automation manipulations. 

2. Method 

2.1. Participants 

Participants were 180 fully licensed drivers (71 males, 109 females) recruited from 

the University of Cincinnati Introductory Psychology student research pool. The partici-

pant pool roughly reflects the ratio of male to female students at the University. Partici-

pants ranged in age from 18–30 years (M = 20 years, SD = 3.5). They were required to have 

normal or corrected-to-normal vision. 

2.2. Design 

A 3 × 3 (Automation × Secondary media) between-subjects design was utilized. Au-

tomation conditions included manual, partial, and total automation. Media conditions in-

cluded control (no media), trivia, or cell phone conversation. 20 participants were as-

signed at random to each of the nine task conditions thus defined. The ratio of males to 

females was similar in each group; a χ2 test for differences in the frequencies of each gen-

der across conditions was non-significant. In addition, a 3 × 3 (Automation × Secondary 

media) Analysis of Variance (ANOVA) with DSI fatigue proneness as the dependent var-

iable showed no significant effects of the experimental factors, i.e., participant groups in 

each condition were equally fatigue-prone. 

2.3. Apparatus 

2.3.1. Simulator 

Drives differing in automation level were configured for a Systems Technology, Inc., 

STISIM Model 400 simulator, version 2.08.10. The traffic environment was displayed via 

a 42” Westinghouse LCD flat screen television. The participants were seated in an adjust-

able car seat and controlled the vehicle via gas and brake pedals and a Logitech MOMO 

Racing Force Feedback Wheel which provided speed-sensitive “steering feel” feedback 

via a computer-controlled torque motor (see Figure 1). 
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Figure 1. STISIM Model 400 simulator used in study. 

2.3.2. Secondary Media 

Participants in the cell phone condition were provided with an LG Rumor 2 cellular 

telephone, together with a JABRA Bluetooth headpiece, which supported hands-free com-

munication with the experimenter. 

2.4. Questionnaires 

Driver Stress Inventory (DSI: [26]). The first section of the DSI assesses demographic 

variables, driver experience, accident involvement, and traffic law convictions. The sec-

ond section comprises 48 questions about the driver’s typical emotional reactions, habits, 

and preferences, answered on 0–10 Likert scales. Responses are scored to compute five 

dimensions that characterize driver stress vulnerability: aggression, dislike of driving, 

hazard monitoring, thrill seeking and fatigue proneness. Sample items included “Driving 

brings out the worst in people” (aggression), “I feel tense and nervous when passing an-

other vehicle” (dislike of driving), “I make a special effort to be alert even on roads I know 

well” (hazard monitoring), “I like to raise my adrenaline levels while driving” (thrill seek-

ing), and “When driving for several hours, I become more drowsy or sleepy” (fatigue 

proneness). Scale reliabilities (alpha coefficients) range from 0.73–0.87 [26]. 

Driver Fatigue Questionnaire (DFQ): [18,63]. The DFQ includes 42 items that require 

the respondent to rate how much they feel various acute fatigue symptoms, answered on 

0–5 Likert scales anchored by “not at all” and “very much”. It is scored on seven dimen-

sions of fatigue states. Here, to simplify data reporting, we focus on four 6-item scales that 

are representative of the four conceptual elements of driver fatigue states previously iden-

tified. Physical fatigue was represented by muscular fatigue. Sample symptoms are “mus-

cles ache” and “shoulders are stiff”. Core fatigue symptoms were represented by tiredness, 

e.g., “over-tired”, “half-awake”. Cognitive symptoms were represented by confusion, e.g., 

“easily distracted”, “daydreaming”. Coping was represented by comfort-seeking, e.g., 

“need to rest and relax”, “want to take things easy”. Alpha coefficients for these scales 

range from 0.89–0.94. 
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Participants also completed the Dundee Stress State Questionnaire (DSSQ: [65]) as a 

general assessment of task stress, but results from the DSSQ are not reported here, in order 

to focus on the DFQ state fatigue dimensions. 

2.5. Procedure 

Following an informed consent interview, participants completed the DSI and pre-

task versions of the DSSQ and DFQ. Participants were then given instructions for the ex-

perimental condition to which they were assigned. They completed a 3-min practice drive 

in order to familiarize themselves with the simulator. They were instructed to obey all 

traffic signals and signs, including speed limit signs, stop signs, and red lights. Partici-

pants in the cell phone condition received a practice call at approximately 1:30 min to 

confirm their ability to use the Bluetooth device. 

Participants next completed a 45 min drive on a two-lane highway, with occasional 

oncoming traffic, pedestrian crossings, and intersection stops. The scenery was varied 

throughout the drive and transitioned between rural (small town) and city (urban) scen-

ery approximately every 5 min, similar to previous studies [6,37,44]. In the manual driving 

condition, participants were asked to keep to speed limits shown on signs. Speed limits 

ranged from 40–50 mph in rural environments, and 50–60 mph in city driving. 

The timeline of the drive is shown in Figure 2. During the first 40 min, the participant’s 

level of control of the vehicle was set at the beginning of the drive according to automation 

condition. In manual conditions, participants used the wheel and pedals as in normal driving. 

In partial automation conditions, speed was controlled by the simulation, and the participant 

steered the vehicle. Under full automation, both speed and steering were controlled by the 

simulation. In both automation conditions, participants were instructed to monitor for an au-

tomation failure, in order to keep their attention on the display. Automation function was in-

dicated by two red diamonds positioned at the upper left- and righthand corners of the screen. 

Approximately every 10 min, one of the red diamonds was replaced by a downward pointing 

triangle indicating “automation failure”. In this event, participants were instructed to press 

the turn signal when they detected the failure in order to reset the automation. There was, in 

fact, no interruption of automation until the automation was switched off at 40 min, requiring 

the participant to take over full vehicle control. 

 

Figure 2. Timeline for simulated drive, by experimental condition. 

The secondary media manipulation was implemented as follows. Secondary media 

were delivered during two 10-min periods (between 5–15 min and 30–40 min during the 

drive). In the trivia condition, the experimenter sat out of view of the participant and com-

municated by speech, in a neutral tone. Based on Gershon et al.’s (2009) [38] procedure, 

participants first selected one of five categories-food, movies, sports, current events, and 

general knowledge and informed the experimenter of their choice. The experimenter then 

referred to a list of questions for that category and asked the participant the next question 

on the list. Following the participant’s spoken answer, the experimenter stated “correct” 

or “incorrect”. The trivia game was performed during two separate 10-min periods, as 
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shown in Figure 1. In the cell phone condition, the experimenter conducted two conver-

sations by phone during these 10-min intervals. Conversations consisted of a general in-

troduction followed by the recollection of a more in depth “close call” experience of the 

participant, following Saxby et al.’s (2017) [45] methodology. The close call method is con-

sidered engaging to the participant and representative of a naturalistic conversation [66]. 

In the control condition, there was no communication between experimenter and partici-

pant. Standard deviation of lateral position (SDLP) was logged during mins 8–12 and 33–

37, providing measures of control early and late in the drive, concurrent with secondary 

tasks where provided. 

In the final 5 min of the drive (i.e., 40–45 min), all participants reverted to full manual 

control, with no secondary media. After 42 min, an emergency event was triggered by the 

experimenter. A van suddenly appeared at the side of the road and followed the same 

scripted trajectory for all participants. After 3 s the van pulled out in front of the driver at 

slow speed (see Figure 3), requiring the participant to brake or swerve to avoid collision. 

Braking response time (RT) was logged, as well as whether the participant actually col-

lided with the van. The van pulled back on to the right shoulder 30 s after the event was 

triggered. Following termination of the drive, participants completed post-task versions 

of the DFQ and DSSQ, followed by debriefing. 

 

Figure 3. Screenshot of van pulling out in front of driver. 

3. Results 

3.1. Overview of Data Analysis 

Data were analyzed as follows. First, we ran mixed-model ANOVAs to test the effects 

of the automation and secondary media on fatigue states, assessed by the DFQ. These 

analyses confirmed that the drive was generally fatiguing and identified impacts of auto-

mation and media on specific dimensions of fatigue. Second, we conducted correlational 

and regression analyses to investigate relationships between predisposition to driver 

stress and fatigue, assessed by the DSI, and DFQ fatigue states. These analyses showed 

multiple associations between DSI and DFQ dimensions, confirming that the DSI predicts 
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fatigue state change during driving. However, these associations were not further mod-

erated by the experimental factors. Third, we ran ANOVAs to test the effects of automa-

tion and secondary media on driving performance. ANOVAs confirmed that automation 

slowed braking RT to the emergency event, whereas secondary media enhanced vehicle 

control in the first parts of the drive but did not affect emergency braking. Finally, we 

conducted correlational and regression analyses on relationships between DFQ dimen-

sions and performance metrics. The majority of fatigue state dimensions were associated 

with poorer vehicle control; surprisingly, higher DFQ confusion correlated with faster 

emergency braking. 

3.2. Effects of Automation and Secondary Media on Fatigue States 

Four 2 × 3 × 3 (pre/post × automation × secondary media) mixed-model ANOVAs 

were run to test the effects of experimental factors on the four DFQ state fatigue dimen-

sions. Pre/post was a repeated-measures factor contrasting pre- and post-drive DFQ 

scores. One participant failed to complete the post-drive DFQ, and their data were omitted 

from these analyses. Main effects of pre/post were significant for muscular fatigue 

(F(1,170) = 45.53, p < 0.01, η2p = 0.211), tiredness (F(1,170) = 91.08, p < 0.01, η2p = 0.349), con-

fusion (F(1,170) = 34.22, p < 0.01, η2p = 0.168), and comfort-seeking (F(1,170) = 41.89, p < 0.01, 

η2p = 0.198). Fatigue state responses can be expressed as change scores from pre- to post-

drive, standardized against the SD of the pre-drive state, as shown in Table 2. Distribu-

tions of scores were similar to those observed in previous studies using the DFQ [18,63]. 

Fatigue scores tended to increase on all dimensions during the drive, with the largest ef-

fect on tiredness (standardized change score Δz = 1.13) and smaller changes in muscular 

fatigue (Δz = 0.48), confusion (Δz = 0.49), and comfort-seeking (Δz = 0.40). Variation in fa-

tigue response with experimental factors is indicated by a factor × pre/post interaction, 

i.e., the change in fatigue during the drive varies across experimental conditions. The pre-

post × automation interaction was significant for muscular fatigue (F(2,170) = 4.131, p < 

0.05, η2p = 0.046) and the pre/post × media interaction was significant for tiredness (F(2,170) 

= 6.26, p < 0.01, η2p = 0.069). There were no other significant interactions. 

Table 2. Means (and SDs) of standardized fatigue state changes as a function of automation and 

secondary media conditions. 

 Fatigue State Dimension 

Condition Muscular Tiredness Confusion Comfort-Seeking 

Manual     

Control 0.532 (0.77) 1.793 (1.79) 0.846 (1.396) 0.597 (0.966) 

Trivia 0.862 (1.036) 1.217 (1.605) 0.491 (0.837) 0.49 (0.524) 

Cellphone 0.567 (0.933) 0.825 (1.375) 0.26 (0.837) 0.149 (1.088) 

Partial Auto     

Control 0.532 (1.132) 2.134 (2.27) 0.888 (1.45) 0.49 (0.987) 

Trivia 0.549 (0.963) 0.681 (1.663) 0.019 (1.022) 0.44 (0.827) 

Cellphone 0.718 (0.941) 0.707 (1.263) 0.369 (1.1) 0.355 (0.54) 

Full Auto     

Control −0.243 (1.226) 1.217 (1.159) 0.388 (1.014) 0.263 (0.929) 

Trivia 0.439 (0.775) 0.932 (1.634) 0.846 (1.353) 0.628 (0.729) 

Cellphone 0.382 (0.685) 0.694 (1.232) 0.303 (0.872) 0.206 (0.684) 

Note. Standardized change scores calculated as (post-task state–pre-task state)/(SD of pre-task 

state), Auto = Automation. 
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Figure 4 graphs the two significant interactions. The upper panel shows that manual 

and partial-automation drives elicited greater muscular fatigue than full automation, 

which appears to have provided relief from steering the vehicle. Automation did not in-

fluence other aspects of fatigue. The lower panel shows that both forms of secondary me-

dia reduced the tiredness response but did not mitigate the other fatigue dimensions. 

 

 

Figure 4. Mean standardized change scores on four state fatigue dimensions as a function of (1) 

automation condition (upper panel) and (2) secondary media condition (lower panel). Error bars 

are standard errors. 

3.3. Predictors of Fatigue States 

Table 3 shows pre- and post-drive correlations between DFQ state fatigue dimen-

sions and the DSI scales, representing predispositions to different forms of stress. The 

‘Change’ rows are partial correlations between post-drive fatigue states and DSI scales, 

controlling for the relevant pre-drive state. A positive partial indicates that the DSI scale 

predicts an increase in state beyond that expected from the pre-drive level. Three of the 

DSI scales—fatigue proneness, aggression, and dislike of driving—correlated positively 

with multiple dimensions of state fatigue, although muscular fatigue was only weakly 
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predicted, with all rs < 0.2. Fatigue proneness and aggression both predicted changes in 

fatigue state dimensions also, although only fatigue proneness predicted change in com-

fort-seeking. Dislike of driving was associated with higher levels of fatigue on three of the 

DFQ scales, but it did not predict change in fatigue state. That is, it appears that high 

Dislike drivers were fatigued initially, and their fatigue persisted through the drive with-

out increasing disproportionately. 

Table 3. Correlations between DSI scales and four fatigue state dimensions. 

  DSI Scale 

Fatigue State  
Fatigue 

Proneness 
Aggression 

Dislike of 

Driving 

Hazard 

Monitoring 
Thrill Seeking 

Muscular Pre 0.082 0.091 0.040 0.118 0.092 

 Post 0.183 * 0.179 * 0.101 0.018 0.085 

 Change 0.189 * 0.171 * 0.111 −0.089 0.036 

Tiredness Pre 0.063 0.100 0.215 ** 0.124 −0.001 

 Post 0.250 ** 0.259 ** 0.226 ** −0.015 0.038 

 Change 0.268 ** 0.252 ** 0.117 −0.118 0.050 

Confusion Pre 0.160 * 0.157 * 0.266 ** 0.020 0.140 

 Post 0.225 ** 0.160 * 0.232 ** −0.132 0.100 

 Change 0.178 * 0.084 0.097 −0.177 0.015 

Comfort Pre 0.237 ** 0.205 ** 0.338 ** 0.129 −0.068 

 Post 0.279 ** 0.225 ** 0.270 ** 0.048 −0.056 

 Change 0.170 * 0.119 0.053 −0.058 −0.021 

Note. Pre = pre-drive. Post = post-drive. Change = partial correlation with post-drive state, control-

ling for pre-drive state. * p < 0.05, ** p < 0.01. 

We ran multiple regressions to test whether associations between the DSI and fatigue 

states remained significant with experimental factors controlled. The regressions included au-

tomation and secondary media factors as categorical predictors. The three levels of each ex-

perimental factor were represented with two effect coded variables for each factor [67]. With 

each post-drive fatigue state as the dependent variable, successive steps entered (1) the corre-

sponding pre-drive state, (2) the two automation variables, (3) the two secondary media vari-

ables, and (4) the five DSI variables. There was no evidence of automation × media interactions 

in the ANOVAs, so no interaction terms were included. Table 4 provides summary statistics. 

Pre-task state made a substantial contribution to each equation, reflecting correlations be-

tween pre-drive and post-drive scores. Consistent with the ANOVAs, automation influenced 

muscular fatigue and secondary media influenced tiredness. As a block, the DSI variables 

added significantly only to the prediction of tiredness. In the final equation, fatigue proneness 

(β = 0.140, p < 0.05) and aggression (β = 0.158, p < 0.01) both made significant contributions. In 

the equation for confusion, the joint contribution of the DSI variables at step 4 just failed to 

reach significance (p = 0.054) and hazard monitoring was significantly negatively associated 

with confusion in the final equation (β = −0.139, p < 0.05). In these, and all subsequent regres-

sions, collinearity statistics were within acceptable levels. 

Table 4. Summary statistics for regressions of four fatigue state dimensions on pre-task state, exper-

imental factors and DSI scales. 

  Fatigue State Dimension 

  Muscular Tiredness Confusion Comfort-Seeking 

Step df R ΔR2 R ΔR2 R ΔR2 R ΔR2 

1. Pre-drive state 1177 0.636 ** 0.405 ** 0.614 ** 0.377 ** 0.603 ** 0.363 0.692 ** 0.478 ** 

2. Automation 2175 0.659 ** 0.029 * 0.617 ** 0.004 0.604 ** 0.002 0.693 ** 0.002 

3. Secondary media 2173 0.667 ** 0.011 0.650 ** 0.042 ** 0.617 ** 0.016 0.708* * 0.021 * 

4. DSI scales 5168 0.684 ** 0.022 0.708 ** 0.078 ** 0.648 ** 0.039 0.720 ** 0.018 

Note. * p < 0.05, ** p < 0.01. R = multiple correlation coefficient; ΔR2 = step change in R2 
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We ran further regressions to test whether relationships between fatigue proneness 

and fatigue state were moderated by experimental condition. Moderator effects would 

indicate that the capacity of fatigue proneness to predict fatigue states varied with levels 

of automation and/or secondary media delivery. Fatigue proneness × automation and fa-

tigue proneness × secondary media interaction terms were computed by centering fatigue 

proneness and calculating its products with the effect coded variables for the experimental 

factors, i.e., four product terms in total. We repeated the regressions, first, adding fatigue 

proneness × automation terms at step 5, and second, adding fatigue proneness × media 

interaction terms at step 5. For the interactions with automation, the final step added from 

0.001–0.008 to R2 and the increments to R2 were non-significant in all four equations. For 

the media interaction terms, all contributions of the interactions were also non-significant, 

with the increments to R2 varying from 0.002–0.009. Thus, there was no evidence that as-

sociations between fatigue proneness and fatigue states were moderated by either level of 

automation or provision of secondary media. 

3.4. Effects of Automation and secondary Media on Performance 

Braking RT was log-transformed prior to analysis to correct positive skew. The anal-

ysis of RT was based on 154 participants as 26 failed to brake. Across the three automation 

conditions, frequencies of failing to brake were 3/60 (manual), 10/60 (partial automation) 

and 13/60 (full automation). The difference between automation conditions was signifi-

cant (χ2(2) = 7.10, p < 0.05). That is, both types of automation reduced probability of brak-

ing. Frequencies of braking were similar across the three secondary media conditions. 118 

drivers actually crashed into the van, but frequencies were similar across the different 

automation and media conditions. 

The effects of the experimental factors on braking RT were analyzed with a 3 × 3 (auto-

mation × secondary media) between-groups ANOVA. The main effect of automation was sig-

nificant (F(2,145) = 6.24, p < 0.01, η2p = 0.079) but there was no main or interactive effect of media. 

Table 5 shows the cell means for the analysis and Figure 5 illustrates the automation effect. 

Braking RT was faster with manual control than with either form of automation. 

Table 5. Log RTs (and SDs) for braking response as a function of secondary media and automation 

conditions. 

 Secondary Media 

Automation None Trivia Phone 

Manual 0.408 (0.266) 0.450 (0.266) 0.459 (0.223) 

Partial Auto 0.583 (0.257) 0.709 (0.418) 0.553 (0.350) 

Full Auto 0.667 (0.250) 0.651 (0.339)  0.617 (0.486) 
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Figure 5. Mean braking RT in three automation conditions, averaged across secondary media con-

ditions. Error bars are standard errors. 

Effects on SDLP early (8–12 min) and late (33–37 min) in the drive were analyzed for 

drivers in the manual and partial automation conditions. SDLP was log-transformed to 

reduce positive skew. A 2 × 2 × 3 (early/late × automation × secondary media) mixed-

model ANOVA showed several significant effects on SDLP. There were significant main 

effects of early/late (F(1,114) = 81.63, p < 0.01, η2p = 0.417) and secondary media 

(F(2,114)=14.16, p < 0.01, η2p = 0.199). SDLP declined over time, suggesting a practice effect. 

SDLP was lower in both secondary media conditions relative to no media. These effects 

were modified by two significant interactions: early/late × automation (F(1,114) = 10.22, p 

< 0.01, η2p = 0.199), and automation × media (F(2,114) = 3.11, p < 0.05, η2p = 0.052). Figure 6 

shows the cell means. Early in the drive, SDLP tended to be lower with partial automation 

than with manual control, but the automation effect diminished later in the drive. The 

apparent practice effect may have been accelerated in the partial automation condition 

given that the driver could focus attention on lateral control. The automation × media 

interaction reflects greater benefits of media under partial automation. 
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Figure 6. SDLP as a function of automation and secondary media conditions, early and late in the 

drive. Error bars are standard errors. 

3.5. Performance Correlates of Fatigue States 

Correlations between post-drive DFQ scores and SDLP early and late in the drive and 

braking RT (performance variables log-transformed) are shown in Table 6. Data for SDLP 

were taken from the partial automation and manual conditions (N = 120). Table 6 shows that 

only confusion correlated with braking RT; surprisingly, more confused drivers were faster to 

brake. Table 7 shows the multiple regression that controlled for the effects of the experimental 

manipulations. The four DFS scales made a significant contribution to the equation at the final 

step and the only significant DFS predictor in the final equation was confusion (β = −0.232, p < 

0.05). Additional regressions tested for interaction between confusion and the experimental 

factors, but no significant effects of interaction terms were found. 

Table 6. Correlations between four fatigue state dimensions and performance measures. 

 Fatigue State Dimension 

 Muscular Tiredness Confusion Comfort-Seeking 

SDLP (1st half) 0.060 0.366 ** 0.327 ** 0.188 * 

SDLP (2nd half) 0.067 0.363 ** 0.236 ** 0.194 * 

Braking RT −0.156 −0.154 −0.256 ** −0.034 

Note. * p < 0.05, ** p < 0.01. 

Table 7. Summary statistics for regression of braking RT on experimental factors and DFQ scales. 

  Braking RT 

Step df R ΔR2 

1. Automation 2176 0.258 ** 0.067 ** 

2. Secondary media 2174 0.265 * 0.004 

3. DFQ scales 4170 0.349 ** 0.052 * 

Note. * p < 0.05, ** p < 0.01. R = multiple correlation coefficient; ΔR2 = step change in R2. 

Table 6 shows that all fatigue states except muscular fatigue were significantly correlated 

with higher SDLP, at both stages of the drive. We ran multiple regressions for each SDLP 

measure, with four steps. We entered successively (1) the automation effect coded variable 

contrasting manual and partial automation conditions, (2) the two secondary media effect 

coded variables, (3) automation × media interaction terms, and (4) the four DFQ variables. 

Interaction terms were included because there was a significant interaction in the ANOVA 

previously reported. Table 8 gives summary statistics for the two regressions. Consistent with 

the ANOVA, both regressions showed a significant impact of media on SDLP. The contribu-

tion of the DFS scales at step 4 was significant in both instances. DFS tiredness was the only 

scale that was independently predictive, both for early SDLP (β = 0.334, p < 0.01) and for late 

SDLP (β = 0.372, p < 0.01). We also tested for interactive effects of tiredness and the experi-

mental factors using the approach described in 3.2. Product terms for tiredness × automation 

and tiredness × secondary media did not add significantly to R2. 

Table 8. Summary statistics for regressions of SDLP early and late on experimental factors and DFQ 

scales. 

  SDLP–Early SDLP–Late 

Step df R ΔR2 R ΔR2 

1. Automation 1118 0.263 ** 0.069 ** 0.020 0.000 

2. Secondary media 2116 0.474 ** 0.156 ** 0.415 ** 0.172 ** 

3. Automation × Media 2114 0.515 ** 0.041 * 0.454 ** 0.033 

4. DFQ scales 5110 0.598 ** 0.092 ** 0.541 ** 0.086 * 

Note. * p < 0.05, ** p < 0.01. R = multiple correlation coefficient; ΔR2 = step change in R2. 
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4. Discussion 

The present study investigated relationships between subjective fatigue dimensions, 

personality, and driving performance in simulated drives that varied in level of automa-

tion and provision of secondary media. As expected, we found substantial increases in 

fatigue during driving, partially mitigated by secondary media. Both full and partial au-

tomation slowed emergency braking following manual takeover as in our previous stud-

ies [36]. We also replicated previous findings that DSI fatigue proneness predicts increases 

in state fatigue induced by driving [10]. We found relationships between state fatigue and 

impaired vehicle control, although the confusion state dimension was unexpectedly asso-

ciated with faster emergency response. However, we also found various dissociations that 

support the need for a multidimensional conception of driver fatigue states. In this dis-

cussion, we consider further the impacts of the experimental factors on subjective and 

performance outcomes, followed by an evaluation of findings on individual differences 

and their safety implications. 

4.1. Automation, Secondary Media, and Safety 

The automation and secondary media manipulations both influenced fatigue out-

comes, but in different ways, implying that they may influence different fatigue processes. 

Automation did not influence most aspects of state fatigue. Here, full automation reduced 

muscular fatigue, presumably reflecting the physical demands of manual vehicle steering. 

Saxby et al. (2013) [6] found that automation affects fatigue dynamics, in that fatigue de-

velops faster in the automated vehicle than with manual control, but plateaus at a similar 

level. The current data are consistent with this finding; 45 min is a long enough simulated 

drive for substantial fatigue to develop during manual driving. Results also show that 

simulated driving produces especially large increases in tiredness, relative to other as-

pects of fatigue states. As in multiple previous studies [36], automation slowed response 

to an emergency event taking place shortly after manual takeover. The current study ex-

tended previous findings by showing that even partial automation—similar to driving 

with cruise control—is sufficient to produce the slowing effect. Typically, it takes drivers 

2–5 s to transition safely from automated to manual driving [60]. Here, we observed au-

tomation-induced impairment 2 min after the initiation of the takeover, demonstrating a 

fatigue effect that persisted beyond the automation-to-manual transition. Various authors 

[68,69] have drawn attention to the safety threats of transitioning from automatic to man-

ual driving at SAE level 3, and the current data reinforce these concerns. They also show 

that level of subjective fatigue is not necessarily diagnostic of loss of alertness in the take-

over scenario. 

Based on previous findings [38,41,43], we anticipated that secondary media would 

mitigate state fatigue, including adverse impacts of automation. This hypothesis was par-

tially supported. Benefits of secondary media included reduced tiredness and improved 

lateral control of the vehicle, especially as the drive progressed. However, secondary me-

dia had no effect on muscular fatigue, confusion, or comfort-seeking, implying that its 

benefits are selective. In addition, and contrasting with previous findings [44], there was 

no impact on emergency braking, implying that media use benefits on alertness are fragile 

and dependent on how additional cognitive workload is delivered. We also found only 

limited interaction between media and automation. Secondary media did not counteract 

slowing of emergency braking induced by automation. There was a significant interaction 

between the two experimental factors in the analysis of SDLP. The benefits of media for 

lateral control appeared earlier in the drive with partial automation than with full auto-

mation. Matthews and Desmond (2002) [52] interpreted fatigue effects on lateral control 

as reflecting loss of directed-effort, consistent with Hockey’s (2012) [16] account of fatigue. 

The secondary media here appear to have maintained engagement with the task, support-

ing performance improvement over time. Thus, secondary media use has selective safety 
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benefits. Specifically, the additional workload appears to mitigate loss of task-directed 

effort under fatigue, but not loss of alertness. 

4.2. Individual Differences in Driver Fatigue States 

The present study investigated individual differences in both driver fatigue states 

and performance impairments. Three DSI trait fatigue dimensions—fatigue proneness, 

aggression, and dislike of driving—were correlated with fatigue states, consistent with 

previous findings [10,19]. As expected, fatigue proneness was associated with increases 

during the drive of all four DFQ fatigue dimensions, especially tiredness. More surpris-

ingly, aggression was also associated with increasing tiredness, and, to a lesser degree, 

with muscular fatigue. Previously, Matthews and Desmond (1998) [21] found significant 

associations between driver aggression and aspects of driver fatigue during simulated 

drives designed to be fatiguing. Prolonged driving under relatively low workload condi-

tions may be especially frustrating for drivers prone to aggression. Sleep loss has also been 

linked to aggression and irritability in multiple studies, suggesting overlap in underlying 

biological mechanisms [70], although causal effects of prolonged anger on fatigue have 

not been tested. 

Dislike of driving was associated with tiredness pre- and post-drive but not change 

in tiredness. This association may reflect a general association between dislike of driving 

and negative moods in the driving context; dislike relates to task-induced state change 

mainly in overtly threatening driving conditions [19]. Multiple regression analyses pro-

vided a slightly different picture of the role of DSI factors. Independent influences of fa-

tigue proneness and aggression on change in tiredness were confirmed. There was also a 

significant relationship between DSI hazard monitoring and lower confusion, which was 

not evident in the bivariate correlations. 

Overall, data confirm the utility of the DSI for predicting driver fatigue. DSI–fatigue 

correlations were not significantly moderated by the experimental factors; associations 

generalized across different levels of automation and secondary media. Thus, the DSI does 

not predict individuals uniquely sensitive to automation-induced fatigue or media im-

pacts on state. 

4.3. Fatigue and Individual Differences in Performance 

Results showed that different elements of the fatigue state correlated with the two 

principal performance outcomes. Tiredness, confusion, and comfort seeking were all as-

sociated with poorer lateral control in manual and partially automated driving; the mul-

tiple regression suggested that the fatigue effects were attributable primarily to tiredness. 

Tiredness overlaps substantially with low task engagement, which is associated with both 

lower resource availability and lower task-directed effort in performance studies [24], as 

well as poorer lateral control in simulated driving [71]. As task demands in the present 

study were relatively low, tiredness may be indexing reduced effort applied to vehicle 

control. Only confusion was associated with braking speed, and, surprisingly, more con-

fused drivers were faster to brake. A tentative explanation is that confused participants 

responded impulsively without having full situation awareness of their surroundings, 

whereas those lower in confusion took a little longer to evaluate the situation before re-

sponding. Consistent with this suggestion, some research on manual takeover suggests 

that fatigued drivers may compensate for loss of situation awareness by rapid braking 

[72,73]. Fatigue also leads to loss of control over initiation of well-learnt motor responses 

[74], a process that may generalize to emergency braking. 

4.4. Practical Implications 

The identification of drivers vulnerable to fatigue is important for safety [27,29] but 

the role of dispositional fatigue-proneness has been neglected. A recent review of person-

ality factors and unsafe driving [75] located multiple factors associated with negative 
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emotions, such as anger and anxiety, but cited no studies of fatigue-prone personality. 

The current data support the use of the DSI [26] to identify drivers who will show rapid 

onset of fatigue symptoms during driving. Such individuals may not be well-suited to 

commercial driving jobs. Assessment of fatigue vulnerability is a useful tool for exploring 

the safety impacts of clinical disorders and neurological conditions associated with fatigue 

[27]. However, the DSI was found to be more effective in predicting changes in tiredness 

than in other dimensions of state fatigue. 

Another practical issue is diagnostic monitoring for types and levels of fatigue that 

threaten safety. In applied settings, objective measures that can be tracked continuously 

such as eye closures are required [8]. However, subjective state research contributes to 

differentiating cognitive fatigue processes that can be targeted for monitoring. The current 

study links impairments in vehicle control to tiredness and impulsive response to emer-

gency events to confusion. This dissociation suggests that behavioral indices of fatigue 

should be evaluated across multiple cognitive processes vulnerable to fatigue. For exam-

ple, indices based on analysis of steering movements [76] might not be diagnostic of im-

pulsive response or alertness. The study also suggests that caution should be used in in-

terpreting faster response times as indicative of greater alertness, at the individual driver 

level, given a possible link to impulsivity. 

4.5. Limitations 

The study has the normal limitations of laboratory, simulation-based research, i.e., 

extent of generalization to real-world driving is uncertain. In particular, larger magnitude 

declines in subjective fatigue are seen in simulator studies than in real-world driving [77]. 

However, fatigue effects on real-world performance metrics such as those utilized here 

have been demonstrated, including manual takeover from automation [73]. The value of 

simulation research is in identifying individual differences in fatigue processes whose im-

pacts can be followed up in real-world contexts [27,29,78]. Further research might discrim-

inate the various physical, visual, and cognitive processes that control emergency braking 

speeds and their sensitivities to fatigue states [61]. 

In addition, participants were predominantly young American adults, and generali-

zation to other demographic groups is unknown. It would also have been desirable to 

include objective, psychophysiological fatigue metrics to complement the subjective state 

measures, although our previous work suggests that subjective measures have diagnostic 

validity over and above psychophysiological indices [79]. Finally, the automated driving 

scenario was rather artificial; drivers in real-life would typically have greater familiarity 

with the automated systems of their vehicles. 

5. Conclusions 

Vehicle automation can increase driver vulnerability to task-induced fatigue states and 

performance impairment. Use of in-car media such as trivia games and phone conversations 

are promising for mitigating fatigue during automated phases of driving, but the current find-

ings suggest that further work is necessary to develop interventions that can reliably enhance 

both neurocognitive state and driver performance. We have shown that driver personality is 

associated with individual differences in state fatigue response that are robust across different 

levels of automation and provision of secondary media, presenting a challenge to mitigation 

efforts. Findings also show the utility of the multidimensional perspective on fatigue states for 

understanding the inter-relationships of personality, state response, and performance impair-

ments. Different aspects of fatigue may be associated with different impairments in infor-

mation-processing, supporting the need for multidimensional assessments in evaluating the 

impacts of interventions for driver fatigue. 
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