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Abstract: Due to the growing scarcity of water resources, wastewater reuse has become one of the
most effective solutions for industrial consumption. However, various factors can detrimentally affect
the performance of a wastewater treatment plant (WWTP), which is considered a risk of not fulfilling
the effluent requirements. Thus, to ensure the quality of treated wastewater, it is essential to analyze
system failure causes and their potential outcomes and mitigation measures through a systematic
dynamic risk assessment approach. This work shows how a dynamic Bayesian network (DBN) can be
effectively used in this context. Like the conventional Bayesian network (BN), the DBN can capture
complex interactions between failure contributory factors. Additionally, it can forecast the upcoming
failure likelihood using a prediction inference. This proposed methodology was applied to a WWTP
of the Moorchekhort Industrial Complex (MIC), located in the center of Iran. A total of 15 years’ time
frame (2016–2030) has been considered in this work. The first six years’ data have been used to develop
the DBN model and to identify the crucial risk factors that are further used to reduce the risk in the
remaining nine years. The risk increased from 21% to 42% in 2016–2021. Applying the proposed risk
mitigation measures can decrease the failure risk from 33% to 9% in 2022–2030. The proposed model
showed the capability of the DBN in risk management of a WWTP system which can help WWTPs’
managers and operators achieve better performance for higher reclaimed water quality.

Keywords: wastewater treatment plant; reclaimed water; dynamic risk assessment; dynamic Bayesian
network; operational safety

1. Introduction

Reclaimed water for various purposes is a suitable and cost-effective option to com-
pensate for water shortages, preserve existing water resources, and prevent water loss and
environmental pollution [1]. Iran is increasingly experiencing scarcity because of climate
changes, reduced rainfall, inappropriate management and wasting water. Moreover, Iran,
as a developing country, faces rapid industrial development, leading to high water demand
in industrial sectors. Thus, it is evident that replacing alternative water sources like recycled
wastewater is paramount for industrial usage. Typical industrial water uses include process
water, boiler, cooling tower, cleaning and stripping agent. The quality of industrial wastew-
ater depends on the kind of industries, including mining, food and agriculture, tanneries,
refineries and pharmaceuticals. It can have toxic contaminants like ammonia, heavy metals,
phenols, organic contaminants, solvents and other materials [2,3]. In addition, the quantity
of recycled water usage varies from process to process of industries and needs substantially
higher quality for boilers and cooling towers, especially in pharmaceutical industries.

Given the growing use of treated wastewater and environmental concerns, it is neces-
sary to assess the risk of industrial wastewater treatment plants to reach standard water
quality [4]. If the recycled water does not meet the required standard, it can cause detri-
mental impacts on industrial facilities like sedimentation, fouling, corrosion, scaling and
biofilm formation in the pipes and equipment of the industries.
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In a WWTP, various factors can cause degraded performance, considered a risk of
not fulfilling the effluent requirements for reuse purposes. Hence, it is pivotal to analyze
distinct failure modes and their impacts on a WWTP through a systematic risk-based
approach [5,6]. There are notable risk factors related to an industrial WWTP, which can fall
into different categories: equipment failures, human errors, design failures and wet weather
conditions. Given that a WWTP has complicated parts and various dynamic performances
and faces operational challenges, static models are insufficient for risk analysis. Therefore,
a dynamic risk assessment of a WWTP is needed to identify and mitigate system errors
and failures to increase system reliability and treated water quality [7].

In the current literature, fault tree analysis (FTA), bow-tie (BT), and Bayesian network
(BN) are used for risk assessment of water and wastewater treatment plants. The FTA is a
deductive approach to determining the potential causes of an adverse event. Beauchamp
et al. developed a method for technical and operational hazard identification of the water
treatment plant based on FTA [8].

For the operational assessment of a reverse osmosis system in a water treatment plant,
Bourouni used FTA and reliability block diagram for risk assessment of the reverse osmosis
plant [9]. Taheriyoun et al. employed the FTA and Monte Carlo simulation to evaluate
the reliability of a WWTP. It was determined that the most significant contribution to
the system failure was human errors, climatic and mechanical factors, and sewer system
problems, respectively [10]. Piadeh et al. proposed the combined FTA and event tree
analysis (ETA) for reliability analysis of advanced treatment unit alternatives. The lowest
failure probability was found for the coagulation-flocculation units, while reverse osmosis
and ozonation units had the highest failure probabilities [11].

Tabesh et al. used two methods, including fuzzy fault tree analysis (FFTA) and Monte
Carlo-based FTA, to evaluate the risk of a water treatment plant in Tehran. They found in-
appropriate reservoir design, power equipment failure and transfer pipe failure as the most
effective factors in the plant’s risk [12]. While FTA provides good performance to assess
a hazard probability, it cannot describe the consequences. The event tree analysis (ETA)
is capable of showing the consequences. Nonetheless, it cannot show how the initiating
events’ failure probability has been estimated. The bow-tie (BT) method can overcome the
weakness of FTA and ETA by integrating both. It is composed of a fault tree, recognizing
the possible basic events causing the critical event, and an event tree, representing the
potential consequences of the critical event based on the failure or success [13].

Analouei et al. evaluated the risk of an industrial WWTP using the BT. They calculated
the WWTP risk by about 41% and found operator errors as the most critical risk factor [14].
Tušer & Oulehlová applied the BT method to identify the causes and consequences of
risks in a WWTP based on documentation reviews, safety audits, interviews and check-list
methods. The results showed that the low level of safety measures and the age of the
WWTP technology could lead to unacceptable and undesirable risks [15].

Although FTA, ETA and BT have contributed significantly to the WWTP risk assess-
ment, they cannot show conditional dependency between the variables and the dynamic
nature of a system. Moreover, all these tools suffer from uncertainty handling problems [16].
In this regard, the BN is a method that can solve dependence modeling and uncertainty
handling problems. It is a probabilistic reasoning network of conditional probabilities [17].
Kabir et al. estimated the risk of an urban water distribution system using BN-based data
fusion. The goal of data fusion was to obtain a lower prediction error and higher reliability
by using data from multiple distributed sources. The proposed technique was used to
identify vulnerable and sensitive water pipes [18].

Anbari et al. proposed a risk assessment BN model to prioritize sewer pipes inspection
by identifying high-failure risk areas. The results showed that about 62% of sewers had
moderate risk while 12% were critical [19]. Zarei et al. mapped the BT method into the BN
for the risk assessment of a gas transmission system. The proposed framework was used
to evaluate the risk and determine the most critical accident scenarios in the system [20].
Shafiee Neyestanak and Roozbahani investigated the risk assessment of treated wastewater
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using a novel hybrid BN. The method was applied for risk analysis of Iran’s 27 wastewater
treatment plants in four sectors: agriculture, landscape irrigation, groundwater artificial
recharge and industry. The results demonstrated the capability of the method to predict
the risks, and the risk of using treated wastewater in agriculture (26.9%) was the highest
compared to other sectors [21].

The conventional BN is static and cannot capture time dependency. Hence, the risk
analysis methods mentioned above are not efficient for dynamic risk assessment. In other
words, they cannot use time-dependent information to update the probability of events and
consequent risk profile [22,23]. Therefore, it is more viable to develop a dynamic Bayesian
network (DBN)-based methodology for dynamic risk assessment of WWTPs to overcome
the existing methods’ limitations. It will help to understand the time-dependent behaviors
of risk factors and ensure the quality of water reclamation.

The DBN is an extension of the conventional BN that helps dynamically analyze a
system’s risk. It is possible to obtain the trend of the variables’ failure probabilities across
the period using the DBN [23,24]. The DBN-based approaches have successfully been used
in the risk assessment of different systems and facilities in previous studies. Dawsey et al.
developed a methodology based on DBN for real-time water distribution system’s state
parameter estimation. They presented an approach for drinking water monitoring using
DBN to infer knowledge about the current state of a water distribution system [25].

Li et al. used the DBN in the risk analysis of an earth-rock dam breach [26]. Chen
et al. conducted a multi-reservoir system’s risk assessment. The authors utilized the DBN
to predict the probability of wellhead fatigue failure during the service life [23]. Fam et al.
applied DBN for analyzing well-decommissioning failures and long-term monitoring of
decommissioned wells [24]. Kammouh et al. proposed an approach based on the BN and
DBN to assess the time-dependent resilience of engineering systems [22]. Liu et al. showed
how the DBN could be effectively used to model a WWTP. In this regard, a fuzzy partial least
squares-based dynamic Bayesian network was presented to improve the prediction of the
quality indices in WWTPs when confronting uncertainty, nonlinearity, and time-dependent
characteristics [27]. Zhang et al. proposed a model integrating variable importance in in
projection with dynamic Bayesian networks (VIP-DBN) to reach better prediction results,
optimizing current approaches to handling dynamic characteristics, nonlinearity, and
uncertainty simultaneously in papermaking WWTPs. The method was evaluated through
two case studies. They showed that the model is an accurate and reliable approach to
dealing with the shortcoming of existing soft sensor methods [28].

There are other risk assessment techniques that are used to risk analysis of diverse
systems. Yari et al. used Data Envelopment Analysis (DEA) to evaluate blasting patterns in
mining. In fact, incorrect blasting patterns can result in many safety problems. This study
showed the ability of the DEA to blast operations [29]. Yu et al. proposed a comprehensive
industrial wastewater treatment plant project evaluation approach based on the improved
entropy– Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method.
A case study in china was evaluated using this method to solve the difficulties in accurate
quantization and objective evaluation of an industrial sewage treatment project [30].

Yari et al. proposed a structure to evaluate the hazards of main decorative stone
quarrying by implementing the Preference Ranking Organization Method. They found
that economic, management and schedule risks are the most intimidating hazards in this
field [31]. Ekmekcioğlu et al. produced district-based vulnerability, hazard and flood
risk maps for Istanbul with a hybrid fuzzy analytic hierarchy process (AHP)-TOPSIS
model [32]. Yari et al. presented a comprehensive model for ranking mines in the sense
of all imposing attributes with an emphasis on safety parameters. In this paper, mines
have been ranked using AHP-TOPSIS and fuzzy environment [33]. Hayaty et al. used the
fuzzy Delphi analytic hierarchy process and TOPSIS method to risk assessment of Co, Cu,
Mo, Zn, Cr, Mn, Ni, Pb, Ti, and Fe in the mining sediment released to the tailings dam. In
this research, the metals like copper, iron, and zinc had the highest pollution and critical
risk [34]. Lane et al. used a sanitation safety plan (SSP) framework for risk assessment
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of wastewater treatment systems. This framework identified potential hazards in 29 First
Nations wastewater systems in Atlantic Canada. They found that 7% of hazardous events
were high-risk while 69% had an unknown level of risk [35].

From the above literature review, it is evident that the current progress in the failure
risk assessment of WWTP is noteworthy. However, it lacks a methodology that can han-
dle complex interdependence among contributory risk factors, their multistate modeling,
uncertainty, and the dynamic nature of risk and reliability. Therefore, this work aims to
overcome these gaps. Since the BN does not accurately capture dynamic systems’ behavior,
the DBN can be used to model this temporal process’s nature as a time-dependent proba-
bilistic reasoning approach. Therefore, it can give an accurate estimate of the dynamic risk
of a system. The current authors feel it is worth examining DBN’s efficacy in dynamic risk
assessment in a WWTP to bridge the existing knowledge gaps and propose a DBN-based
methodology for risk assessment and management of industrial wastewater treatment and
reclamation plants.

In this work, the risk factors were first identified through a comprehensive evaluation
with the help of process flow diagrams (PFDs) and industrial experts, followed by developing
the network structure and quantifying the probabilities. The overall study considered an
operation for 15 years (2016–2030). The first six years’ data were used to develop the DBN
model, and the smoothing inference was used to identify the crucial risk factors. Based on
these results, a prevention strategy was developed to effectively reduce the risk factors, which
was further applied to the remaining nine years of operation. The results suggest significant
improvement in failure risk reduction when the suggested measures are employed.

2. Materials and Methods
2.1. Bayesian Network

The BN, also known as the Bayesian belief network (BBN), is a directed acyclic model
based on the probabilistic relationships between the variables of a complex system [36].
This probability-based approach has predictive features to help decision-makers when
complete information about a system is unavailable [37,38]. A BN has both qualitative
and quantitative parts. The qualitative part of the model consists of a non-rotating graph
in which the nodes represent the variables, and the arcs illustrate the cause-and-effect
relationships between two nodes [39,40]. The parent/child relationship expresses the
dependency between two variables in a BN. The link between two variables starts from a
parent node and points toward a child node.

The quantitative part of a BN consists of the prior and conditional probabilities.
The conditional probabilities are presented in a tabular form known as the conditional
probability table (CPT). The CPT determines the degree of influence on the nodes [22]. The
probability amount for each variable in the CPT is supplemented by the existing system
information and expert opinions [41,42]. Figure 1 shows a simple example of a BN, where
A and B are the parent (root) nodes of the child node C. Table 1 shows a CPT related to
Figure 1. According to Table 1, each variable has two states: success and failure, which
show how child node C is affected by the parent nodes A and B. For example, node C will
have a 100% success rate if nodes A and B work successfully. It is worth noting that a node
can have multiple states depending on the physical phenomenon that needs to be captured.
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Table 1. A sample of the CPT related to Figure 1.

C

A Success Failure

B Success Failure Success Failure

Success 1 0.8 0.5 0.1

Failure 0 0.2 0.5 0.9

Bayes’ theorem is used to analyze a BN model, as shown in Equation (1).

P(X/Y) =
P(Y/X)P(X)

P(Y)
(1)

where P(X) and P(Y) show the probability of X and Y, respectively. P(X/Y) is a conditional
probability; it depicts the likelihood of event X occurring upon observing evidence Y.
P(Y/X) represents the likelihood of happening Y given that X has happened. P(X/Y) is also
known as the posterior probability.

2.2. Dynamic Bayesian Network (DBN)

A DBN is an advanced version of a BN, capable of analyzing a system over time.
It does not mean restructuring the BN or analyzing its parameters dynamically, but the
overall system evaluation can be updated dynamically [23,43]. DBN uses nodes to indicate
variables in a graph like the conventional BN. Moreover, dynamic causal relationships
between the variables are shown by the arcs. It should also be noted that some nodes may
not change over time and thus should not be expressed dynamically. The conceptual model
and the causal relationships between the nodes are established based on expert knowledge
and analyzing PFDs.

A simple structure of the unrolled DBN is shown in Figure 2a. In this figure, the
temporal variables are the parent nodes, A and B, connected through temporal arcs that
appear from time steps 0 to N. The child node C depends on these parent nodes: A and B,
at each time slice. Figure 2b shows a brief diagram of DBN using self-rolling arcs at the
parent nodes. The written number “1” on the arcs represents an influence spanning over
one time-step called a first-order self-rolling arc. For example, the variable At can only
influence At + 1, not At + 2 [22].
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The transition model from the former to the current time step for F as a set of random
variables x1, x2, x3, . . . , xn in a DBN (xiε F) is presented in Equation (2) [44].

P(Ft/Ft−1) =
n

∏
i=1

P(Fi,t/Pa(Fi,t)) (2)

where Fi,t represents ith node at time t, Pa(Fi,t) is the parent node of Fi,t from the same
and previous time steps, and n is the number of nodes in the network. The process in a
DBN repeats after the second time slice, so the variables for the slice t = 2, 3, . . . , N do
not change. It permits expressing the system using only two slices, including the first-
and second-time-slices. The joint probability distribution for a sequence of time-slices,
including F set from t = 1 to N, can be expressed in Equation (3) [45].

P(F1: N) =
N

∏
t=1

n

∏
i=1

P(Fi,t/Pa(Fi,t)) (3)

In a DBN, time dependency must be included in the CPTs since variables depend on
the previous time slice. Additionally, two sets of CPTs are needed to describe a dynamic
node. The second set gives the result of dynamic variation. A DBN has two notable features:
smoothing and prediction inferences. Smoothing refers to a node probability estimation in
the past based on the collected evidence up to the current time slice.

On the other hand, prediction forecasts a node state’s future probability based on the
current evidence. The DBN can be updated with both hard and likelihood evidence. Hard
evidence is updating any state of a node in a DBN with a 100% success value, and likelihood
evidence implies updating the DBN with probabilistic evidence (i.e., P(failure) = 0.50) [43,46].

In this study, the qualitative and quantitative parts of the DBN model related to the
MIC WWTP are established based on expert knowledge and PFDs. A first-order self-rolling
arc is considered for the parent nodes of the DBN model, and the corresponding nodes are
updated using the likelihood evidence to predict the risk of the WWTP. The GeNIe 2.4 software
is used to develop the DBN.

2.3. Proposed DBN-Based Methodology

Figure 3 shows the flowchart of the proposed model summarized in seven steps. These
steps are discussed below.

Step 1: The methodology starts with analyzing the process flow diagram of the WWTP
plant. It is crucial to study the process flow to understand the interaction among different
components and their potential vulnerability to failure.

Step 2: Identifying the major risk factors and understanding how these factors can
bring adverse outcomes is necessary. The historical data gives an overall idea about the
persistent failure causes. However, it is impossible to obtain all the factors from the data
since many of them may not have been experienced during the considered time frame. The
experts can aid in this context by sharing their operational experience. They can suggest
additional factors on top of the ones from historical data. This step aims to find all the
possible factors that may result in complete or partial WWTP failure.

Step 3: The qualitative model is constructed based on risk factors, their dependencies,
causal relationships and consequences determined in step 2.

Step 4: The qualitative network needs to be inserted with the prior and conditional
probabilities for quantitative risk assessment. In the current work, to obtain these, a survey
was used. A set of questionnaires was sent to experts who provided their feedback, which
was incorporated into the DBN.

Though the DBN nodes can have multiple states, we have considered binary states:
success and failure. The leaf (final) node indicates the overall consequences used in risk
calculation. According to the water quality requirement for industrial reuse, as mentioned
in the plant description section, three scenarios are selected for leaf node.
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1. Without the fouling, corrosion, scale and biofilm in the facilities of an industry (C1)
2. Long-term creation of the fouling, corrosion, scale and biofilm in the industrial facili-

ties (C2)
3. Short-term and severe creation the fouling, corrosion, scale and biofilm in the indus-

trial facilities (C3)
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Accordingly, the risk is the summation of C2 and C3 probabilities, while the C1
probability equals the reliability, as shown in Equations (4) and (5). It is worth noting that
reliability is the non-failure operational state. In the obtained consequences, C1 indicates a
non-failure condition. Consequently, it has been used to predict dynamic reliability.

Risk = P(C2) + P(C3) (4)

Reliability = P(C1) (5)

Step 5: Significant factors (SFs) contributing to system failure are determined in this
step. It is performed by importance analysis (IA), giving failure evidence to the leaf node
in a network and observing percentage change in the prior probability of the root nodes.
Such analysis determines the significance of each parent node in the occurrence probability
of the leaf node [45]. Mathematically, it can be expressed as:

IAi =
P (T = 1/Ei = 1)− P(T = 1/Ei = 0)

P(T = 1)
× 100% (6)

where Ei corresponds to the parent nodes, and T represents the leaf node in the DBN.
Step 6: The mitigation measures are proposed in this step to increase the system’s

reliability. According to the factors that have the most significant impact on the risk
captured from step 5, we contacted the experts to examine the results obtained through the
DBN. Obtaining their feedback, the DBN was updated with evidence (to see how the risk
profile would be, had these factors been well managed).

Step 7: The updated BN is analyzed from two different perspectives. The first one is
to see how effective these mitigation measures could be for managing the past period. The
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smoothing inference has been used in this regard. Given that the measures were effective
in reducing risk, these were further used to forecast the risk in the coming years. This step
is important to help managers and operators to boost the system performance.

3. Results and Discussion
3.1. Case Study

The MIC WWTP has a capacity of 1000 m3/d and is located in Isfahan province, the
center of Iran. The geographic location (33◦03′27.9′′ N 51◦30′15.4′′ E) is shown in Figure 4.
This plant is mainly composed of two parts. The first part contains the primary and
secondary biological treatment processes, and the second includes the advanced treatment
processes that provide high-quality reclaimed water for industrial use. Figure 5 shows
the PFD of the plant. According to the wastewater flow path, the first part includes the
inlet pump station, emergency tank, bar screen, grit chamber, and equalization tank as the
physical treatment unit. Then, secondary biological treatment consists of upflow anaerobic
baffled reactor (UABR) and moving bed biofilm reactor (MBBR), followed by secondary
sedimentation and chlorination unit. The advanced treatment consists of chemical pre-
treatment and sand filtration, reducing the effluent’s suspended solids and turbidity. Then,
ultrafiltration (UF), activated carbon and reverse osmosis (RO) are used to remove the
residual organics and mineral solvents as total dissolved solids (TDS).

The reclaimed water is used in the cooling towers and boilers as process water, cleaning
and stripping agent in various industries in the MIC, including mining, food and agriculture,
tanneries, refineries, and pharmaceuticals. Water quality requirements for reclaimed water
include electric conductivity (EC) < 500 µs/cm, turbidity < 1 NTU, chemical oxygen demand
(COD) < 5 mg/L and pH range 6–9. The challenges associated with satisfying these water
quality requirements stem from the probable failure in each treatment unit.
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3.2. Qualitative Model Development

The PFD is first analyzed, and associated risk factors are identified. In this study,
six major factors, including operator error, improper design, wet weather conditions,
equipment service failure, high inflow rate and emergency storage tank failure, were
defined as the most important causes of system failure. Moreover, the variables affected by
these factors and the consequences were determined based on historical data and experts’
judgment.

According to the key role of operators in a WWTP, such as controlling and monitoring
unit processes, sampling, chemical addition and emergency repairments, we included
operator errors in all the parts of WWTP. The dynamic assessment of the system, changes
in operator numbers, professional training, passing related tests and gaining experiences
over the years can substantially affect the risk of a WWTP.

Equipment service failure is another key factor in creating a risk that causes system
failure. Many equipment and facilities experience natural aging of infrastructures like
wear and tear during the different years. With systems aging and technology changes,
meeting standard with existing equipment and processes becomes more difficult [47].
Moreover, inappropriate and irregular services can have considerable impacts on a WWTP.
As mentioned, the design problems in a WWTP play an essential role in declining reliability.
For instance, industrial development, urban growth and improper and inaccurate design
are design factors that can cause a system failure.

The water quality requirement for industrial use is based on fouling, corrosion, scaling
and biofilm prevention. In general, boilers need a higher quality of feed water because
of operating at high temperatures and pressure [48]. Parameters such as TDS, alkalinity,
silica, iron, manganese, copper, nitrogen, phosphorus and COD should be controlled to
prevent operational problems. As discussed in the methodology section, three scenarios
are expected due to reclaimed water consumption.

The qualitative DBN model of the MIC WWTP was constructed in three parts, as
shown in Figures 6–8. The network consists of the leaf node as the consequence node,
34 events at the intermediate level, and 32 parent nodes at the bottom level of the network.
Figure 6 shows the conditional relationship between parent and child nodes related to
aerobic reactor failure. There are two kinds of nodes: static and dynamic nodes. Static
nodes’ prior are time-invariant, while it is the opposite for the dynamic nodes (indicated
by the self-rolling arcs).

In addition, three types of dependencies are available between nodes which are
defined: (i) from dynamic node to dynamic node, (ii) from static node to static node and
(iii) from static node to dynamic node [49]. In this study, all parent nodes except improper
design are identified as the first-order dynamic nodes—the probability of the current time
step depends on the previous time step. The intermediate and leaf nodes are considered
static. However, these can give dynamic failure estimates, obtaining the time-variant
probabilities from the root nodes.

The network, which corresponds to anaerobic and aerobic reactors’ performance
(Figure 6), has eight, three, four, two and one parent nodes for operator error, improper
designs, equipment service failure, emergency reservoir tank failure and wet weather
conditions, respectively. The improper design node highlighted in yellow is the static
variable that does not change throughout the time steps. As shown in Figure 6, secondary
sedimentation tank failure has been affected by the parent nodes consisting of seven
operator error variables, three improper design nodes, one equipment service failure
variable and two high inflow rate nodes. The normal arcs connect the intermediate nodes,
while the self-rolling arcs connect a root node’s current probability to the past time-step.

Figure 7 illustrates the relationships among the leaf node, the first part of the MIC WWTP
performance and the units of the advanced treatment part. The performance failure and
advanced treatment parts nodes were connected to the consequence node using normal arcs.
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3.3. Prior and Conditional Probability Estimation

In the current study, the prior and conditional probabilities were determined using the
average value of the experts’ opinions extracted from the questionnaires (scored in the range
of 0–1). With a modification according to the case-based experiences, the questionnaires
were provided based on the operation and maintenance problems of different treatment
units of the case study discussed in the literature [14,49,50]. The questionnaires were sent
to the selected experts, including the manager and vice-manager of the MIC WWTP, three
operators of the WWTP, the WWTP design engineer and four environmental engineering
faculties. All the probabilities in the CPTs are the average values of the aggregated expert
opinions. A sample of the filled-out questionnaire related to E16 (emergency storage tank
failure) and E17 (operator error) is presented in Table A1 (Appendix A).

As an example of the estimated conditional probabilities, the CPT of the high toxic
entry related to the secondary sedimentation tank from Figure 6 is presented in Table 2.
As this node is static, its CPT is constant for all the time steps. However, its only parent
node, operator error (E30), is modeled using a first-order self-rolling arc. The probability of
successful high toxic entry is 0.99, considering the success of both parent nodes: operator
error and improper design, while it is zero for the failure case of both parent nodes.

Table 2. The transition CPT for the highly toxic entry related to the secondary sedimentation tank.

High Toxic Entry Related to the Secondary Sedimentation Tank

Operator Error Success Failure

Improper Design Success Failure Success Failure

Success 0.99 0.6 0.3 0

Failure 0.01 0.4 0.7 1

As mentioned in Section 2.2, each parent node at time-slice t is influenced by itself
at time-slice t−1. Two sets of CPTs at t = 0 and t = 1 are needed to describe the dynamic
variation of a self-rolling node. For illustration, the prior probabilities of E1 (operator error
related to anaerobic reactor failure for times 0 and 1 are shown in Table 3. Once all the
priors and CPTs are inserted, the DBN model can be used for failure risk assessment.

Table 3. The prior probabilities of the E1.

E1 (t = 0)
E1 (t = 1)

Success Failure

Success 0.93 0.93 0.10

Failure 0.07 0.07 0.90
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3.4. Quantitative Analysis of the Model

The DBN model was analyzed for 15 time-slices divided into two parts of past and
future periods. The past period was considered from the beginning of the operation in
2016 up to 2021 (6 time-slices). It used the smoothing feature of the DBN to predict the
associated risk in the stated period. On the contrary, the forecasted risk from 2022 to 2030
(9 time-slices) was estimated using the prediction inference. The average risk values and
trend of variations of both periods were compared to assess the impact of mitigation
measures on risk reduction to show how the current work can give a good means of risk
management.

3.5. The Past Period Risk (2016–2021)

The probabilities of the consequences node from 2016 to 2021 (6 time-slices) were
calculated by analyzing the DBN model. The probability of C1 in the first year of operation
was 79%, reaching 58% at the end of the sixth year (2021). The consequence of C2 in the first
and sixth year of operation are 15% and 28%, respectively, while the C3 probability increases
from 6% to 14%. As mentioned earlier, C1 and the sum of C2 and C3 are the reliability and
risk estimates, respectively. From an operational perspective, these two measures are vital for
decision-makers. The risk and reliability assessment results are presented in Figure 9. The
risk increased from 21% to 42% in 2016–2021, with an average of 31%. The risk trend shows
that the system performance declined during the past period, and it is vital to control the
risk factors and improve the system reliability. As expected, system reliability degraded over
the years.
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Figure 9. The dynamic failure risk of the MIC WWTP between 2016 and 2021.

As mentioned in Section 3.1, The MIC WWTP has a capacity of 1000 m3/d, and the
treated wastewater is completely reused for receiving sectors. The removal rate and other
parameters, such as standard effluent limit, COD, biochemical oxygen demand (BOD) and
total suspended solids (TSS) for 2016 and 2021, are presented in Table 4. The higher level
of failure risk and lower reliability level can be perceived through the decreasing removal
rate. For instance, the BOD removal rate in 2016 was 92 mg/L. In contrast, this rate is
67 mg/L in 2021—a significant reduction from the earlier level, an indication of a reduction
in operational reliability, and an increase in higher failure risk. The results in Figure 9 also
suggest the same risk and reliability patterns, which shows the validity of the developed
DBN model for dynamic failure risk assessment.
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The next task is to identify the SFs that could help to improve performance. Equation (6)
and the DBN model were utilized in this context. The results suggest human errors have the
most important role in risk growth. The important SFs based on average values for each
factor from 2016 to 2021 are shown in Figure 10. It can be seen that human errors at 50%
and inappropriate weather conditions at 0.3% have the most and least contribution to the
risk of the system, respectively. It indicates that more attention is required to develop an
effective protocol for the operators to follow. Nature has an impact; however, it is much
lower than man-made impacts.

Table 4. WWTP parameters with removal rate for 2016 and 2021.

Parameter
Total

Samples
Minimum

(mg/L)
Maximum

(mg/L) Average (mg/L) Standard
Deviation (mg/L)

Standard
Effluent

Limit (mg/L)

Removal
Rate (mg/L)

2016 2021 2016 2021 2016 2021 2016 2021 2016 2021 2016 2021

CODIN
350 382

345 402 1560 1680 455 534 53 49
60 91 79

CODOUT 15 30 337 440 40 110 22 27

BODIN
280 220

234 210 850 780 310 256 48 38
30 92 67

BODOUT 10 18 80 120 25 83 18 26

TSSIN
293 320

234 334 806 850 348 402 44 53
40 89 75

TSSOUT 13 22 300 402 38 99 26 36
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Figure 10. Significant risk factor identification, where X1, X2, X3 and X4 denote operator errors,
improper design, emergency reservoir tank failure and high inflow rate, equipment service failure,
and wet weather conditions, respectively.

The suggested mitigation measures are presented in Table 5, considering the risk
priorities in the 2016–2021 period. The operator error that played the most pivotal role
in creating and growing the risk of the MIC WWTP gets the highest priority, and several
mitigation measures have been proposed based on the discussion with the industrial
experts. When it comes to wastewater treatment, the most important persons are operators
because of their responsibilities for treating the wastewater to meet available standards.
Thus it seems logical to pay special attention to decreasing operator errors—one of the
effective solutions is to use modern technology and automatic devices for wastewater
treatment plants. However, it is worth noting that human factor analysis is a specialized
field obtaining significant attention due to humans’ role in several accidents in the past
few decades.
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Table 5. The proposed risk-mitigating measures of the MIC WWTP.

Risk Factors Proposed Risk-Mitigation Measures

Operator errors

• Increasing the level of technical knowledge of operators
• Raising the labor force productivity and precision to improve the accuracy of surveys and equipment

services
• Online monitoring with the first part of WWTP
• Proper monitoring of parameters related to the MIC WWTP
• Performing regular tests of various parameters following the standards of industrial wastewater

Improper design
• Creating the other emergency reservoir tank to reduce high toxic entry
• Launching the second module of MIC wastewater treatment to reduce the load on the first module and

increase efficiency

Equipment service failure

• Regular and periodic maintenance of the MIC WWTP and equipment
• Using direct-drive, high-speed, turbo blowers and ultra-fine bubble diffusers [51]
• Diffusers online controlling
• Equipping the laboratory of the MIC WWTP

Wet weather conditions
• Extensive and precise control of various treatment parts in wet weather conditions
• Conducting regular and periodic tests of the anaerobic tank effluent in wet weather conditions to

prevent bad effluent of this part

3.6. The Future Period Risk (2022–2030)

The risk mitigation measures were inserted into the DBN in terms of evidence extracted
by averaging the expert opinions. The questionnaires were provided to the same experts
who suggested mitigation measures of 0–100%. These feedbacks were averaged, and the
mean value for each mitigation measure was used to update the DBN. Table 6 shows the
updated probabilities of node E1 (operator error related to anaerobic reactor failure) during the
prediction period. Similarly, the updated probabilities of the other nodes can be obtained for
the period 2022–2030. Moreover, the dynamic risk value for each time slice can be predicted.

Table 6. The updated probability of E1.

Time Success (%) Failure (%)

2022 63 37

2023 63 37

2024 65 35

2025 72 28

2026 75 35

2027 80 20

2028 90 10

2029 95 5

2030 95 5

The reliability starts at 67% in 2022 and ends at 91% in 2030. The probability of C2 in
the seventh year of operation will be 20% and degrade to 9% at the end of the fifteenth
year of system operation. Likewise, a declining profile is observed for C3 if the preventive
measures are properly applied, as suggested by the experts. The risk of the MIC WWTP
using the risk reduction schemes will decrease from 33% to 9% in 2030 (Figure 11). The
average risk in this period was calculated as about 20%. Compared to the risk of the system
in the 2016–2021 period, it can be understood that the average risk of the MIC WWTP will
be reduced by 11%, which shows the efficiency of the proposed mitigation measures.
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4. Conclusions

Given that there are many risks and uncertainties during the operation period of a
WWTP, a dynamic risk assessment of the system can be a suitable way to identify and
reduce failures. The present study conducted an industrial WWTP risk assessment using
the DBN-based systematic methodology, with an aim to capture complex interdependence
among failure factors, uncertainty, multistate analysis and modeling dynamic risk and
reliability. The model of DBN related to the MIC WWTP located in the center of Iran was
established based on expert knowledge and PFD. The model was analyzed to determine
the dynamic risk probabilities in the two periods of 2016–2021 and 2022–2030. The aim
was to evaluate the past risk and identify the factors that need attention to minimize the
failure risk.

The significance factor identification showed that operator error was the most effective
factor in the risk. The risk of the future period (2022–2030) was predicted by considering
proposed mitigation measures based on the prioritized risk factors. The suggested measures
can decrease the failure risk from 33% in 2022 to 9% in 2030, with an average of 20%. The
proposed model showed an application of DBN in the dynamic risk management of a
complex WWTP system. It can help WWTPs’ managers and operators achieve better
performance for higher reclaimed water quality during operation.

This work holds practical significance since the DBN model has been developed using
data from a real industrial operation (Moorchekhort Industrial Complex). The framework
has been developed based on several consultations and feedback from experts from industry
and academia. The findings were shared with the industry to improve their performance.
The industrial personnel provided a positive impression of the findings of this study. For
the reproducibility of this work, a sample questionnaire has been provided with this paper
which will help the industries to implement the current work in their facilities. Therefore,
this work can help the WWTPs’ managers to improve system operation by identifying and
predicting the risk of violating effluent water quality requirements.

During plant visits and consultations with industrial personnel, it was noticed that
they often used linguistic terms to express the operating condition (i.e., high-low). Such
issues can be handled by integrating fuzzy theory with the current framework. A fuzzy
DBN would be the best solution to reduce uncertainty and capture such linguistic terms.
Instead of using average values of feedback, a weighted average could be used to give
proper weight to the received feedback based on the relevant experience. The current
work has not considered waste removal failure, which significantly impacts economic
performance [52–54]. These will help improve and apply the current work.
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Appendix A

Table A1. Sample of filled-out questionnaire.

Question 1 How can the performance of emergency storage tank lead to high toxic entry?
(t = 0)

Emergency storage
tank

Success Failure

0.6 0.4

Question 2 How can the performance of emergency storage tank lead to high toxic entry with an interval of one year? (t ≥ 1)

Emergency storage
tank (t = 0) Success Failure

Emergency storage
tank (t − 1)

Success Failure Success Failure

1 0 0.7 0.3

Question 3 How can the operator function lead to high toxic entry? (t = 0)

Operator function
Success Failure

0.7 0.3

Question 4 How can the operator function lead to high toxic entry with an interval of one year? (t ≥ 1)

Operator function
(t = 0) Success Failure

Operator function
(t − 1)

Success Failure Success Failure

1 0 0.5 0.5

Question 5 According to the effects of nodes E16 and E17, determine the percentages of high toxic entry node.

Emergency storage
tank Success Failure

Operator function Success Failure Success Failure

High toxic entry
Success Failure Success Failure Success Failure Success Failure

0.97 0.03 0.4 0.6 0.5 0.5 0 1

Question 6 According to the effects of nodes controlling the oxygen level, return sludge pumping, toxic entry, volume of plastic
medias, determine the percentages of aerobic reactor performance.

Controlling the
oxygen level Success Failure

Return sludge
pumping Success Failure Success Failure

Toxic entry Success Failure Success Failure Success Failure Success Failure

Volume of plastic
media S F S F S F S F S F S F S F S F

Aerobic reactor
performance S F S F S F S F S F S F S F S F S F S F S F S F S F S F S F S F

Success 1 1 1 0.
9 1 0.
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7

0.
7

0.
7

0.
6

0.
5

0.
2

0.
1

0.
5

0.
6

0.
1 0 0 0 0 0

Failure 0 0 0 0.
1 0 0.
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32. Ekmekcioğlu, Ö.; Koc, K.; Özger, M. Stakeholder Perceptions in Flood Risk Assessment: A Hybrid Fuzzy AHP-TOPSIS Approach
for Istanbul, Turkey. Int. J. Disaster Risk Reduct. 2021, 60, 102327. [CrossRef]

33. Yari, M.; Bagherpour, R.; Almasi, N. An Approach to the Evaluation and Classification of Dimensional Stone Quarries with an
Emphasis on Safety Parameters. Rud. Zb. 2016, 31, 15–26. [CrossRef]

34. Hayaty, M.; Tavakoli Mohammadi, M.R.; Rezaei, A.; Shayestehfar, M.R. Risk Assessment and Ranking of Metals Using FDAHP
and TOPSIS. Mine Water Environ. 2014, 33, 157–164. [CrossRef]

35. Lane, K.; Fuller, M.; Stanhope, T.; Stoddart, A. Exploring the Use of a Sanitation Safety Plan Framework to Identify Key Hazards
in First Nations Wastewater Systems. Water 2021, 13, 1454. [CrossRef]

36. Liu, Z.; Ma, Q.; Cai, B.; Liu, Y.; Zheng, C. Risk Assessment on Deepwater Drilling Well Control Based on Dynamic Bayesian
Network. Process Saf. Environ. Prot. 2021, 149, 643–654. [CrossRef]

37. Borsuk, M.E.; Stow, C.A.; Reckhow, K.H. A Bayesian Network of Eutrophication Models for Synthesis, Prediction, and Uncertainty
Analysis. Ecol. Modell. 2004, 173, 219–239. [CrossRef]

38. Kelly, R.A.; Jakeman, A.J.; Barreteau, O.; Borsuk, M.E.; ElSawah, S.; Hamilton, S.H.; Henriksen, H.J.; Kuikka, S.; Maier, H.R.;
Rizzoli, A.E.; et al. Selecting among Five Common Modelling Approaches for Integrated Environmental Assessment and
Management. Environ. Model. Softw. 2013, 47, 159–181. [CrossRef]

39. Amin, M.T.; Khan, F.; Imtiaz, S. Fault Detection and Pathway Analysis Using a Dynamic Bayesian Network. Chem. Eng. Sci. 2019,
195, 777–790. [CrossRef]

40. Cai, B.; Liu, Y.; Zhang, Y.; Fan, Q.; Liu, Z.; Tian, X. A Dynamic Bayesian Networks Modeling of Human Factors on Offshore
Blowouts. J. Loss Prev. Process Ind. 2013, 26, 639–649. [CrossRef]

41. Amin, M.T.; Khan, F.; Imtiaz, S. Dynamic Availability Assessment of Safety Critical Systems Using a Dynamic Bayesian Network.
Reliab. Eng. Syst. Saf. 2018, 178, 108–117. [CrossRef]

42. Murphy, K.P. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. Thesis, University of California,
Berkeley, Berkeley, CA, USA, 2002; pp. 1–281.

43. Amin, M.T.; Imtiaz, S.; Khan, F. Process System Fault Detection and Diagnosis Using a Hybrid Technique. Chem. Eng. Sci. 2018,
189, 191–211. [CrossRef]

44. Kraaijeveld, P.; Druzdzel, M.J. GeNIeRate: An Interactive Generator of Diagnostic Bayesian Network Models. In Proceedings of
the 16th International Workshop on Principles of Diagnosis, Monterey, CA, USA, 1–3 June 2005; pp. 175–180.

45. Hou, Z.; Zhao, P. Based on Fuzzy Bayesian Network of Oil Wharf Handling Risk Assessment. Math. Probl. Eng. 2016, 2016, 6532691.
[CrossRef]

46. Amin, M.T. An Integrated Methodology for Fault Detection, Root Cause Diagnosis, and Propagation Pathway Analysis in
Chemical Process Systems. Clean. Eng. Technol. 2021, 4, 100187. [CrossRef]

47. Spellman, F.R.; Frank, R. Handbook of Water and Wastewater Treatment Plant Library of Congress Cataloging-in-Publication Data; CRC
Press: Boca Raton, FL, USA, 2003.

48. Judd, S.; Jefferson, B. (Eds.) Membranes for Industrial Wastewater Recovery and Re-Use; Elsevier: Amsterdam, The Netherlands, 2003.
49. Guo, X.; Ji, J.; Khan, F.; Ding, L.; Tong, Q. A Novel Fuzzy Dynamic Bayesian Network for Dynamic Risk Assessment and

Uncertainty Propagation Quantification in Uncertainty Environment. Saf. Sci. 2021, 141, 105285. [CrossRef]
50. Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse; Metcalf & Eddy/Aecom: Dallas, TX,

USA, 2014.
51. Spellman, F.R. Handbook of Water and Wastewater Treatment Plant Operations, 4th ed.; CRC Press: Boca Raton, FL, USA, 2020.

[CrossRef]
52. Jabeen, S.; Sufaid Khan, M.; Khattak, R.; Zekker, I.; Burlakovs, J.; Rubin, S.S.d.; Ghangrekar, M.M.; Kallistova, A.; Pimenov, N.;

Zahoor, M.; et al. Palladium-Supported Zirconia-Based Catalytic Degradation of Rhodamine-b Dye from Wastewater. Water 2021,
13, 1522. [CrossRef]

53. Rahman, N.U.; Ullah, I.; Alam, S.; Khan, M.S.; Shah, L.A.; Zekker, I.; Burlakovs, J.; Kallistova, A.; Pimenov, N.; Vincevica-Gaile, Z.;
et al. Activated Ailanthus Altissima Sawdust as Adsorbent for Removal of Acid Yellow 29 from Wastewater: Kinetics Approach.
Water 2021, 13, 2136. [CrossRef]

54. Umar, A.; Khan, M.S.; Alam, S.; Zekker, I.; Burlakovs, J.; dC Rubin, S.S.; Bhowmick, G.D.; Kallistova, A.; Pimenov, N.; Zahoor,
M. Synthesis and Characterization of Pd-Ni Bimetallic Nanoparticles as Efficient Adsorbent for the Removal of Acid Orange 8
Present in Wastewater. Water 2021, 13, 1095. [CrossRef]

http://doi.org/10.3390/su12176734
http://doi.org/10.17794/rgn.2020.1.8
http://doi.org/10.1016/j.ijdrr.2021.102327
http://doi.org/10.17794/rgn.2016.3.2
http://doi.org/10.1007/s10230-014-0263-y
http://doi.org/10.3390/w13111454
http://doi.org/10.1016/j.psep.2021.03.024
http://doi.org/10.1016/j.ecolmodel.2003.08.020
http://doi.org/10.1016/j.envsoft.2013.05.005
http://doi.org/10.1016/j.ces.2018.10.024
http://doi.org/10.1016/j.jlp.2013.01.001
http://doi.org/10.1016/j.ress.2018.05.017
http://doi.org/10.1016/j.ces.2018.05.045
http://doi.org/10.1155/2016/6532691
http://doi.org/10.1016/j.clet.2021.100187
http://doi.org/10.1016/j.ssci.2021.105285
http://doi.org/10.1201/9781003038351
http://doi.org/10.3390/w13111522
http://doi.org/10.3390/w13152136
http://doi.org/10.3390/w13081095

	Introduction 
	Materials and Methods 
	Bayesian Network 
	Dynamic Bayesian Network (DBN) 
	Proposed DBN-Based Methodology 

	Results and Discussion 
	Case Study 
	Qualitative Model Development 
	Prior and Conditional Probability Estimation 
	Quantitative Analysis of the Model 
	The Past Period Risk (2016–2021) 
	The Future Period Risk (2022–2030) 

	Conclusions 
	Appendix A
	References

