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Abstract: Roundabouts are well-known for their ability to improve upon traffic safety, especially for
motorized traffic. An in-depth analysis on this topic is known from previous work. It was found that
different types of roundabouts have different levels of safety. The work at hand is a replication study
for a previous study in this regard. It uses a mix of traditional and a Machine Learning (ML)-based
approach, expands on the previous results and replicates some of the previous findings. This was
possible especially by using a factor of 10 more roundabouts in the analysis, with considerably
less manual intervention. Furthermore, this study could also draw some additional conclusions
regarding the safety of bicyclists, which were not included in the original study. Finally, by using
cross-validation techniques, a kind of minimal model could be established that needs fewer factors
and achieves better prediction quality than straightforward glm models.

Keywords: road safety; crash rates; traffic safety; roundabouts; machine learning

1. Introduction

Roundabouts are well-known for their ability to increase traffic safety at a particular
kind of intersection. The results from a meta-analysis [1] (see also the older [2]) indicate that
the conversion to a roundabout decreases the number of fatalities by 65%, and the number
of crashes with injuries by 40% (see also [3]). The effect on property damage, however,
was unclear.

This amounts to motorized traffic; for vulnerable road-users the picture is less bright.
e.g., the study [4] found:

“Vulnerable road users are more frequently than expected involved in crashes
at roundabouts and roundabouts with cycle lanes are clearly performing worse
than roundabouts with cycle paths.”

As with other road traffic infrastructure, roundabouts differ in dangerousness related
to their complexity; the more arms there are, the higher the crash-rate, and the same holds
for multi-lane roundabouts [3-6].

To dive deeper into the details of what renders a roundabout safe or dangerous, Ref. [7]
(in German) performed a detailed study where they classified German roundabouts into
four distinct classes named A, B1, B2, and B3. Please see Section 2 for more details on this
classification. Altogether 100 roundabouts were included in their study; they were carefully
selected and each of them analysed in painstaking detail. They analyzed a wide range of
factors that may or may not change the dangerousness of a roundabout. Their main result
was that the crash-rate of the four classes differed considerably, with type A being the safest
one. These results are displayed in Figure 1; however, it is not completely clear which of
the differences between the crash-rates displayed are statistically significant.
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Figure 1. Crash-rate for the four different types of roundabouts defined by [7]. The error bars are the
confidence intervals. The data for this plot have been taken from their report.

2. Methods

Instead of conducting a detailed study of each roundabout, this work tries a less
laborious approach. A number of databases to be detailed below have been used and
fused together to find a richer dataset, but eventually one that was not as carefully selected
as the one in [7]. Only data from the German federal state Northrhine-Westfalia (NRW)
were available and used, but the general methodology is transferable to other study areas
as well.

2.1. Types of Roundabouts and Manual Post Processing of Data

This replication study follows the classification of roundabouts in [7]:

¢ Type A: Bicycles are supposed to travel in mixed traffic with motorized road users.
They do not have a separated bike path.

¢ Type Bl: Bicycles have their own dedicated bicycle ford for crossing the road painted
on the pavement; this means, especially, that they have the right-of-way at the cross-
ings of the paths of motorized and bike traffic and that they do have own separated
cycle paths;

¢ Type B2: Bicycles have a common bicycle ford that they share with pedestrians and do
have cycle paths. As with type B1 they have the right-of-way when crossing the path of
motorized traffic;

¢ Type B3: Bicycles do have separate bike paths next to the main road and must yield the
right-of-way to motorized road users.

All the roundabouts considered in this study are single lane roundabouts with three,
four, or five access roads. The majority of the roundabouts had four access roads. Since
Bondzio et al. did not see any statistically significant influence of the number of access
roads on the accident rates, the number of access roads was not included in the data record.
For the same reason, the diameter of the roundabout was also not included.

It is sometimes difficult to differentiate between types A and B2. In such cases,
the recognized traffic signs and lane markings in street view and aerial images are of great
help: roundabouts without a dedicated bicycle ford but with a zebra crossing are of type
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B2 if there is a traffic sign stating that bicycles may use (see Figure 2) the sidewalk. If the
German traffic sign “Z 241" or “Z 240" is present or a lane marking for a bicycle path on
the sidewalk could be observed, the type was set to B2 (see Figure 3). It was classified as
type A otherwise.

() (b)

(b)

Figure 3. Differentiating Type A and B2: presence of traffic sign “Z 240” (a) and presence of a bicycle
way (b).

The deep learning algorithms described in Section 2.3 were used to analyse the street
view data from the periodic inventory of the NRW roads data collection. The information
about the presence of traffic sign detections was added to the geo-database in the Open
Source Geographic Information System QGIS ([8]) and therefore was available for browsing,
filtering and searching. This allowed the data processing to be as efficient as necessary to
handle the large number of data entries in the sample.

2.2. Data Aquisition
The following databases have been used:

e The road database of NRW, called NWSIB [9]. Here, especially street view images
from the periodic data collection of the larger roads in NRW were used. The ML (see

Section 2.3 for more details) was trained to pick the traffic signs from these pictures
which enabled us to identify (among other signs) the roundabouts;
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e  This road database contained for most (but not all) roundabouts the information
about the average daily traffic (ADT); in the best of all cases, they were divided into
car counts and bike counts. Again, the simplest approach was chosen and only the
ADT-values within a radius of 75 m around each roundabout were selected;

¢  The crash database of Germany [10], which is publicly available. As with the ADT
values, each crash within a certain radius of 75 m around the roundabout was used in
the subsequent analysis. Note that this approach is very different from the one in [7],
where they acquired for each of the roundabouts all the detailed crash-reports and
explicitly checked that it “belonged” to the roundabout.

All this resulted in a set of about 1300 roundabouts from this federal state alone.
The classification into A, B1-B3, however, was still performed manually, since there was
neither the opportunity nor the resources to train yet another ML model to do this classifi-
cation. In addition, doing this manually (see Section 2.1) served as an additional check of
the data selected, and it eliminated a few percent of the roundabouts. So, this approach
ended up with a consolidated list that was used for the analysis below.

Further, the overlap between the 1300 roundabouts and the 100 roundabouts from the
year 2011 considered by [7] was determined. This yields an impression about the quality
of the data.

Notes on the current sample of 1300 roundabouts:

¢ Itis beyond the scope of the current analysis whether the roundabouts were designed
and constructed according to the German guidelines. However, it is assumed that this
is the case, because road construction is well regulated in Germany;

¢ The sample may or may not include roundabouts that were being road safety audited
or treated by the road accident commission. This is in line with [7], but may also be a
shortcoming. Supposed road safety auditors or road accident commissions frequently
add red painted bicycle fords and zebra crossings to a roundabout that is dangerous
for other reasons, and that could introduce a bias that is unrecognized in this study;

*  Asusual, roundabouts in urban areas in Germany have a speed limit of 50 kph. Round-
abouts outside urban areas may have a speed limit of 70 kph, 80 kph, or even 100 kph.
This information is not covered in the current dataset. However, for roundabouts
in urban areas, whether at least one of the access roads had a 30 kph speed limit
(kph30an) or the whole roundabout was within a 30 kph speed limit zone (kph30in)
was recorded.

*  The functional classification of the roads is not included in the dataset. In Ger-
many, there exist the three types of roads, RQ 7.5 (5.5 m standard road cross section,
ADT < 3000 Veh./day, usually district roads), RQ 9.5 (6.5 m standard road cross sec-
tion, ADT < 15,000 Veh./day, usually state roads), and RQ 10.5 (7.5 m standard road
cross section, ADT < 20,000 Veh./day, usually federal roads). Roads of all types are
present. The functional classification, however, is included implicitly because the ADT
values are included in the record of each roundabout.

2.3. Data Mining Using Machine Learning

Machine learning (ML) was used to recognize traffic signs, which was very helpful in
finding the traffic circles and relevant features to classify them in the NRW road database.
This section contains a sketchy description of what was done.

“Faster-region based convolutional neural network” (Faster-RCNN) (see [11]) was
employed for detecting relevant traffic signs in street view images. Faster-RCNN is more
suitable compared to non-region-based detectors when dealing with objects that are rel-
atively small in the image (e.g., traffic signs). Additionally, “feature pyramid networks”
(FPN) were used together with Faster-RCNN to compute convolutional neural network
(CNN) feature maps at multiple-scales. This improves the recall and precision of the detec-
tions. FPN exploits the inherit multi-scale and pyramidal hierarchy of deep convolution
networks to build high-level semantic feature maps at all scales with marginal computation
cost (see [12]).
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We explored Mapillary Traffic Sign (M-TS) [13], DFG Traffic Sign (DFGTS) [14], and Ger-
man Traffic Sign Detection Benchmark (GTSDB) [15] datasets. Additionally, a detector
trained on the DFGTS dataset was tested. While the detector trained on M-TS produced
6946 detections for roundabout signs, the detector trained on DFGTS detected only 4929 of
those signs. Therefore, M-TS was chosen as the preferred training dataset.

To reduce implementation cost and time-to-integrate the trained model in overall
experimental studies, we used the Object Detection API from Tensorflow [16]. The API
provides several pre-implemented architectures with the ability to choose different deep
convolution networks as a backbone (e.g., ResNet-152 and ResNet-101), along with pre-
trained weights on ImageNet [17], COCO [18], PascalVOC [19] datasets.

The M-TS dataset contains images of different spatial sizes. Therefore, to facilitate
batch training, we scaled all the training images to a fixed size. Image size is one of the
hyperparameters for Faster-RCNN and had to be chosen carefully based on available GPU
resource and needs. We resized all images at training to a fixed size of 1024 x 1024 pixels
(i.e., width x height) along with maintaining the original aspect ratios of the image by
zero-padding (when necessary). Furthermore, channel normalization with the computed
mean RGB value on the entire training dataset was performed.

After careful evaluation, a variant of the residual neural network (ResNet) architecture
with 101 layers, called ResNet-101 [20], was chosen as the backbone network. Using
variants of ResNet, which are either shallower (e.g., ResNet-18, ResNet-50...etc.) or deeper
than 101 layers (i.e., ResNet-152), did not bring any improvement in model performance.

The “region proposal network” (RPN) within Faster-RCNN computes a set of rectangu-
lar object proposals and objectness score (score belonging to foreground and background),
by taking CNN maps as input. Default hyperparameter settings from [20] were chosen to
produce 4K and 2K output which encodes the co-ordinates and score of objectness for each
of the K proposals. More details on the hyperparameter settings used can be found in [11].

This finally led to a good recognition rate of the signs in the database. All traffic
signs detected in the NWSIB street view images were added as geo-referenced entries to a
database. They can be browsed in QGIS ([8]) (as shown in Figure 2) and filtered using a
self-tailored QGIS plugin.

2.4. Intersection of the Data

Exactly 26 roundabouts from the 2011 dataset were re-identified for comparing crash
and ADT numbers; see Table 1. Crash numbers were of the same order of magnitude,
although [10] contains crashes with injured persons only, while [7] had been using all
crashes, including crashes with material-only damage.

When looking at ADT values, it is apparent that very low ADT bike counts in the
NWSIB dataset correspond to large deviations of bike counts between the NWSIB and the
2011 datasets. Ref. [7] state that they carried out manual traffic counts at the intersections
for which no sufficiently up-to-date traffic demand data were available. This amounts
to about 80 roundabouts where they carried out manual traffic counts. This gives rise
to the assumption that their bike counts were more reliable than the NWSIB bike counts.
Inductive loop bike detectors may especially significantly undercount bicycles when not
calibrated properly. Therefore, the following two justifications were applied to the data:

¢ All roundabouts with qBike < 20 were removed from the NWSIB dataset, because it was
suspected that their data were corrupt due to detector malfunction or calibration errors;

*  For the NWSIB roundabouts that could be associated with the ones from the 2011
dataset and that exhibited gBike < 20, the ADT was replaced by the values from the
2011 dataset.
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Table 1. Re-identified roundabouts in the dataset.

fid IsVeh.11 IsVeh IsBike.11 IsBike qBike.11 qBike qCar11 qCar

4 267 1 0.7 1.0 709 119 10900 8324

25 0.67 0 0.0 0.0 347 21 6200 10,766
191 2 0 0.3 0.0 556 9 13,000 6194
297 12 3 2.3 0.5 1869 425 16,600 11,029
372 1.33 1 0.0 0.5 813 18 25,300 4310
449 5 0 1.5 0.0 438 259 13,500 9610
500 5.67 5 0.3 1.5 250 245 22,000 12,398
501 7.67 6 1.3 2.0 292 245 21,500 15,098
519 133 2 0.7 0.0 167 224 13,800 6808
539 3 2 0.3 0.5 1403 270 22,800 11,209
754  3.67 3 0.7 0.5 625 2 13,000 17,082
943 12.33 5 7.7 2.0 7072 2016 24,000 9246
945 8 9 2.0 3.5 3210 1198 6500 9583
946 1 1 1.0 0.0 2584 11 10,000 1082
995 7.33 4 0.4 2.0 3237 86 13,600 9121
999 533 3 1.0 1.0 2826 36 21,600 10,515
1021 4 5 0.0 0.5 1528 0 6600 11,776
1054 233 3 0.0 1.0 90 0 18,800 0
1067 1 1 0.0 0.0 345 748 12,200 20,076
1092 3,67 6 1.0 1.5 1014 18 17,000 11,264
1094 5 4 0.0 1.5 1389 1198 20,200 9583
1292 3 2 0.7 1.0 806 831 16,300 9891
1293  9.33 1 0.0 0.5 556 15 22,500 6993
1294 1 0 0.0 0.0 1612 341 18,000 1921
1296 2.5 2 0.0 1.5 855 5 7000 6670
1297 4.33 2 1.0 1.0 479 801 13,000 13,960

Compared to the sample drawn by [7], the present dataset has a bias towards small
cities and rural areas. City areas are not well covered by the NWSIB dataset (See Figure 4).
One relevant side effect might be that the mean ADTs of bikes and cars in our dataset are
lower than the ones in [7]; see Table 2.

Figure 4. Metropolitan area coverage within the NWSIB Dataset: (a) Traffic volumes (marked in
bright red) are not available in big cities such as Cologne and Dusseldorf; (b) Street view images
(symbolized as detected road signs) are missing for the city of Cologne.
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Table 2. ADT values for bicycles and cars in the two datasets for urban areas.

A B1 B2 B3
Roundabouts NWSIB 142 121 44 132
Roundabouts of 2011 re-engineered 29 35 11 25
Roundabouts of 2011 Bondzio 44 31 10 15
Qbpike of NWSIB 175 222 209 202
QOpike of 2011 re-engineered 1098 1249 972 1123
Opike of 2011 Bondzio 972 1512 750 1284
Qcar + Qpike of NWSIB 9304 10869 11,358 10,787
Qcar of 2011 re-engineered 17,234 17,378 14,945 14,931
Qcar + Opike of Bondzio 13,913 17,753 14,935 16,423

3. Results

For each roundabout, the following information has been gathered:

. Its position;

*  The crashes, of which the information about the involved traffic objects has been used.
The database contained the crashes with injured persons for the years 2019 and 2020,
and is publicly accessible [10]. They are coded as IsVeh and IsBike;

*  The ADT-values, coded as gqCar and gBike, or in the equations, as Qcar and Qpike,
respectively;

¢  Additional information about each roundabout, such as:

—  The location (within city-limits/ urban or outside/ rural), the study of [7] was
only on roundabouts within city-limits;

- Whether the bike crossing was colored in red or not;

—  The existence of a zebra crossing;

- A warning sign to motorized traffic “Careful, bikes” (German traffic sign “Z
1387);

- Information about if the bike lane was two way (two directions);

—  Very rarely: if the geometry or the organization had been changed; there was an
attempt to extract this information manually from Google Earth’s timeline.

3.1. Comparison with the Results of the 2011 Study

The data were analysed in different ways. Of course, one goal was to reproduce (or
to falsify) the results of [7], and by utilizing the additional statistical power, to obtain
additional insights.

Comparing our results with those of [7] is not completely straightforward, for a
number of reasons that are difficult to reconcile.

¢  There was no access to the original data, but in fact only to the parts that have been
published in the report. e.g., their detailed classification data are lacking;

e  Bondzio at al. have used the total number of crashes, while the German crash database
lists only severe crashes, i.e., those where crash participants have been injured or
even killed.

In Figure 5, the findings of this study are compared against the results of [7]. Only the
439 roundabouts in urban areas have been used from the sample of 1300 roundabouts,
of course, and crash rates were computed for the comparison as advised in [7] (there are
other results in this study):
y = Near + Npike
Qcar + Obike .

While the crash-rates are similar (which is unexpected, because they used all crashes,
but this study used only the severe crashes), a number of differences could be noted
between this study and that of [7]. In addition, this study analyzes the bike crashes.

M
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The most dangerous roundabout type (for cars) is B1 while it was B2 before. However,
the difference between B1 and B2 may not be statistically significant in [7], while here it is
at the 5% level: a Kolmogorov-Smirnov (KS-) test yields D = 0.25, p = 0.035 between B1
and B2. Ref. [7] found type A to be the safest roundabout, while this study has B3 as the
safest; however, further KS-tests indicate that the types A, B2, and B3 are in one safety class,
while Bl is in its own class and statistically less safe than all the others. It will be shown
below that this result has to be put into perspective given additional analytical results.

There is one issue that could not be resolved: the standard deviation (of the rates) is
much larger than that of [7]. Interestingly, Bondzio et al. used the confidence intervals
anyway, so Figure 5 uses this to compare our results to those of [7]. The larger standard
deviation is probably due to the fact that the method of assigning the ADT-values produces
a larger scatter in the replication study than in the original one.

1.0 — -‘V O Bondzio
O This study

@ 0.8 T l
@
)
e
(]
& 0.6 T T T
o -l
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3 11 1 [
< 0.4 J_ J_
%]
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Figure 5. Comparison of the results of this study with the results of [7]. The rates have been scaled
so that the mean values fit; the scaling factor was 1.61.

Note, too, that a KS-test of the rates reveals that there is a highly significant difference
(D = 0.155, p = 0.001) between a roundabout within city-limits or outside. However, this
result is not robust; it depends on how the rates are computed, in this case as in Equation (1).
When using cars-only and bikes-only rates, the difference between urban and rural becomes
statistically smaller.

The crash rates of this study are similar to those reported by [7] for the types of
roundabouts A and B1. The larger deviations for B2 and B3 types may stem from misclassi-
fications: it is sometimes difficult to differentiate between type B2 and type A roundabouts.
Every time the signs “Z 240" or “Z 241” and a zebra crossing could be seen, it was con-
cluded that bicycles are supposed to go on the sidewalk and the roundabout was classified
as B1. Ref. [7] might have been classifying those roundabouts as A (cp. Section 2.1).

Note that [4] found fairly different rates for the cars and bikes, respectively, so the
rates may not be robust between different countries or different studies.

It should be noted that the rates, but not necessarily the ranking of the roundabouts,
are very different when car and bike safety is compared, see Figure 6 for this. This result is
also in line with [4,5,7].
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Figure 6. Comparison of the crash-rates of cars and bikes. Note the factor 50 in the scaling of the two
y-axes. The horizontal dashed lines connect the mean values.

3.2. Poisson versus Negative Binomial

In the following, models will be used to gain additional insight. All analyses have
been performed with the help of [21]. As usual, it is assumed that the mean value of the
number of crashes depends on the ADTs and other factors such as (see [4,22-26]):

K
1= BoQbk Qi exp (Z ﬁm>, @)
i=3

where y is the mean value of either a Poisson or a negative binomial distribution, and the x;
are the factors described earlier in this paper (Type, ford.colored, zebra, care.bike, both.dir,
location). The Q’s are the ADT-values; of course it would be much better to have the actual
flow-rate at the time of each crash, which was not available.

Sometimes, it is useful to analyse the corresponding rates, i.e., ¥ = u/Q (see [27]):

K
Tcar = Qﬂ = ,BOQEalrilQbﬁizke exp (Z ﬁixi) ’ 3)
car i=3

and similar for the bike-rate r,. Note that these rate equations are slightly more involved
when fitted against the data. Nevertheless, the glm() algorithms in R provide an excellent
toolbox to deal with rates as well, namely by using log(Qx) as an offset.

Before going into the details of how to identify the correct model family, in a first step
the underlying distribution is investigated. This is done by estimating a model both with a
Poisson (P) and a negative binomial (NB) distribution and comparing the model-quality.

The differences between a Poisson and a negative binomial distribution are not large
when viewed in terms of the resulting coefficients. The coefficients of the NB have a
slightly wider distribution, see Figure 7. However, the fit also results in a value of the size
parameter (it has different names in different settings, glm.nb() in R calls it 8) of the NB
distribution of about three (§ = 3.2 & 0.6, for the bike crashes: 8 = 1.7 4+ 0.4), where 0 is
the denominator in the relationship between mean value u and the variance o2 of the NB

2
distribution, 02 = p + L.
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Figure 7. Uncertainty of Parameter values of the GLM (Poisson versus Negative Binomial Fit). Left
for the cars, right for the bikes.

For 6 — oo this yields a Poisson distribution, so the 6 found here is considerably
different from infinity and indicates in fact that the NB is a better fit than the Poisson
distribution. This is confirmed by ANOVA tests and by computing the AICs for the different
models: the residual deviance drops by a large amount when switching from P to NB, both
for the bikes as well as for the cars. The same holds for the AICs, where a drop by 128 (cars)
and 86 (bikes), respectively, has been observed. This is the result for all the roundabouts, it
does not change much when analysing only the urban roundabouts. Therefore, the rest of
the paper works with an NB distribution only.

It might be noted in passing that this is not in line with the results of [4], who found
under-dispersion for the crashes at roundabouts.

Note, too, the different dangerousness of roundabouts of Type A for cars and bikes,
respectively. While the other types are similar between bikes and cars, Type A is difficult: it
seems to improve safety for cars, but to decrease it for bikes.

3.3. Exposure

Another interesting point (and a bit puzzling as well) is the relationship between the
number of crashes and the exposure measured by the ADT-values. In a first step, the two
relationships between N, and Qy are estimated, where x is cars or bikes, respectively.

They are discerned by location, yielding the results displayed in Figure 8. It indicates
that the number of crashes N grows sublinearly with the number of objects Q, both for the
cars as well as for the bikes. The exponents B; for the two different locations in N = aQPi
are 3; = 0.45, 0.56, each with an error of 0.1 (rural first). The values for the bikes are similar
Bi = 0.77,0.37 with an error of 0.09. All exponents are highly significant, the worst p-value
is 3 x 107° for the rural car .
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Figure 8. Number of crashes fitted versus the ADT values, classified by location.

This result is puzzling, since it indicates that the corresponding rates decrease with
increasing demand: while not entirely impossible, and sometimes interpreted as a safety-in-
numbers effect, it is not easy to argue why this should be the case (especially since r — co
for Q — 0).

One may notice that roundabouts with a large number of crashes are not found in this
dataset, instead there are a few roundabouts with a large exposition and a small number
of crashes. This might be due to an error in the way the data have been fused, or it might
be a problem with the estimation of the ADT-values itself, which is beyond the scope of
this study. Even by restricting the fit to smaller values of Qcar < 20,000 does not increase
the exponent to a value larger than one, so this result is robust and does not hinge on a
few outliers.

These results are at least not in contradiction with the results of [4]. They found
exponents for the cars and bikes in the range of Bcar = 0.89...1.16 and Bpie = 0.27.
Interestingly, some of the raw data of [7] are printed in the appendix of their report and
allow an analysis of N = g Qfgr, but only for the car-data. In this case, a clear super-linear
growth results, where 8; = 1.54. Note that [4,7] have used all crashes in their analysis,
while here only the severe crashes have been used.

It might be noted in passing that by fitting the rates instead of the number of crashes,
the very same results are obtained.

There is a final remark regarding the exponents of the full model, which claims that the
number of crashes depends on the product of Qi}r Eizke' Here, one would expect at least
B1 + B2 > 1, however, this is not the case. Instead, the values of the exponents are lower:

0.43 ~0.20
Ncar & Qcar Qbike
and
0.37 ~0.44
Nbike * Qcar Qbike-

Note that the values of the exponents 1, §, are not very robust; small changes in the
models cause changes in the exponents. However, the result that their sum is smaller than
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one is robust, and all coefficients are statically significant, with the worst p-value of 0.02 for
Qcar in the bike model.

3.4. The 2011 Model

The list of 100 roundabouts in [7] was reviewed; the type of roundabout, the presence
of a zebra crossing and a red painted ford in 2011 were added as additional information.
Table 3 shows the model parameters. Obviously there was a discrepancy in the typing
compared to the original paper (see Table 2).

Table 3. GLM model fit for the re-engineered dataset with 100 roundabouts used by [7]. Parameter
values that are statistically significant with 5% probability of error are printed in bold letters.

Cars Bikes

Estimate Std. Error Pr(>lzl) Estimate Std. Error Pr(>lzl)
(Intercept) —0.803 1.777 0.651  —12.705 4.302 0.003
I(log(qCar.11)) 0.177 0.178 0.320 0.789 0.433 0.068
I(log(qBike.11)) 0.061 0.078 0.434 0.633 0.158 0.000
TypBl1 0.430 0.203 0.034 0.037 0.352 0.916
TypB2 0.174 0.257 0.500 —0.718 0.686 0.296
TypB3 —0.304 0.247 0.217 —0.652 0.661 0.323
Zebrastr. TRUE —0.536 0.226 0.018 0.532 0.531 0.317
Furt.eingefarbtTRUE 0.803 0.224 0.000 0.415 0.390 0.288

The following was observed for the fit displayed in Table 3:

*  The overdispersion was low for cars (6 = 6.99) and bikes (6 = 5.99);

*  The intercept in the model for car crashes is not significantly different from zero,
while type B1, zebra crossing and ford painted are significant. The effect of the zebra
crossing variable is negative;

*  Surprisingly, in the model for car crashes, the qBike.11 and qCar.11 variables are
not significant;

¢  Inthe model fit for bike crashes, only the gBike.11 is significant.

3.5. The Full Model

In a final step, a model that includes all the influences is estimated, both for the cars as
well as for the bike crashes.

The results are displayed in Table 4. The scale parameters were: for car crashes 0 = 4.1,
and for bike crashes 6 = 2.0.

The results show that not all of the coefficients are statistically significant. Most no-
table is (for the car crash numbers) the existence of a zebra crossing (it increases the
crash-numbers), a colored ford (increases crash-numbers, too), and the exposition by Qcar.
While the exponent is similar to the results above, in this case the exponent of the bike
exposure is statistically weak; it barely hit 5% significance. From the perspective of the cars,
the classification of the types introduced by Bondzio is only interesting as it discerns the
Type A from the rest.

For the bikes, the same coefficients are significant; this time, however, the typology is
more meaningful since at least the value for Bl is significant.

The most surprising result in our view is that both for the bike-crashes as well as for
the car-crashes, the existence of a zebra-crossing and of a colored ford increase the number
of crashes. In fact, additional t-tests confirm these results. We will come back to this issue
later on.
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Table 4. The full model. Parameter estimates for car crashes (left), and bike crashes (right). Parameter
values that are statistically significant with 5% probability of error are printed in bold letters.

Cars Bikes

Estimate Std. Error Pr(>1zl) Estimate Std. Error Pr(>lzl)
(Intercept) —3.981 0.802 0.000 —4.929 1.322 0.000
TypeB1 0.220 0.127 0.083 0.479 0.188 0.011
TypeB2 0.053 0.162 0.743 0.283 0.237 0.232
TypeB3 0.148 0.130 0.255 0.043 0.215 0.841
locationurban —0.102 0.099 0.301 0.479 0.181 0.008
zebraTRUE 0.491 0.128 0.000 0.466 0.193 0.016
ford.coloredTRUE 0.336 0.143 0.019 0.545 0.198 0.006
care.bikeTRUE 0.155 0.285 0.587 0.014 0.459 0.975
both.dirTRUE —0.096 0.116 0.405 —0.243 0.195 0.213
pedXTRUE 0.070 0.109 0.520 0.160 0.160 0.316
kph30an 0.023 0.134 0.863 —0.042 0.202 0.836
kph30in —1.294 0.779 0.097 -0.615 0.859 0.474
log(qCar) 0.373 0.091 0.000 0.212 0.151 0.160
log(qBike) 0.144 0.039 0.000 0.340 0.063 0.000

4. Cross-Validation

This section discusses the various models from the perspective of cross-validation. Its
usage in road accident analysis is so far limited; it was demonstrated, however, that cross-
validation techniques can be useful for model selection for predicting the crash severity of
vulnerable road users [28]. It is also known from the literature that a model trained on a
training dataset may perform poorly when predicting the value of the dependent variable
on a disjointed test dataset (see [29]).

Considering Table 4, it might be expected that a model that accounts for the variables
that are statistically significant and that was trained on some training dataset should do
well in predicting annual crash numbers on a test dataset. The ability to do this was tested
in extensive cross-validation runs in this study.

The motivation for cross-validation experiments was the following: It can be assumed
that the model that best predicts accident rates in places it has never seen before should
only include factors that really have an impact on accident rates. Those factors are the ones
that traffic planners should consider when designing safe infrastructure.

4.1. K-Fold Cross Validation

About 2/3 of the whole dataset was used for training, thus fitting the GLM model,
and the remaining 1/3 for testing. Testing was carried out by letting the model predict the
annual crash numbers for each single roundabout in the test dataset and comparing the
estimate with the actual crash number. As a metric, the mean square error (MSE) was used.
For assessing the prediction performance, the MSE for 900 random test/training partition
runs and the moments and quantiles of the MSE were evaluated.

Figure 9 shows the results of cross validation for the following GLMs:

*  Q: The number of bike crashes depends on the average daily traffic of bikes and
motorized road users;

*  Q.ABI123: Just as Q, but in addition considers the type of roundabout: A, B, B2, or B3;

e Q.AB123.Z.F: Just like Q.AB123, but in addition considers if there is a zebra crossing
and a ford colored;

*  (Q.AB23_B1.Z.F: Just as Q.AB123.Z.F, but type differentiation is only between B1 and
{A;B2;B3}. The motivation for creating this model is that, in Table 4, only the difference
between roundabout type Bl and all others is statistically significant;

*  Q.AB23_B1.Z.F: Just as Q.AB123.Z.F, but type differentiation is only between the
groups {B1;B2} and {A;B3}. The motivation for creating this model is that B1 and B2
roundabouts grant right of way to bicycle riders. We suspect that this right of way
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regulation has an effect on crash numbers. In addition, as can be seen in Table 5,
the level of significance of factor “TypeB12” of this model is higher (¢ < 1.5%) than the
significance level of factor “TypeB1” of Model Q.AB123.Z.F (« < 3.5%). See Table 4;
Q.Z.F.: like Q, considers if there is a zebra crossing and a colored ford but does not
care if it is of Type A, B1, B2, or B3.

Table 5. The model with the best prediction performance (Q.AB3_B12.Z.F) for bike crashes

Estimate Std. Error z Value Pr(>1zl)
(Intercept) —-3.122 0.315 —-9.903 0.000
log(qBike) 0.363 0.060 6.079 0.000
TypeB12 0.390 0.156 2.505 0.012
zebraTRUE 0.540 0.140 3.846 0.000
ford.coloredTRUE 0.569 0.185 3.080 0.002
locationurban 0.501 0.174 2.880 0.004

With the help of Table 6 and Figures 9 and 10 the following is observed:

The prediction accuracy of a model that introduces the type of roundabout is higher
than of a model that only accounts for exposure of the average daily traffic volume of
bicycle riders and motorized road users. This provides evidence that there is an effect
beyond exposure. Note that roundabouts of type Bl, on average, also have a higher
average daily traffic volume of bikes. This gave rise to the suspicion that the different
levels of crash rates at the roundabout types A, B1, B2, and B3 may simply come from
a selection bias. Obviously, this is not true;

The prediction accuracy of model Q.Z.F is higher than for Q.AB123.Z.F. This obser-
vation is notable and gives rise to the assumption that the differentiation between A,
B1, B2, and B3 roundabouts is less meaningful than expected. Instead, the predictive
power of Q.AB123 seems to stem from correlations between the types A, B1, and B2
and the presence of a zebra crossing and a colored ford. The roundabout types do not
add meaningful information to the GLM. Instead, they seem to introduce overfitting;
Although the difference of type Bl and A (Intercept) is statistically significant, model
Q.AB23_B1.Z.F is less accurate than Q.Z.F. This demonstrates one of the challenges
of proper model selection. Only when differentiating between roundabouts of type
{B1,B2}, which give priority to cycles and {A;B2}, which do not, improves predic-
tion performance. This is true, although roundabouts of type B2 do not statistically
significantly differ from roundabouts of Type A (the Intercept).

While [29] reported on such types of effects, there were still doubts that these findings

were correct.

Table 6. K-Fold cross validation prediction errors for crashes of bicycles and of cars.

QO Q.AB123 Q.AB123.ZF Q.AB23_B1.ZF Q.AB3_B12.ZF Q.ZF
MSE Bike 1.088 0.993 0.958 0.954 0.948 0.944
SD Bike 0.177 0.160 0.142 0.149 0.138 0.139
AIC Bike 1359.442  1321.098 1310.053 1307.608 1306.703 1310.936
MSE Car 2.433 1.003 0.965 0.960 0.954 0.950
SD Car 0.337 0.164 0.148 0.147 0.154 0.149
AIC Car 2190346  2159.660 2143.581 2140.780 2142411  2141.721
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Figure 9. K-Fold cross validation results for bike crashes. The blue dots denote mean values. The
bold black lines mark the 50% percentile, thin black lines the 5% and 95% percentiles respectively
and the black circles denote outliers.
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Figure 10. K-Fold cross validation results for car crashes. The blue dots denote mean values. Again,
the bold black lines mark the 50% percentile, thin black lines the 5% and 95% percentiles respectively
and the black circles denote outliers.

4.2. Cross Validation on Ensembles

Mean square error calculations on data with high dispersion can produce misleading
results because square error puts more weight on predictions that show stronger deviation
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from the ground truth. To circumvent this potential problem, the procedure was modified
so that the model would estimate mean accident rates for ensembles.

Table 7 illustrates ensemble validation. It can be seen in the first row, that for all
94 roundabouts of type A in urban area that have a zebra crossing, the ensemble mean
ADTs are 199 bicycles and 9439 cars. Given those numbers, the GLM “Q.Z.F” predicts an
average number of 1.03 bike crashes during the observation period of two years. Actually,
there were observed 0.78 crashes on average during the same period of time. When
looking at the predicted and actual numbers it becomes obvious that the model predicts
the expected crash numbers well.

Table 7. Prediction of crash numbers for ensembles in the complete dataset. The Model is Q.Z.F

Type Zebra Ford Location # Q_car Q_bike Pred Real CR_bike
A TRUE FALSE urban 94 9439 199 1.03 0.78 2 x 1079
A FALSE FALSE urban 48 8522 128 046 0.31 9 x 10706
A FALSE FALSE rural 28 7881 119 025 0.18 7 x 10706
Bl TRUE FALSE urban 61 10,641 165 096 1.15 35 x%x 1079
Bl FALSE TRUE urban 10 9093 191 117 06 13 x 1079
B1 TRUE TRUE urban 38 11,368 347 275 25 44 x 1079
B1 FALSE FALSE urban 12 9693 140 048 0.92 35 x 1079
B2 TRUE FALSE urban 22 11,209 216 1.06 0.77 1.9 x 10705
B2 FALSE FALSE urban 20 10,125 180 052 0.75 23 x 1079
B3 FALSE FALSE urban 132 10,585 202 0.54 0.43 15 x 10705
B3 FALSE FALSE rural 187 9408 142 0.27 0.25 9 x 10796

In the ensemble cross validation experiments the GLM was trained on a training
dataset that consists of 2/3 of all roundabouts randomly selected. The prediction procedure
was performed for the test dataset in the same way as shown in the Table 7. The test
dataset consists of the rest of roundabouts. To ensure effective averaging, a minimum of
three samples per ensemble was required (column # in Table 7). Each time the ensemble
has less than three samples, the predicted number of accidents is not scored.

A takeaway from Table 7 is that looking at crash rates of ensembles, as [7] did, produces
misleading results. For the ensemble of Type B2 with a zebra crossing the average bicycle
crash rate is lower (CRy;x, = 1.9 x 10> crashes per bicycle) than for the ensemble without
(CRpike = 2.3 x 107°). Ref. [7] might have concluded that a zebra crossing makes the
roundabout safer for cyclists. This is not true, even with the dataset of 100 roundabouts
that they used in 2011. The GLM states that the exposure-adjusted risk of a bicycle crash is
"7 times, thus 59% higher in the presence of a zebra crossing (see Table 5). This value is
well in line with the effect size that a GLM fit would report for the 2011 dataset containing
100 roundabouts: %> or 69% higher (see Table 3). In the dataset from 2011, however,
the effect is not significant.

A similar problem is apparent for B1 roundabouts without a zebra crossing that do and
do not have a colored ford. Those roundabouts with a colored ford show the lowest crash
rate of all B1 sub-ensembles (CRy;, = 1.3 x 107°). Again, painting a bicycle ford does not
reduce crash rates, as can be seen in the present dataset as well as in the 100 roundabouts
dataset from 2011. The exposure-adjusted risk of a bicycle crash is " times, thus 75%
higher in the presence of a colored ford. This value, again, is well in line with the effect size
that a GLM fit would report on the 2011 dataset of 100 roundabouts: ¢*4? or 52% higher
(see Table 3), while also not significant.

There are two possible reasons for that extent of error with empirical rates. First, there
are locations with zero crashes within the observation period: for a place with 1000 bicycles
ADT, zero crashes have another weight, than for a place with 10 bicycles ADT. GLMs
account for this difference. Empirical crash rates do not. Second, crash numbers do not
linearly rise with ADT. The mean ADT of bikes is nearly twice as high for B1 locations with
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a zebra crossing and a colored ford compared to locations without. Comparing crash rates
is synonymous with assuming that y o« Q1 while it is actually u o Q) (see Section 3.5).

A review of k-fold cross-validation and ensemble cross-validation yields the following
findings (see Figures 11 and 12, Table 8) :

*  Ensemble cross validation achieved more precise predictions. The MSE of the best
performing model Q.AB3_B12.Z. is three (for cars) to five (for bikes) times lower in
ensemble cross-validation than in k-fold cross validation;

*  The prediction performance differences are bigger in ensemble cross validation. The k-
fold cross validation prediction performance of the two best performing models
Q.AB3_B12.Z.F and Q.Z.F differs by 0.4% in their mean squared prediction error for
both car and bike crashes. It differs much more in ensemble cross validation: 2.1%
for car and 6.8% for bike crashes. These differences are notable. They are in line
with expectations, because the “TypeB1” variable is significant for bikes while closely
missing the 5 significance level for car crashes;

*  The best performing model is different in ensemble (Q.AB3_B12.Z.F) and k-fold
(Q.Z.F) cross validation. Q.AB3_B12.Z.F cares if vulnerable road users have right of
way priority, Q.Z.F does not. However, since the prediction performance differs by as
much as 6.8% for bike crashes in ensemble cross validation compared with only 0.4%
in k-fold cross validation, there is evidence that Q.AB3_B12.Z.F is the best performing
model for predicting bike as well as car crashes. The parameter values of model
Q.AB3_B12.Z.F can be seen in Table 5. Clearly, right-of-way is important for the road
safety of vulnerable road users;

*  While in ensemble cross validation the MSE is much lower than in k-fold cross vali-
dation, the standard deviation of the squared errors is higher, and even higher than
its mean;

*  The 50% and 75% quantiles of the squared errors in ensemble validation are very low
compared with their mean. In contrast, k-fold cross validation yields quite similar
median and mean values. Traffic engineers using ensembles for predicting crash
numbers might be very accurate in most (e.g. 75%) of their attempts to do so;

e  For bike crashes, the model with the lowest AIC (Q.AB3_B12.Z.F) performs best
in cross validation. However, this is not true for car crashes. For car crashes,
Q.AB23_B1.Z.F has the lowest AIC but Q.AB3_B12.Z.F achieves the most
precise predictions;

*  The models that rely on statistically significant variables only (Q.AB23_B1.Z.F for
bikes and Q.Z.F for cars) do not yield the best generalization capability.

Table 8. Cross validation prediction errors for crashes of bicycles and cars. Ensemble approach.

Q Q.AB123 Q.AB123.ZF Q.AB23_B1.Z.F Q.AB3_B12.Z.F Q.ZF

MSE Bike 0.317 0.220 0.193 0.249 0.175 0.187
SD Bike 0.703 0.453 0.414 0.505 0.386 0.402
AIC Bike  1359.442  1321.098 1310.053 1307.608 1306.703  1310.936
MSE Car 0.598 0.568 0.356 0.493 0.328 0.335
SD Car 1.080 0.927 0.646 0.799 0.589 0.603

AIC Car  2190.346  2159.660 2143.581 2140.780 2142.411 2141.721
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Figure 11. Cross validation results for number of bike crashes. Ensemble approach. The bold black
lines mark the 50% percentile, thin black lines the 5% and 95% percentiles respectively and the black
circles denote outliers.
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Figure 12. Cross validation results for number of car crashes. Ensemble approach. The bold black
lines mark the 50% percentile, thin black lines the 5% and 95% percentiles respectively and the black
circles denote outliers.

5. Conclusions

This analysis has shown that an approach based on machine learning for gathering
data from difficult or expensive to access databases can help to gather large amounts of
data that improve the statistical power of traffic safety investigations. We were able to
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reproduce some, but not all, of the results from other studies, and have found useful and
interesting differences to other studies.

A number of results were obtained that we believe require more thorough investigation.
For instance, one very clear result of this study is that roundabouts where the bicycle ford
is painted in red are more dangerous than roundabouts where this is not the case. It is
not very likely that this is in fact a causal relationship, instead the causation might be the
other way round: a dangerous roundabout has its bike-fords painted red, and this analysis
just sees the result of such an intervention. However, without going into the history and
investigating in fact whether this is the case or not needs to be turned out. Of course, if in
fact red bike-crossings are more dangerous, then appropriate actions should be taken.

The additional information that can be gained from a cross-validation approach is
also interesting. The full model with all the probably influencing factors in Table 4 had
many statistically weak parameters. The approach based on cross-validation yields a much
more concise model with a reduced parameter set, where all parameters are significant, see
Table 5 for a direct comparison.

This, finally, points to a better recording of what has happened to the road infrastruc-
ture, and to make open those databases. Then it might be easier to learn and to find better
solutions that increase traffic safety for all road-users, and especially for the vulnerable ones.

For practitioners, the most important finding may be that differentiating roundabout
types has not been shown to add value. The different numbers of crashes seen at the
different types of roundabouts A, B1, B2, and B3 stem from selection bias and the improper
constant rate assumption.

Higher traffic volumes, the presence of crosswalks, and painted bicycle lanes result
in a higher number of crashes at B1 and B2 roundabouts. However, it does not justify
the conclusion that in roundabouts, bicycles travelling in mixed traffic (Type A) have a
reduced risk of crashing compared with types B1, B2, and B3, where bikes are travelling
on dedicated infrastructure ([30]). When bicycles have right of way priority, the crash
numbers are significantly lower, if the bicycle ford is not painted in red and if there is no
zebra crossing. Both are features that indicate to the bicyclist that he or she has the right of
way without question.
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