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Abstract: Risk assessment of the operations utilized in processing products and services always
deals with uncertainties and complexities. The ever-evolving complex and dynamic circumstances
make it very difficult to identify and analyze potential events affecting workers’ safety and health.
Our first study was on managing the risky situations of a dynamic environment, the transport and
storage of residual hazardous materials with high variation in operational times. It showed that the
dynamicity of operational functions has a direct relation to the risk of accidents and suggested that
such environments require a system to decide whether to perform each new action on a suspected
risk condition or not. A practical framework, engaged close to the variable functions involved
in potential events, is needed to provide reliable measures for risk assessment. Based on these
measures, this framework would help to make decisions at the right time and to take preventive
actions. It would support the decision-making process by recognizing the risk-associated features
of available information and offer continuously updated alternatives for appropriate actions to
prevent unsafe operations. In our second study, we developed a brain-inspired decision-making
system for the real-time configuration of dynamic environments. That decision-making system builds
knowledge from the least to the most similarities between experienced states to determine the most
appropriate action(s) to rapidly reorient risky operations to a safe condition. This paper aims to
verify the second study’s proposed system performance in the simulated environment discussed in
our first study on residual hazardous materials transportation. We extract information, including
the effective factors, from that first study and use it in the decision-making system to prevent risky
transportation. This model would be useful in daily risk management as a practical framework for
establishing safe operations in today’s industrial environments that involve dangerous chemical or
radioactive products.

Keywords: residual hazardous materials; risk assessment; preventive safety actions; brain-inspired
decision-making; dynamic environments

1. Introduction

The diversification of products and services in the marketplace has generated an
unpredictable competitive environment for industries, which has forced service providers
and product producers to evolve so that their processes can adjust to the dynamicity of the
created environment. Dynamic environments are uncertain and their aspects are varied, not
only in their intrinsic parameters but also in how those aspects are affected by externally
unpredictable factors [1]. It is worth noting that the uncertainty of an environment can
present both risk and opportunity for developing systems and drive the performance of the
embedded processes to provide products and services at higher rates and diversities [2].
However, two of the repercussions of dynamicity and increasing operational speed are the
complication of risk assessment and the shortened timeframe for taking responsive action.
Risk assessment is designed to assess the risk involved in workplaces and identify the
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causes of any actions that negatively affect human health and safety, e.g., actions that result
in the leakage of dangerous materials, including explosive, flammable, toxic, radioactive,
corrosive, or leachable materials [3]. There are some established methods, each with its own
recommended tools for managing risk at the industrial level. The main risk management
methods are provided by the COSO Enterprise Risk Management Framework (ERM) [2]
and ISO 31000 [4].

According to the COSO ERM, risk management could maximize value if it sets ob-
jectives based on an optimum point between progress toward goals and any opposing
risks. In this way, the interaction between people and organizations animates events, which
could emerge as positive or negative activities with their possible opportunities and risks
for the whole system. COSO ERM considers a three-dimensional matrix for the interaction
between enterprise parameters and risk. It represents the relation between the goal achieve-
ment approach of the system, its structure, and relative risk management configuration [2].
ISO 31000 proposes three main approaches. One gives insight into the human-organization
interrelation, and one provides a framework to implement and execute designs and to
then monitor the corresponding improvements. The third approach provides maps of risk
assessment and proper treatments [4].

These standards offer qualitative tools and methods, which help businesses to deter-
mine how to reach their goals and targets. Along with these approaches and standards,
businesses need quantitative tools to evaluate their programs and corresponding progress
toward established goals. Risks should be assessed by an appropriate framework with
reliable tools and measures; still a lacuna in the approaches provided by the current stan-
dards of risk management [5,6]. The interaction between humans and organizations must
be quantitively considered; the effect of human error on risk needs to be better understood,
measured, and assessed [7]. The functional resonance analysis method (FRAM) was in-
troduced as a useful tool to identify the parameters underlying operational risk through
the interrelation between the functions involved in a process [8]. However, to evaluate
quantitative parameters influenced by the interaction of functions and between possible
effects on risk, the FRAM requires associative tools, such as the Monte Carlo simulation.
We have addressed this association with the risk frameworks derived in our first study,
which investigated the tasks related to the discharge, transportation, and storage of residual
hazardous materials (RHMs). RHMs are substances that cause harm to people, property,
and the environment [9]. Our framework, by combining the FRAM and the Monte Carlo
simulation, has revealed that, alongside the availability of equipment and safety standards
instruction, the dynamic aspects of the executed functions in the studied case’s operation
have a significant impact on meeting safety standard requirements due to their effect on
increasing the risk of accidents [10].

Despite the introduction of the above-mentioned tools and methods, dynamic envi-
ronments bring high uncertainty because of imperfect available information. When the
data required to understand events is lacking, there is an inevitable increase in accidents.
In addition, imperfect information and the associated limited understanding prevents a
system from finding appropriate alternatives, leading to faulty decision-making [2]. The
ability to recognize the pivotal features of information and their interactions is thus key
to the success of a daily risk management framework in identifying possible operational
risks [11]. With the ability to recognize risk and make the right decisions, such a system
could develop its risk management performance in a dynamic environment.

We, therefore, launched our subsequent study after investigating a risk management
case to develop a decision-making system that could perform with imperfect information
and still make appropriate decisions. The brain has been identified as the best alternative
for decision-making in environments with imperfect information, leading to the field of
brain-inspired artificial intelligence (AI). The brain is nature’s best adaptable system to
recognize the features of imperfect information received from a dynamic environment
and continuously make appropriate decisions thereabout [12] through a process of se-
quential evaluation and editing [13]. It generalizes knowledge based on learning from
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experienced states by finding (and classifying) similarities between the features of cor-
responding information [12]. We, thus, introduced a brain-inspired model to process
unpredictable environments and take actions with available imperfect information in our
second study [14]. It mimics brain functions in decision-making by utilizing three levels of
recognizing information patterns from vaguely to explicitly similar features, identifying
relevant values, evaluating the known alternatives, and correspondingly making decisions.
The system continuously reorganizes the available alternatives according to the new values
received for the made decisions [14]. The system, after making a decision, receives that
decision’s added value, assigns it to the state that the decision was made for, and revaluates
the existing alternatives for information in common with this state.

This paper (the third in this series) aims to verify the performance of our decision-
making system on real data from our case study presented in the first paper. We simulated
the case’s risk assessment process to produce data for the decision-making system to
identify possible risky conditions during the discharge, transportation, and store RHMs
in the stocking area and then apply decisions on the process as preventive actions. It is
a model for achieving a reliable level of dynamic, daily risk management. This study
is a prerequisite step for such a decision-making system before can be applied for risk
management in real environments.

We argue that an intelligent decision-making system will help risk management to
evaluate imperfect information received from the environment in order to prevent certain
events that could result in an accident. It recognizes, on a daily basis, the effective features
of detected information and relative variation from a given unpredictable environment,
and assigns them values that it can later utilize in making decisions to start or avoid new
actions according to [14]. The continuous improvement of alternatives will produce a
more trustworthy operational environment. which in turn will allow for higher levels of
operational safety.

The development of our intelligent decision-making model for an adaptable, respon-
sive risk management system for the transportation and storage of hazardous materials is
presented in Section 2. We describe the experiments utilized to verify our model in daily
risk management in Section 3, and then present the results of those experiments in Section 4.
We analyze our results in Section 5 and present our conclusions and suggestions for future
work in Section 6.

2. A Decision-Making System Model for Dynamic Risk Assessment

We developed a model with which to evaluate a brain-inspired decision-making sys-
tem for risk management in dynamic environments. The performance of the brain-inspired
decision-making system presented in our previous study [14] is tested for managing the
risk involved in the case assessed by our first study [10]. We developed the model in two
distinct operating environments (Figure 1): a risk assessment framework, based on a Monte
Carlo simulation of the realized FRAM model of the chemical products production process
in the case studied [10]; and a decision-making system, based on our work on brain-inspired
decision-making [14]. In the first environment, the discharging, transportation, and storage
of RHMs are simulated in two distinct parts. The first part (part-I) provides information
for decision-making, which is performed in the second environment, according to the
potential causes of variations in the discharge-related operations. The information gathered
in part-I is thus utilized to decide if the second part (part-II) will proceed or not, based on if
the transporting and storage of RHMs are determined to be at risk. The decision-making
system determines if the functions in part-I (i.e., requesting a barrel for discharging RHMs,
preparing the equipment, and discharging RHMs) offer a safe situation for performing
part-II of each simulation state (i.e., transport and storage of RHMs). The information
gathered from the simulated part-I was considered as the state of the decision-making
system (the second environment). The feedback received from part-II becomes the added
value of the action decided upon by the decision-making system.
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Figure 1. Diagram of our intelligent operational risk management system in a chemical product
production process. Figure 1 shows a schematic of the complete states of the simulation. The process
begins in the simulation part-I. The workflow from part-I can only proceed if the decision-making
system allows the process to continue to part-II. The decision-making system receives the information
it needs to decide to allow the process to continue (or not) from part-I. The added value of each
decision after making reaches the decision-making system through part-II, and the system updates
its alternatives accordingly.

Information is sent to the decision-making system from the simulation part-I environ-
ment via the information sensory gate, while the added values from part-II are sent to the
decision-making system through the value-added sensory gate (Figure 1). The features
of the information needed by the decision-making system is derived from the functions’
speed-up ratios and equipment availability. The speed-up ratio defines the squeezed
proportion of the time of each function according to the previous functions’ delays [10].
The decision-making system processes the received information at three recognition lev-
els. Next, a decision is made to either “Stop” or “Let the process continue to part-II”. If
the decision is to continue the process, the simulation’s part-II continues the process and
provides the feedback of corresponding added value for that decision. Accordingly, the
decision-making system then modifies the relative alternatives for similar information
patterns to apply to upcoming states.

2.1. Risk Assessment Environment

FRAM was used in [10] to identify the most important factors of functions that affect
risk in a chemical production process, and then used that information to model risk
assessment based on functions’ speed-up ratios and equipment availability. Afterward, the
model was animated and analyzed in a Monte Carlo simulation. The speed-up ratio of a
function in a process is a factor that reduces the relevant scheduled time according to the
functional delays applied by precedent functions. Ref. [10] considered seven parameters
as direct accident influencers: unclosed-RHM-barrel, using a dolly instead of a forklift,
occupied transportation path, rough floor, lack of storage space, and no available pallet.
The speeds of the functions affect and intensify those direct risk influencers.

The simulated process provides the variables representing functional delays, speed-up
ratios, and direct accident influencers’ effects at each state. The number of accidents that
occurred during a complete assessment of 25,000 states, according to [10], is the other
important variable. Each simulated workday includes a chain of simulated states, and each
state is the chronology of collecting, transporting, and storing RHMs barrels, in which the
corresponding execution times are interrelated.

We follow the Occupational Health and Safety Regulations (OHS) three parameters [15]:
performance deviation due to human error, the environmental effects on performance
deviation, and the preventive actions taken against unexpected consequences, to model the
process by FRAM, which has three steps:

(1) definition of the factors of each function:
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(a) input (i);
(b) output (o);
(c) resources (r) required to fulfill a function;
(d) time (t) required to complete a function;
(e) controls (c) (procedures, methods, etc.) to constrain and control each function; and
(f) preconditions (p) required to operate a function;

(2) determination of the potential variability of each function (here, the important variable
is the function duration); and

(3) establishment of a network of dependencies and coupling between functions.

FRAM evaluated the potential links between function duration and failures and
accidents in a chemical product production process with 11 dynamic functions and the
operational chronology of functions in [10]. The following functions then were assessed:

(1) Request a barrel to discharge the RHM tank (a temporary container for conserving
RHMs during the process).

(2) Prepare the transportation equipment and place the RHM barrel in front of the tank.
(3) Order the operator to wear PPE and be at in place for discharging the tank.
(4) Execute the discharging and filling of the RHM barrel.
(5) Request a label for the filled barrel.
(6) Carefully close the filled RHM barrel.
(7) Deliver and install the label on the closed barrel.
(8) Transport the closed barrel.
(9) Correctly store the closed barrel in the RHM storage area.
(10) Register the barrel.
(11) Update the registration.

Among the 11 functions listed above, the 7 that can increase delays and lead to risky
conditions were selected for modeling the study’s decision-making system. Those functions
are modeled in two parts, as listed below for each simulation state:

• Part-I:

1. Request a barrel to discharge the RHM tank (a temporary container for conserving RHMs).
2. Prepare the transportation equipment and place an RHM barrel in front of the tank.
3. Order the operator to wear PPE and be in place for discharging the tank.
4. Execute the discharging of the RHM tank and the filling of the RHM barrel.
5. Carefully close the filled RHM barrel.

• Part-II:

6. Transport the closed barrel to its assigned storage area.
7. Correctly store the closed barrel in the designated RHMs storage area.

The five functions presented in the first part may delay the process and consequently
increase the speed-up ratios of the functions in the second part.

2.2. Decision-Making Environment

Our brain-inspired decision-making system was designed to identify the effects of
the delays incurred during the first part’s functions on increasing the risk of accidents
during the second part’s functions (transportation and storage of RHMs). The decision-
making system is comprised of four sections: the information sensory gate, pattern labels’
realization, alternative realization, and value-added realization (see Figure 2) to recognize
and classify information through the detection of patterns and value similarities. This
system uses these four sections to determine the best and worst decision alternatives
decision between “Continue the process” or “Stop the process, it is a risky condition”
at three levels of realization (vague, approximate, and explicit similarities). The value-
added signal then receives the system’s value-added sensory gate from the simulated
transportation and storage of RHM (the simulation’s part-II) to determine the value of
the decision and records it with the detected information pattern. Next, a new alternative
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replaces the best (or worst) linked alternative if the new value has a lower (or higher) score
than one of them.
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Figure 2. Diagram of the brain-inspired decision-making system [14]. The information-sensory
gate receives a new signal from the environment, a pattern of information features (here the situation
presented in the simulated part-I), and sends it to the pattern realization stage, which labels its
pattern. If a label is linked to any experiences, it activates its attached alternatives at the alternative
realization stage. Those alternatives determine the motivation values for the decision-making process.
The decision-makers then decide to either “Continue the process” or “Stop the process, it is a risky
condition”. After making the decision, the value-adding sensory gate receives the added value signal
from part-II and records it for the information pattern’s label. If this new value suggests a new option
on top of one of the best or worst alternatives, the option replaces that best (or worst) alternative on
that label.

Based on the defined features of a detected state in [14], information, transmitted
as a signal with eight specific frequencies, is received at the information sensory gate of
the decision-making system. The signal frequencies are represented by f1, f2, f3, . . . , f8
showing the weights of each information feature. In this study, speeding-up the ratios in the
first part’s functions generates five of the eight information features required. “Unclosed
RHM barrel” and “RHM manual transportation” are two of the remaining three features.
The first five features are assigned intensities of between one and eight (the least to the
highest risks) and applied in frequencies between f4 to f8. “Unclosed RHM barrel” and
“RHM manual transportation” are assigned values of one (or two) sitting on f2 and f3. f1 is
not assigned a value because there is no accountable feature to link to it in our information.

At each simulation state, the received signal is realized by the decision-making system
before it begins the simulation’s part-II so that it can decide if the process is safe to continue
or not. The decision-making system decides to continue (or stop) the process based on
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its knowledge. A default decision is made when there is no alternative recorded or if the
difference between the best and worst alternatives is not recognizable.

The value-added achievements are extracted from the simulation’s part-II to determine
successful decisions. The speed-up ratios and the problematic conditions of the transporta-
tion and storage paths of part-II determine a value between 1 to 100 for a decision; this
value is calculated after each “continue the process” decision to evaluate the result of
that decision.

3. Experiment to Test the System’s Performance

We built an experiment to test the decision-making system we presented in [14]
using real data of risk management of the case studied in [10], considering value-added
achievements (the higher the value added the higher the risk of accident) to decrease the
number of accidents. This case was evaluated because it had had an especially undesirable
time variation for the functions involved. Those functions are detailed in Table 1, where
the “Time” feature is defined as the span required to complete a function. This case was
restricted by the speed-up ratios (the ratios calculated via the previous functions’ delay
load). The “Control” feature shows the scheduled time for the functions.

Table 1. The important features of the discharge, transport, and storage of HRM functions via the
FRAM in [10].

Functions Input Output Resource Time (min) Control Precondition

request to
discharge a

tank of HRM
The tank is full

An empty
barrel for RHM

is needed

10 to 120 min,
relative to the

production
process

45 min
scheduled for
each request

-

Prepare the
transportation

equipment.
Place the RHMs
barrel in front

of the tank.

An empty
barrel for

RHMs
is needed

A dolly or
forklift is ready

Prepare the
transportation

equipment place
RHM barrel in

front of the tank

An empty
barrel for

RHM
is needed

A dolly or
forklift
is ready

Prepare the
transportation

equipment
place RHM

barrel in front
of the tank

Prepare the
operator to

fill the barrel

An empty
barrel for RHM

is needed

The operator
wears PPE

PPE
(99.9% available) 1 to 5 min 3 min

Prepare the
operator to fill

the barrel

Execute the
filling operation

A barrel is
ready by
the tank

Filling,
weighing, and

dating the
barrel of RHM

Energy (available) 20 to 30 min 25 min The operator is
wearing PPE

Close the barrel

The RHMs
barrel is

filled, weighted,
and dated.

A closed barrel

Air compressor
(99.9% available)

Energy (100%)
Barrel wrench

and cover
(99.9% available)

1 to 5 min 4 min

Carrying the
full barrel to

the storage area

A closed,
labelled barrel

A closed,
labeled barrel

is at the
storage area

Path condition
“Free path and
Smooth floor”

(95% of the time)
Energy (available)

3 to 5 min 4 min

The operator is
wearing PPE

A dolly or
forklift is ready

Storing
the barrel

A closed,
labeled barrel at
the storage area

A closed,
labeled barrel

is stored
on a pallet

Storage area
condition “Pallet
(95% available)
Space (95%)”;

Energy (available)

3 to 5 min 4 min

The operator is
wearing PPE.

A dolly or
forklift is ready
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For each state, the simulation began with running the simulation’s part-I. The necessary
information was extracted and applied as an input signal to the information sensory gate.
The information features’ values determine the signal shape, e.g., 12147566 (numbers that
indicate the intensities of corresponding frequencies). For this pattern, the three levels
of the pattern realization receive a vaguely common pattern “1211222”, the approximate
common pattern “12124333”, and the identical one “12147566”. According to the patterns
received from the first part, the system would decide to continue (or stop) the simulation’s
part-II. The process continued in the second part if the decision was “Continue the process”.

The value-added achievements are derived from the multiplication of the rank and
the speed-up ratios of two functions in the simulation’s part-II (“Carrying the closed barrel
to the storage area” with rank one and “Storing the barrel” with rank two). The maximum
value-added risk (the highest value for an accident occurrence) was equal to 100, and the
minimum was one, which represents the safest condition. We trained the decision-making
system with the first set of the simulation. Each simulation set included 25,000 states based
on the case study. Each workday was considered as having an average of 10 consecutive
states. In the second set, we evaluated the system’s functioning and its effect on changing
the number of accidents in the simulation.

We measured the number of successfully made decisions and compared it with the
number of “Continue the process” made decisions during the experiment to verify the
performance of the decision-making system. The results of four sets of simulations were
collected in order to realize the system’s average performance. The average recorded
accidents for each set in the experiment were collected for two scenarios. In the first
scenario, we assessed the system with the decision-making system, and in the second we
assessed it without the decision-making system. We compared both scenarios in terms
of the number of occurred accidents, with and without the decision-making system, to
evaluate the utilization of the decision-making system on increasing process safety and
decreasing risk.

4. Results

The extracted summary results from both simulation scenarios (with and without a
decision-making) are gathered in Table 2. The decisions to “Continue the process” were
investigated as if they were non-default decisions and they were found to produce less than
50% of the risk’s added-values for similar patterns to the detected signal pattern. These
were recognized as successful decisions.

Table 2. The simulation summary results for the first and the second parts of the simulation.

Simulation (Average Values) Part-I Scenario-I
without Decision-Making

Scenario- II
with Decision-Making

Request to discharge a tank of HRMs

The net delay of the demanding function
Speed-up ratio applied to the next functions

24.49845701 min
0.62812662

19.863123 min
0.578642

Prepare the transportation equipment place RHMs barrel in front of the tank

Is an empty barrel available?
Is a forklift available?

The net delay of the equipment preparation
The equipment preparation speed-up ratio is applied to the next function

99.90% of the time
64.07% of the time
0.562222398 min

0.64733092

99.85% of the time
63.67% of the time

0.706327 min
0.53197

Prepare the operator to fill the barrel

The net time delay to prepare the operator to fill the barrel
The operator preparation function

speed-up ratio is applied to the next function
Has the operator put on their PPE?

The added time of the previous state transporter
and the transportation equipment availability

0.22175735 min
0.63742969

62.76% of the time
0.00636690 min

0.259966 min
0.535793

62.80% of the time
0.008230 min
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Table 2. Cont.

Simulation (Average Values) Part-I Scenario-I
without Decision-Making

Scenario- II
with Decision-Making

Close and label the barrel

Is the label available?
Label availability net delay

The labeling function speed-up ratio
Is the air compressor available?
Is the barrel wrench available?

Is a barrel cover available?
The net time delay of closing the barrel

The barrel closing function speed-up ratio
Is the barrel closed?

95.01% of the time
0.14866112 min

0.73017838
99.01% of the time
99.12% of the time
98.98% of the time

0.11720761 min
0.74630319

97.11% of the time

94.95% of the time
0.169467 min

0.633455
99.04% of the time
99.08% of the time
98.91% of the time

0.134814 min
0.67056

97.03% of the time

Simulation (Average Values) Part-II Scenario-I
without Decision-Making

Scenario- II
with Decision-Making

Move the closed, full barrel to the storage area

Is the path free?
Is the floor smooth?

The net time delay for the barrel to be at the storage area
The transportation speed-up ratio is applyed to the next function

Is the barrel confronted with a problematic path?

95.02% of the time
95.13% of the time

0.53382254 min
0.752859

1.29% of the time

94.32% of the time
95.14% of the time

0.592117 min
0.649982

1.28% of the time

Store the barrel

Is a pallet available?
Is enough space available?

The net time delay for the barrel stored on a pallet
The speed-up risk ratio for storing the barrel on a pallet

94.81% of the time
95.09% of the time

0.30112398 min
0.76381236

94.50% of the time
95.05% of the time

0.344463 min
0.613885

The number of accidents the barrel met in 50,000 states 5.5/assessment 3.25/assessment

The number of accidents was derived for the risk assessment of two scenarios (with
and without the decision-making system). We compared both scenarios to determine the
effect of the decision-making system on decreasing the probability of accidents occurring.
In Table 2, scenario-I (simulation without the decision-making system) shows 5.5 accidents
on average for one set of the simulation, while scenario-II (with the decision-making
system) produces only 3.25 accidents in the complete session of the risk assessment. This
response indicates an accident reduction of almost 40.91% is achieved with the decision-
making system.

5. Discussion

Our study investigated an intelligent decision-making system for managing risk in
a chemical product production process. We developed a model by executing a brain-
inspired decision-making system presented in our previous study [14] to evaluate the risk
in a simulated process based on the information gathered in [10]. The goal of this risk
assessment is to prevent dangerous events and accidents from occurring. We used this
model to evaluate a series of consecutive experiments in a simulated environment that
explored the detailed functions involved in the discharge, transportation, and storage of
RHMs. The simulated process sent information and value-added signals to the decision-
making system that allowed the system to determine if the process was safe to continue
(or not). At each state, the system detected an information pattern, investigated the risk
level of the first part of the simulation activities in terms of their impact on the second
part, and decided to order the process to “Continue the process” if it was safe, or to “Stop,
the process” if the process was determined to be too high risk. Each time the decision of
“Continue the process” was made, a value, calculated from the ranks and values of the
second part of the simulation, was applied to the value-adding sensory gate. We then
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measured the system performance through the results derived from the simulation (of each
state). The results shows that the system reduced the number of accidents by 40.91%, which
was very significant for the case study, as it often had a high variation in the fulfillment of
scheduled tasks and a low level of equipment preparation.

The summary of the analysis of the experimental results shows that the brain-inspired
decision-making system can be helpful in risk management and can contribute to the
establishment of safer operational environments in dangerous environments involving
chemical and radioactive hazardous materials. It also suggests that still broader insights
into the utilization of brain-inspired decision-making systems may be possible for operation
management in the future, such as industry 4.0 and the automation of industrial product
production and service providing processes.

It should be noted that the number of variables for building information investigated
here was very limited. To provide more reliable alternatives for decision-making the system
needs a minimum of eight realizable features to accumulate the required information.

6. Conclusions

We executed a brain-inspired decision-making system to learn the hidden relationship
between functions and to initiate (or halt) actions in the discharge, transportation, and
storage of hazardous materials. Our model is composed of two environments, one for
simulation of the process and the other for making decisions on suspected unsafe actions.
Two scenarios, with and without decision-making, evaluated the decision-making system
in a simulated environment. They provide a means to measure the effectiveness of the
system in enhancing dynamic tasks. The experiment’s results showed that a significant
reduction in the number of accidents could be achieved. This study suggests that our model
could be a new approach that acts as a preventive tool on risk assessment. Our model offers
a different insight into using brain-inspired artificial intelligence in dynamic industrial
environments and opens the way towards including a higher level of implementing artificial
intelligence in today’s industry. This study suggests a new method for better control of the
quality and safety of operations. A future study can evaluate this investigated model in a
real environment.
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