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Abstract: Recently, the shipping industry has been under increasing pressure to improve its envi-
ronmental impact with a target of a 50% reduction in greenhouse gas emissions by 2050, compared
to the 2008 levels. For this reason, great attention has been placed on alternative zero-carbon fuels,
specifically ammonia, which is considered a promising solution for shipping decarbonisation. In this
respect, a novel ammonia-powered fuel-cell configuration is proposed as an energy-efficient power
generation configuration with excellent environmental performance. However, there are safety and
reliability concerns of the proposed ammonia-powered system that need to be addressed prior to its
wider acceptance by the maritime community. Therefore, this is the first attempt to holistically exam-
ine the safety, operability, and reliability of an ammonia fuel-cell-powered ship, while considering
the bunkering and fuel specifications. The proposed methodology includes the novel combination of
a systematic preliminary hazard identification process with a functional and model-based approach
for simulating the impact of various hazards. Furthermore, the critical faults and functional failures
of the proposed system are identified and ranked according to their importance. This work can
be beneficial for both shipowners and policymakers by introducing technical innovation and for
supporting the future regulatory framework.

Keywords: emissions; safety analysis; reliability analysis; preliminary hazard identification; ammo-
nia; fuel cells; fault-tree analysis

1. Introduction
1.1. Background

Awareness has grown recently of the progressive climate change starting two centuries
ago. Over the last few centuries, climate change has become a reality, and societies have
been facing its adverse effects. The level of global greenhouse gas (GHG) emissions has
increased by more than 10% in the last decade [1], accelerating climate change. For this
reason, during the last few decades, societies have been urged to adopt more environmen-
tally friendly behaviours regarding their energy production and consumption. In addition,
governments have taken action to introduce policies that promote sustainable development;
in 2016, 196 nations signed the Paris Agreement at the United Nations Framework Conven-
tion on Climate Change, which aimed to reduce global warming below 2 ◦C [2]. At the
same time, it is argued that there is a lag in the decarbonisation of the shipping industry [3],
which is one of the fastest-growing industries in the world [4], as well as a significant
contributor of anthropogenic emissions (3% in 2018) [5]. It is projected that, in 2050, the
GHG emissions from ships will rise to higher levels than 2008, by approximately 130%,
if this accelerating operational trend continues [5]. For this reason, following the Paris
Agreement targets, the International Maritime Organisation (IMO) set a goal to reduce the
carbon oxide emissions from the shipping sector by 70%, compared to the 2008 levels until
2050, as well as the GHG emissions by 50% [6].
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As a result, significant attention and pressure has been placed on reducing the en-
vironmental impact and improving the energy efficiency of ships, from both academia
and industry. Therefore, great focus is on alternative fuels [7–12] and more sustainable
propulsion systems [13–16]. Specifically, attention has been paid to two carbon-neutral
fuels, ammonia (NH3) [17–21] and hydrogen [22–24], and it is supported that the IMO
2050 goals could be reached mainly if carbon-neutral fuels contributed to 30–40% of the
total energy required by ships [25].

1.2. Research Focus

Ammonia (NH3) is one of the most promising solutions for shipping decarbonisa-
tion [26,27], and there have recently been great efforts globally for green NH3 produc-
tion [28]. It is a versatile fuel, with existing infrastructures [29], better energy density and
safety characteristics, and less complexity in terms of storage than hydrogen [30]. NH3 can
be combusted directly with a pilot fuel or used as a hydrogen vector in fuel cells (FC) [31],
which is considered a promising alternative for marine propulsion with low environmental
impact and high energy efficiency [32]. Specifically, a review of NH3-powered fuel cells
indicated that solid oxide fuel cells (SOFCs) are currently the most promising technology
for ammonia fuel [33]. SOFCs can use ammonia directly without cracking, which is an
energy-consuming and challenging process [31].

As a result, a novel NH3-powered fuel-cell system is proposed as a potential solution
for shipping decarbonisation [34]. However, NH3 as a marine fuel is still commercially
immature [35], and, when introducing a novel propulsion system with new fuels, safety
and reliability considerations need to be assessed [36,37]. This need is compounded when
considering the hazardous and toxic characteristics of NH3 [38]. In addition, it is also
indicated that the safety of shipboard fuel-cell systems is of paramount importance [39].

Therefore, in this study, a preliminary hazard identification and a safety analysis
of an ammonia fuel-cell-powered plant, including the storage and feeding system, are
proposed. The main hazards, critical faults, and functional failures of the proposed system
are identified, and the reaction of the system to those hazards is assessed.

2. Critical Review

Frameworks and processes have been proposed to address the safety of novel designs
and fuels in the maritime industry; the Formal Safety Assessment (FSA) is employed by
IMO, for fleet-wide safety, whereas the Technology Qualification (TQ) process is proposed
from Det Norske Veritas (DNV) for case-specific analysis. Both of the above identify the
potential risks and hazards [40] and then evaluate their impact, to reduce the risks in
the As Low as Reasonably Practicable (ALARP) region [40,41]. For clarity, in this work,
hazard is defined as ‘the conditions with the potential to compromise safety’, whereas risk
is calculated for the hazards and indicates ‘the likelihood and consequences of a future
hazard event in a given context’ [42,43].

Various tools exist in the literature for assessing the safety, reliability, and operability
of a system and establishing safeguards (summarised in Table 1). Two of the most used
methods for safety assessment that help to systematically identify hazards and assess
the operability of the system are Hazard Identification (HAZID) and the Hazard and
Operability study (HAZOP) [40,44]. They are both applied as a knowledge-pooling exercise
during a meeting that is typically held with the relevant parties and different shipping
stakeholders. In HAZID, a brainstorm of potential hazards during the ship lifecycle is
performed, while taking into account the current and upcoming regulations [45]. HAZID
is a crucial process for the approval of alternative fuels and configurations, according to
the International Code of Safety for Ships Using Gases (IGF) [46]. On the other hand, the
HAZOP is a process to systematically evaluate the severity of deviations from normal
operations of the system [42]. Consequently, HAZID focuses on identifying hazards in the
design of the system, whereas HAZOP targets hazards related to the system’s operation.
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The design stage of a novel system is the most appropriate time to employ both tools and
rely on the knowledge of experts [47].

Another tool commonly used for the safety and reliability assessment of new systems
is fault-tree analysis (FTA) and failure modes, effects, and criticality analysis (FMECA) [48].
The former is a top-down approach that is initiated by stating an undesirable event [49]. It
captures the functional dependencies within the examined system, and failure statistics for
each component are used as inputs to examine the likelihood of the undesirable event [50].
On the other hand, FMECA can be employed to control risk by foresing possible failures
during the design of a system, by examining the various ways a system can fail, and by
identifying all the potential failure modes [48]. It also quantifies and ranks the criticality of
each failure, caused by the various hazards.

Different applications of HAZID in the maritime industry can be found in the relevant
literature, and thorough reviews regarding the merits of the available tools can be found
in [51,52]. As argued in the previous sources, examining all the risks present in a system
represents a genuine hurdle, which emphasises the significance of creating hybrid methods
such as the one presented in this work. Focus has been placed on the risks related to natural
gas hydrate transportation [53]. In addition, scholars have assessed the hazards of LNG
dual-fuel ships [54–56]. On the other hand, hazards and operability analysis was carried
out to assess the risk existing in the 10,000 TEU container ship in [57]. HAZID has also
been used as part of the concept design stages for a nuclear-powered vessel [58], as well as
for mooring and dynamic positioning systems in arctic conditions [59].

Failure mode analysis is widely used in many different sectors [60], with several
publications summarising their different merits, shortcomings, and caveats [48,61]. In
shipping, it has been employed to calculate appropriate maintenance tasks to improve the
safety and reliability analysis of a hybrid system that includes fuel cells [62] or of a marine
fuel oil system [63]. Similarly, FMEA/FMECA can be used to minimise downtime and
improve reliability [64]. Furthermore, these tools have been used to create an integrated
methodology combining FMEA with fuzzy logic for the reliability assessment of offshore
marine assets [65]. The possible failure modes and effects of their occurrence in the fuel
oil system of a marine diesel engine were investigated in [66]. On the other hand, a fuzzy
FMECA approach was followed to identify the potential failure modes and hazards, as
well as operability difficulties, of a marine boiler [67] or an oil tanker tank [68]. Lastly, the
use of FMECA has also seen applications under the scope of the identification of critical
equipment onboard merchant vessels [69].

In the existing literature, FTA has widespread applicability [50,70], with many pub-
lications reviewing the applicability of the method [71,72]. In the maritime sector, FTA
was employed to investigate the availability of a large ethane carrier hybrid system that
includes an ethane-powered SOFC for the electric demands of the vessel [73]. Others
have investigated the safety enhancement of a cruise ship lubricating oil system using
FTA [74]. The reliability of the marine propulsion system was investigated by employing
FTA in [75]. Furthermore, a combination of FMECA and FTA methods was employed to
assess the safety and reliability of a low-pressure LNG fuel feeding system [76]. In [77], the
main engine lubricating oil system of an autonomous ship was assessed using FTA and
FMEA methods. Lastly, FTA has also been used in conjunction with other tools for the
identification of critical equipment of ships [78].
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Table 1. Tools for safety and reliability assessment of marine systems.

Reference Tool System

[51,52] HAZID/HAZOP Review
[53] HAZID Natural gas hydrate carrier

[54,56] HAZID LNG fuelled vessel
[55] HAZID LNG carrier
[57] HAZOP Containership
[58] HAZID Nuclear-powered ship
[59] HAZID Mooring and positioning systems

[48,61] FMEA/FMECA Review
[62] Layer of Protection Analysis & FMEA Electric hybrid system
[63] FMEA Fuel oil system
[64] FMEA/FMECA Ship auxiliary systems
[65] FMEA/FMECA Offshore marine assets
[66] FMEA Fuel oil system
[67] Fuzzy FMECA Marine boiler
[68] Fuzzy FMECA Marine oil tanker
[69] FMECA Critical equipment of merchant vessels

[71,72] FTA Review
[73] FTA Hybrid system with SOFC
[74] FTA Lubricating oil system
[75] FTA Marine propulsion system
[76] FMECA & FTA LNG fuel feeding system
[77] FMECA & FTA Lubricating oil system
[78] FTA Critical equipment of merchant vessels

In the existing literature of different sectors, when reviewing the safety and reliability
of a novel system, such as a zero-carbon fuel-cell systems, a combination of FTA and
failure mode analysis is indicated as a necessary step before commercialisation, since
this technology is at an ‘infancy stage’ [79]. In other studies, the significance of FTA for
the reliability assessment of a hybrid system, including fuel cells, was highlighted [80].
Furthermore, reviews on the different safety and risk assessment techniques indicate
that it is challenging to account for all the risks in a system; thus, hybrid methods are
required [51,52,81,82].

From the examined literature it is deduced that the design of novel ship systems
requires the systematic identification of hazards and risks. This is optimally done using
a holistic methodology for risk assessment that employs a combination of HAZID and
HAZOP to address the hazards from the design and operation of the system [83]. In
addition, a detailed reliability and safety analysis based on FTA and FMECA that identifies
the critical components and failure modes is important for any novel hybrid system that
employs emerging technologies and fuels. In general, a combination of different methods
can provide a more accurate assessment of the risks in complex systems, such as the system
proposed herein. However, as concluded from the analysis, there is a gap in a holistic
safety assessment methodology that addresses both the design and the operability hazards,
as well as identifies the critical components and failure modes of a marine ammonia
fuel system.

For this purpose, a holistic safety approach is adopted for the proposed NH3 fuel-cell-
powered system. This is the first study that examines the safety, operability, and reliability
assessment of an NH3 fuel-cell-powered ship, as well as the NH3 bunkering, considering
the fuel specifications. A HAZID for the identification of the functional hazards and a
reaction of the system to these hazards is performed, as well as an FTA and FMECA for the
identification of critical components and failure modes of the system.

The impact of this work herein is vital to understand the new safety requirements
created by the introduction of NH3 as a marine fuel. This work aims to gain an understand-
ing of the hazards of NH3-powered fuel cells, thereby establishing safety practices and
preventing accidents. It should be noted that the focus of this work is on the safety analysis
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of the ammonia-powered system, not its operation. The outcome of this work is valuable
for both shipowners and policymakers for introducing technical innovations, while also
increasing the reliability of the proposed novel system. This is the first work to propose an
NH3 fuel-cell-powered system for ocean-going vessel propulsion, it provides insight to
shipowners regarding the safety concerns of using NH3 to develop the required safeguards.
Second, even though there are numerous regulations ensuring the safe transportation of
NH3 on ships, amendments are required to the IGF code for the use of NH3 for propulsion.
Therefore, this work can be beneficial for the future regulatory framework.

In the next sections, the methodology employed for the safety and risk assessment of
the NH3 fuel-cell-powered system is described, and the key findings are presented and
then discussed.

3. Methodology

The developed model-based methodology for the safety assessment of an NH3 fuel
system consists of four steps, presented in Figure 1. These steps ensure that the method-
ology identifies operation hazards, examines the reaction of the system to these hazards,
and detects critical components and functional failures. First, a HAZID is performed with
experts to identify the critical hazards of the system. These hazards are used as input by
the developed functional-based modelling (FBM) to examine the system’s reaction to those
hazards. Then, an FTA is performed taking into account the FBM of the system for the
identification of critical components by evaluating the reliability of the system. Finally, an
FMECA analysis is carried out and the functional failures of the components are derived.
In summary, the compilation of the different tools used to assess the safety, operability, and
reliability of the discussed novel system is presented in Figure 1.
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As mentioned, the objective of the HAZID is to ensure that any risks arising from
the installation and design of the novel NH3 SOFC system are under control and that
adequate safeguards are in place to reduce these risks to ALARP region. It should be
noted that hazards when at the yard for repairs/docking are outside the scope of this
study. A workshop meeting with ship operators, equipment manufactures, and academic
institutions was performed; experience from previous accidents was also considered. The
results from the Sea-Web (IHS Markit) database indicated that most accidents were due to
the use of ammonia in refrigeration systems; however, the quantities carried were much
less compared to what is needed when ammonia is used as a primary fuel. Furthermore, in
a few cases, the leakage of ammonia led to fatalities due to the fuel’s toxicity. An overview
of the followed HAZID methodology is presented in Figure 2, in accordance with IACS
document No. 146 [84].
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The next step of the methodology is the creation of an FBM of the proposed system
that depicts the architecture and functions of the system. Furthermore, FBM can be used
to examine the reaction of a system to functional and hardware-based failures; as such, it
can serve as a cornerstone for safety and risk assessments as seen in other research [74,76].
The Maintenance Aware Design environment (MADe) software from PHM Technology is a
user-friendly model-based tool that has been used in various applications in the automo-
tive and aviation industries for risk-based analysis including reliability, availability, and
maintainability analysis [85–87]. It was employed in this work for the FBM development
for the following reasons [86]:

n It clearly depicts the systems, subsystems, and components, as well as their intercon-
nections, and functions.

n It allows the investigation of the propagation of failures within the system, thus
supporting the identification of the system-critical components and their failure
end-effects.

n It serves as a starting point for additional analysis and examination.

In more detail, the examination of the behaviour of the system when subjected to
various hazards is based on fuzzy cognitive mapping (FCM). FCM is used to rank the
factors that affect the reliability of the system [88], by simultaneously analysing the system
risk-based factors and taking into consideration the causal relationships among them [89].
It can be employed as an effective decision-making tool for risk analysis [89]. Moreover,
additional analysis and examination can be performed through FTA and FMECA. To
develop the FBM, the system is represented by its subsystems and components. Then,
the subsystems and components are interlinked through the built-in functions, which
represent the processes and functions of the different items [74]. Subsequently, inflows and
outflows are assigned as a function of the purpose of each subsystem/component, and
a causal relationship is defined for each inflow and outflow, with a positive or negative
value depending on the individual functionality and its effect on the system operating
parameters [76,90]. Once this process is completed, hazards and failures can be injected into
the system by changing the appropriate flows in the component/sub-system of interest [91].
Then, the injections propagate according to FCM [89], and the reaction of the system is
obtained. Finally, FTA and FMECA can be performed as required using standard methods
and procedures.

For the purpose of the FTA, failure statistics are required as inputs to the FBM; thus,
the OREDA [92] database was used to collect failure rates and mean time to failure (MTTF)
values for various functions and components of the system [93]. The aim of the FTA is to
derive a pictorial and quantified representation of how subsystems (gates) and components
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(basic events) can lead to the loss of the reliability of the broader system they influence
(top gate) [94]. The structure of the FTA was derived through the MADe interface, by
considering the functions and interconnections of the different components. The modelled
systems and subsystems are represented in the FTA using gates, and the components are
described as basic events. One of the most common gates is the OR gate, which requires a
minimum of two inputs (A1, An) and is used according to Equation (1).

P(A) = 1 − [1 − P(A1)] . . . [1 − P(An)]. (1)

Another very common gate used in FTA is the AND gate, which also requires a
minimum of two inputs (A1, An) and is used according to Equation (2).

P(A) = P(A1) . . . P(An). (2)

Furthermore, the VOTING gate represents another widely used way of modelling
systems and subsystems with partial failsafe capabilities, which also requires a minimum
of two inputs (A1, An) and is used according to Equation (3).

P(A) = P(A1 ∩ A2)P(A1 ∩ A3)P(A2 ∩ A3). (3)

In the final step of the methodology, an FMECA study is conducted, where failure
modes for each subsystem/component are considered in addition to the effects they have
on the various components. This analysis is significant to ensure that the appropriate
safeguards are taken into consideration. The risk priority number (RPN) was estimated as
indicated in Equation (4) by considering the occurrence (O), severity (S), and detection (D)
of the failures to rank the failure modes. Occurrence expresses the frequency of potential
failures, and it was derived from the failure rates found in the OREDA database. The
severity and detection assess, respectively, the seriousness of the potential failure and
the probability to detect the potential cause and failure mode [95]. For the latter, experts’
knowledge was employed in accordance with the guidelines provided in [67].

RPN = O× S× D. (4)

In the next section, the key findings of the safety, reliability, and operability assessment
methodology are presented and discussed.

4. System Description

The main aim of this paper is to investigate the safety and reliability of an NH3 fuel-
cell fuel supply system, with liquid NH3 stored in an independent type C tank on the main
deck of the vessel. The intent is to use NH3 vapor as fuel in an array of the SOFC, located
underneath the fuel tank, also located on the deck. Additionally, a dedicated fuel supply
system (FSS) is located next to the fuel tank to treat and process the NH3 prior to its use in
the fuel cells. Lastly, batteries and additional electronics are in a container next to the SOFC
array. Obtaining a clear definition of the system under consideration is an essential step
as it identifies the main nodes (systems and subsystems) that are used during the HAZID
process. Moreover, the definition of the system also assists in the functional-based model,
as presented in further sections. A line diagram of the model considered herein is shown
in Figure 3.
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5. Results and Discussion
5.1. Critical Hazards

The main hazards were identified according to the process shown in Figure 2. More-
over, the causes, consequences, and safeguards associated with these hazards were also
discussed. The main hazards considered for the system according to the output of the
HAZID workshop are presented in Table 2. A quantitative assessment of the hazards was
not performed; however, the listed hazards were regarded as of high criticality according
to the experts during the HAZID workshop. As observed, most of the hazards relate to
the loss of containment of NH3 as this can be hazardous for crew and personnel due to
the toxicity of NH3. One of the main challenges in introducing ammonia is the toxicity of
the fuel that can cause severe skin burns and eye damage; it is dangerous when inhaled,
and it can even be fatal. This is also highlighted in the outcomes of the HAZID, where one
of the main hazards was identified as the leakage of ammonia inside the FC room or on
the bunkering connection. As a result, it is of high importance to introduce and consider
safety measures for the crew on board. Classification societies [96] have recently published
safeguard measures that need to be considered for the crew protection, as mentioned in
Table 2. Similarly, the majority of the hazards can be mitigated through the development of
operating procedures and alterations in the design.

5.2. Functional-Based Model

The NH3 fuel supply system described in the previous section was functionally
modelled by considering the different subsystems and components. In detail, the systems
included were the control unit for the system, the bunkering system, the fuel-cell stack,
the NH3 containment system, the NH3 supply system, the reliquefication system, and the
NH3 heater. Moreover, as subsystems, the emergency shutdown valves, bunkering pumps,
control valves, pressure control valves, storage tank, temperature sensors, compressor, and
condenser were modelled. Figure 4 shows the resulting functional model of the system
considered, with its boundaries represented by the ‘in’ and ‘out’ blocks.
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Table 2. Hazards and safeguards.

ID Hazard Cause Consequence Safeguard

1 Ammonia vapour
leak inside FC

Blockage, physical
damage

Damage to other systems,
loss of power, fire, crew

injuries
Sufficient ventilation

2 Control system
failure

Electric or
mechanical fault,

power surge

Loss of power, FC damage,
ammonia release

Alarm signal and
emergency shut down

valve

3 Leak on bunkering
connections

Mechanical/material
malfunction
(corrosion)

Damage to adjacent areas,
injuries to crew, potential

fire, etc.

Drip trays, NH3 detection,
hazardous areas, airlocks

and water curtains,
remotely oversee of

procedure

4 Tank overfilling
Malfunction

ammonia level
indicator

Tank damage, potential
fire, injuries to crew,

environmental exposure

Emergency shutdown
valve, pressure monitoring,

operation procedure

5 Leak in NH3 supply
valves/flanges

Corrosion,
overpressure,

cracks, ruptures

Crack of deck, damage to
adjacent areas, injuries to
crew and cargo, potential

fire, environmental
exposure

Drip trays, suitable
material for NH3, NH3

detection, hazardous areas,
airlocks, water curtain,

pressure control and shut
down

6 NH3 heater leak Mechanical damage
Damage to adjacent areas,
environmental exposure,

injuries to crew

Drip trays, suitable
material for NH3

7 Reliquification
failure

Mechanical/electrical/
material damage

Tank pressure regulation
issues Pressure sensors

8 Tank heating
malfunction

Electrical/material
damage, control
system failure

Tank pressure regulation
issues, overheating, FC
performance reduction

Pressure, temperature
sensors, vent mast
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The different systems are modelled as blue boxes and the various components are
shown with pale brown. As observed, the various items are organised to represent their
functional dependencies. Furthermore, the model shows the distinct inputs and outputs
within each item. As seen, the inputs and outputs can take several forms including the
transfer of data, energy, and material. To that end, outputs from one subsystem or compo-
nent must be treated as an input for another element. For instance, the gas static pressure
that is the output of the NH3 containment system is used as an input for the NH3 supply
system, together with continuous data provided from the system’s controller. Moreover, it
should be clarified that the modelling process is based on engineering knowledge, and the
final arrangement of flows and components was validated with the equipment manufac-
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turer that participated in the HAZID workshop. Figure 5 shows the function, inflows, and
outflows of a fuel-cell module. As seen, the function of the module is to convert the inflow
of data (from controller) and gas mass flow rate (from NH3 fuel) to voltage, temperature,
and residual NH3.
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5.3. System’s Reaction

Once the functional-based model was completed, the identified critical hazards
(Table 2) were injected sequentially into the system, and the reaction of the system was
evaluated through a response simulation. This process was based on FCM, which propa-
gates the presence of a failure downstream of the system [74]. The injection of each hazard
was represented by an increase or decrease in the appropriate flow property of the involved
item, and the simulation showed the direction of the change of the flow properties of the
different modelled items. Figure 6 presents on the horizontal axis the hazards of Table 2,
while the vertical axes show the number of affected components by each hazard, together
with the number of steps needed for the system to reach equilibrium following the injection
of the failure. In other words, the figure examines the intensity of each hazard and how
each hazard can affect and destabilise the system. Therefore, the manner in which each
hazard propagates through the system can be studied and the severity of each hazard can
be gauged, by examining the components it affects and the time required for the system
to reach equilibrium. Since the examined system is of relative complexity, identifying
components that can be affected by hazards can provide insight into safety improvements.
Similarly, examining the time to equilibrium can provide insight into the control of the
system, by examining the components it affects and the time required for the system to
reach equilibrium. In detail, it was remarked that a failure in the control system (ID 2)
would affect the most components (more than 100) in the system; as such, it had the
greatest spread. Therefore, the control system can be flagged as critical, and the design of
the system can be altered to improve its safety performance. Similarly, a failure in the NH3
tank heater (ID 6) required the most steps until the system reached a state of equilibrium;
as such, it destabilised the operation of the system for the longest period. Consequently, it
is recommended that additional safeguards (i.e., testing and inspection) are considered to
avoid a failure in the control system and the NH3 tank heater.
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Figure 6. Effects of each hazard.

In addition to examining the intensity of each hazard, the sensitivity of each subsystem
was studied. In Figure 7, the horizontal axis lists the modelled sub-systems with their
flows, and the vertical axis examines the percentage of time that the respective subsystem
is affected by one of the injected hazards, thus evaluating the sensitivity of each subsystem.
It was observed that both the gas static pressure and the gas mass flow rate from of
the NH3 containment system were affected by every injected fault. This means that the
NH3 containment system is more sensitive to the considered hazards. As a result, this
system was given increased attention in the following phase of the methodology, to further
evaluate its effect on safety and reliability.
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Examining the effects of the main hazards is a critical step in improving safety by
developing mitigating measures. As seen, additional inspection and maintenance on the
control system and NH3 tank heater can safeguard against the effects of most of the main
hazards. Likewise, examining the sensitivity of the different systems to the hazards can
help focus the subsequent steps of the methodology.

5.4. Critical Faults and Components

After identifying the main hazards and examining the reaction of the system to these
hazards, the FTA was performed to obtain critical faults according to their reliability
metrics. On the basis of the findings of the previous section, the NH3 containment system
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was given high priority and was modelled on a high level of the fault tree. To enable the
methodology to capture critical faults, the FTA examines on the top level the low-voltage
output of the entire system, which is subsequently caused by low-voltage output of the
entire fuel-cell arrangement. Connected through an OR gate, the next levels examine
the failures of the control system, containment system, supply system, and the fuel-cell
stack. The lower levels examine the components and respective failures of the subsystems
with the appropriate gates used to reflect the fault tolerance of each case. Moreover, the
produced fault tree calculates the probability of each fault of the modelled components
(P( f )), Fussel–Vesely importance measure (IFV), Birnbaum importance measure (IB), and
minimal cut sets (MCS) [97,98].

Figure 8 shows the calculated probability of failure P( f ) from the FTA. It should be
noted that the presented probability figures were estimated for the mission profile of the
vessel over 1 year of operation. The P( f ) was calculated for the modelled systems and
subsystems, which are represented as intermediate gates. The three subsystems with the
highest P( f ) (highlighted in orange) included the FC stack (4.65 × 10−5), the storage tank
(3.84 × 10−5), and the reliquification system (3.78 × 10−5). The impact of these faults
needs to be taken into high consideration onboard such a vessel that carries large quantities
of ammonia, especially in the FC room; as a result, appropriate measures should be taken.
Due to their high P( f ), additional operational measures (inspection, maintenance, and
testing) are required. Taking into account these results, changes to the design of the system
can take place, including the introduction of redundant components, which is outside the
scope of this study.
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In addition to presenting the probabilities of failures of the subsystems, the severity
of the different faults was examined. Figure 9 shows the IFV (left axis) and IB (right
axis) of the different faults, which were modelled as basic events. In addition, these two
metrics were combined using the Euclidean distance (left axis) to fully evaluate the different
faults. Using the Euclidean distance to combine the two metrics allows for a more accurate
assessment of the different faults. As observed, the most critical faults related to the failure
of the compressor, which was also flagged as a fault-sensitive subsystem in Figure 8. It
should be noted that leakage of ammonia might occur from perforation that can have a
severe impact on the crew; thus, identification of hazard zones is required. As with the
previous figure, these results can be used to develop operation procedures and to alter
the design of the system. In detail, additional inspection can be used with emphasis of
detecting signs of perforation and corrosion in the compressor.
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5.5. Critical Functional Failure

After identifying the critical faults of the system using the FTA, a quantitative analysis
was performed to obtain the critical functional failures of the subsystems. The previous
analysis suggested that the FC stack, storage tank, and reliquification subsystem have the
highest probability of failure. In addition, it was also found that the faults of the compressor
are the most critical as they can affect the reliquification system and its components.
An FMECA was performed, and the functional failures were categorised according to
the ranking adopted in [67]. The derived results with RPN higher than 100, which are
considered of moderate to extremely high criticality, can be found in Appendix A. The
percentage of critical failures per system is presented in Figure 10, where it is evident that
the ammonia heater system was the system with the highest number of functional failures.
However, the systems with the most critical functional failures were the FCs and ammonia
containment, as can be derived from the extended table in Appendix A. In this section, only
the results of high to extremely high criticality (RPN > 250) are presented and discussed in
Table 3.

Safety 2021, 7, x FOR PEER REVIEW 13 of 21 
 

 

with the previous figure, these results can be used to develop operation procedures and 
to alter the design of the system. In detail, additional inspection can be used with empha-
sis of detecting signs of perforation and corrosion in the compressor. 

 
Figure 9. Severity assessment of faults. 

5.5. Critical Functional Failure 
After identifying the critical faults of the system using the FTA, a quantitative analy-

sis was performed to obtain the critical functional failures of the subsystems. The previous 
analysis suggested that the FC stack, storage tank, and reliquification subsystem have the 
highest probability of failure. In addition, it was also found that the faults of the compres-
sor are the most critical as they can affect the reliquification system and its components. 
An FMECA was performed, and the functional failures were categorised according to the 
ranking adopted in [67]. The derived results with RPN higher than 100, which are consid-
ered of moderate to extremely high criticality, can be found in Appendix A. The percent-
age of critical failures per system is presented in Figure 10, where it is evident that the 
ammonia heater system was the system with the highest number of functional failures. 
However, the systems with the most critical functional failures were the FCs and ammonia 
containment, as can be derived from the extended table in Appendix A. In this section, 
only the results of high to extremely high criticality (RPN > 250) are presented and dis-
cussed in Table 3. 

 
Figure 10. Critical functional failures per system. Figure 10. Critical functional failures per system.



Safety 2021, 7, 80 14 of 21

Table 3. High-criticality functional failures (occurrence (O), severity (S), and detection (D)).

System Subsystem/
Component Failure Mode Causes of

Failure O S D RPN

FC FC module Low electrical
voltage

Hydrogen attack
or thermal

degradation
4.0 10.0 8.0 320

FC FC module Low gas mass
flow rate

Hydrogen attack
or thermal

degradation
4.0 10.0 8.0 320

FC FC module Low electrical
voltage

Dielectric
breakdown 4.0 10.0 7.0 280

FC Switchboard Low electrical
voltage Burnout 4.0 10.0 7.0 280

Tank heater
in ammonia
containment

Heater Low
temperature Burnout 4.0 10.0 7.0 280

Reliquification Compressor Low gas mass
flow rate Burnout 4.0 10.0 7.0 280

Reliquification Compressor Low gas static
pressure Burnout 4.0 10.0 7.0 280

As seen in Table 3, components with the most critical functional failures were the FC
module and the switchboard of the FC system, the tank heater in the ammonia containment
system, and the compressor in the reliquification system. These results are in agreement
with the findings of the previous section, and the aim was to further investigate the failure
effects of these components. The most critical functional failures of the system were the
low electrical voltage and gas mass flow rate of the FC module, which can be caused by
either hydrogen attack or thermal degradation. The former is a result of the potential
diffusion of atomic hydrogen that can lead to blistering, embrittlement, or cracking of the
FC components. On the other hand, the latter is an outcome of the change in the properties
of the FC material due to exposure of the high-heat operation of the FCs. In addition, a
functional failure with a lower RPN was the low electrical voltage of the FC module due to
dielectric breakdown or of the FC switchboard due to burnout. The former can be caused
when the electric field strength surpasses the dielectric strength of an insulator material,
whereas burnout is a result of material degradation occurring during long-term aging and
leading to an increased, localised power density dissipation. On the other hand, the low
temperature of the tank heater is a critical functional failure caused by material burnout.
Similar causes can lead to a low gas mass flow rate or static pressure of the compressor.

6. Conclusions

The decarbonisation of shipping has attracted great attention, leading to the introduc-
tion of novel configurations and alternative zero-carbon emissions fuels. Nonetheless, prior
to the commercialisation and acceptance of these systems, it is incremental to prove that
they are at least as safe as the traditional systems. Therefore, a safety and risk assessment
of the new technologies and fuels is crucial to support the endorsement of the new system.

In this work, a novel ammonia-powered fuel-cell system is proposed, which can play
a significant role in shipping decarbonisation. As a result, a holistic safety, reliability, and
operability methodology was developed and applied to the proposed system. A HAZID
analysis was performed with participants from both academia and industry for identifying
the main hazards, whereas relevant safeguards were proposed. Ammonia leak inside
the fuel cell was identified as one of the most critical hazards, which is attributed to the
fuel characteristics and can have severe impacts on the other systems. Furthermore, the
examined system was depicted in a functional model, allowing further safety and reliability
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analysis. The operability of the system was evaluated, and it was derived that the failure
of the control system can affect the most components, whereas the failure of the ammonia
tank heater can destabilise the operation of the system for longer intervals. As a result,
further safety operational procedures can be adopted, such as testing and inspection of the
control system in order to avoid failures. Furthermore, an FTA was performed to obtain
critical components and faults according to their reliability. The results indicated that the
switchboard, the controller of the system, the tank heater, the reliquification compressor,
and the fuel cells are amongst the most critical components regarding failure and reliability.
Finally, an FMECA study was performed, and the functional failures of the systems were
ranked according to their criticality, with fuel cells being among the components with the
most critical functional failures. Consequently, risk control options including operating
practices and design modifications should address these components.

It was derived from the analysis that one of the main challenges in introducing a novel
system with ammonia onboard is to limit the potential of exposure of crew to ammonia,
due to the toxicity of the fuel. Potential safeguards were discussed in this work, such as
placing the bunkering station in a safe location and enabling the crew to remotely oversee
the procedure. Another measure is sufficient ventilation and the placement of outlets in
areas, where there is low risk of subjecting the crew to ammonia exposure. The need for an
identification of hazardous zones was also highlighted. Lastly, it is expected that the crew
will be equipped with special attire in order to minimise the risk of potential exposure. At
a future stage, the dispersion of potential leakages and the impact they can have on the
ship, crew, and marine environment need to be investigated. This is a step that requires
dedicated analysis and is significant for the introduction of a novel system with a toxic fuel,
such as the one described herein.

In future work, the modelling of the system could be expanded including more
detailed analysis of the components, when the system is more mature and relevant infor-
mation is available. Furthermore, the reliability data found in OREDA are not derived
specifically for ammonia; thus, the rates considered should be updated in future work
when more specific data are found.

These outcomes shed initial light on the design and operating hazards of the proposed
novel ammonia-powered fuel-cell system. This study is vital to understand the new risks
and safety requirements created by the introduction of a novel fuel and, thus, can provide
support to both technological and policy framework development.
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Appendix A

Table A1. FMECA analysis of the ammonia-powered fuel-cell system with 100 < RPN ≤ 150 considered moderate, 150 <
RPN ≤ 250 considered moderately high, and 250 < RPN ≤ 350 considered high.

ID Subsystem/Component Failure Mode Causes of Failure O S D RPN
FM1 FC Electrical voltage low Hydrogen attack 4.0 10.0 8.0 320
FM2 FC Electrical voltage low Thermal degradation 4.0 10.0 8.0 320
FM3 FC Gas mass flow rate low Hydrogen attack 4.0 10.0 8.0 320
FM4 FC Gas mass flow rate low Thermal degradation 4.0 10.0 8.0 320
FM5 Heater Thermal temperature low Burnout 4.0 10.0 7.0 280
FM6 FC Electrical voltage low Dielectric breakdown 4.0 10.0 7.0 280
FM7 Switchboard Electrical voltage low Burnout 4.0 10.0 7.0 280
FM8 Compressor Gas mass flow rate low Burnout 4.0 10.0 7.0 280
FM9 Compressor Gas static pressure low Burnout 4.0 10.0 7.0 280

FM10 FC Electrical voltage low Temperature induced deformation 4.0 10.0 6.0 240
FM11 FC Gas mass flow rate low Temperature induced deformation 4.0 10.0 6.0 240
FM12 Storage tank Gas static pressure low Corrosive attack 4.0 10.0 6.0 240
FM13 ESD Gas mass flow rate low Bending deformation 3.0 10.0 8.0 240
FM14 Bunkering ESD Gas static pressure low Bending deformation 3.0 10.0 8.0 240
FM15 Bunkering ESD Liquid flow rate low Bending deformation 3.0 10.0 8.0 240
FM16 ESD Gas mass flow rate low Abrasive wear 3.0 10.0 7.0 210
FM17 Bunkering ESD Gas static pressure low Abrasive wear 3.0 10.0 7.0 210
FM18 Bunkering ESD Liquid flow rate low Abrasive wear 3.0 10.0 7.0 210
FM19 Afterburner Thermal temperature low Burnout 3.0 10.0 7.0 210
FM20 Compressor Gas mass flow rate low Burnout 3.0 10.0 7.0 210
FM21 Compressor Gas static pressure low Burnout 3.0 10.0 7.0 210
FM22 FC Gas mass flow rate low Dielectric breakdown 4.0 10.0 5.0 200
FM23 Compressor Gas mass flow rate low Abrasive wear 4.0 10.0 5.0 200
FM24 Compressor Gas static pressure low Abrasive wear 4.0 10.0 5.0 200

FM25 Ammonia HEX Mixture gas-liquid mass flow rate
low Heat loss 3.0 10.0 6.0 180

FM26 Ammonia HEX Mixture gas-liquid static pressure
low Heat loss 3.0 10.0 6.0 180

FM27 Ammonia HEX Mixture gas-liquid temperature low Heat loss 3.0 10.0 6.0 180
FM28 Heat exchanger Gas mass flow rate low Heat loss 3.0 10.0 6.0 180
FM29 Heat exchanger Gas static pressure low Heat loss 3.0 10.0 6.0 180
FM30 Heat exchanger Gas temperature low Heat loss 3.0 10.0 6.0 180
FM31 FC Electrical voltage low Corrosive attack 4.0 10.0 4.0 160
FM32 Storage control valve Gas mass flow rate low Bending deformation 2.0 10.0 8.0 160
FM33 Storage control valve Gas mass flow rate low Solidification 2.0 10.0 8.0 160
FM34 Heater control valve Gas mass flow rate low Bending deformation 2.0 10.0 8.0 160
FM35 Heater control valve Gas temperature low Bending deformation 2.0 10.0 8.0 160
FM36 Pressure relief valve Gas mass flow rate low Bending deformation 2.0 10.0 8.0 160
FM37 Pressure relief valve Gas mass flow rate low Solidification 2.0 10.0 8.0 160
FM38 Pressure relief valve Gas static pressure low Solidification 2.0 10.0 8.0 160
FM39 Pressure relief valve Gas static pressure low Bending deformation 2.0 10.0 8.0 160
FM40 Bypass control valve Gas mass flow rate low Bending deformation 2.0 10.0 8.0 160
FM41 Bunkering control valve Liquid flow rate low Bending deformation 2.0 10.0 8.0 160
FM42 Bunkering vapour return Gas static pressure low Bending deformation 2.0 10.0 8.0 160
FM43 Reliq. control valve Gas mass flow rate low Bending deformation 2.0 10.0 8.0 160
FM44 Storage tank Gas static pressure low Impact wear 3.0 10.0 5.0 150
FM45 Controller Signal continuous amplitude low Dielectric breakdown 3.0 10.0 5.0 150
FM46 Controller Signal continuous amplitude low Burnout 3.0 10.0 5.0 150
FM47 ESD Gas mass flow rate low Dielectric breakdown 3.0 10.0 5.0 150
FM48 ESD Gas mass flow rate low Burnout 3.0 10.0 5.0 150
FM49 ESD Gas mass flow rate low Silting 3.0 10.0 5.0 150
FM50 Bunkering ESD Gas static pressure low Silting 3.0 10.0 5.0 150
FM51 Bunkering ESD Gas static pressure low Dielectric breakdown 3.0 10.0 5.0 150
FM52 Bunkering ESD Gas static pressure low Burnout 3.0 10.0 5.0 150
FM53 Bunkering ESD Liquid flow rate low Silting 3.0 10.0 5.0 150
FM54 Bunkering ESD Liquid flow rate low Dielectric breakdown 3.0 10.0 5.0 150
FM55 Bunkering ESD Liquid flow rate low Burnout 3.0 10.0 5.0 150
FM56 Bunkering ESD Liquid flow rate low Dielectric breakdown 3.0 10.0 5.0 150
FM57 Bunkering connection Liquid flow rate low Abrasive wear 3.0 10.0 5.0 150
FM58 bunkering pump Liquid flow rate low Abrasive wear 3.0 10.0 5.0 150
FM59 FSS control unit Continuous data low Burnout 3.0 10.0 5.0 150
FM60 FSS control unit Continuous data low Dielectric breakdown 3.0 10.0 5.0 150
FM61 Condenser Liquid flow rate low Abrasive wear 3.0 10.0 5.0 150
FM62 Condenser Liquid temperature low Abrasive wear 3.0 10.0 5.0 150
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Table A1. Cont.

ID Subsystem/Component Failure Mode Causes of Failure O S D RPN
FM63 Storage control valve Gas mass flow rate low Abrasive wear 2.0 10.0 7.0 140
FM64 Pressure relief valve Gas mass flow rate low Abrasive wear 2.0 10.0 7.0 140
FM65 Pressure relief valve Gas static pressure low Abrasive wear 2.0 10.0 7.0 140
FM66 Temp senor Continuous data low Burnout 2.0 10.0 7.0 140
FM67 Temp. sensor Continuous data low Dielectric breakdown 2.0 10.0 7.0 140
FM68 Temp. sensor Continuous data low Burnout 2.0 10.0 7.0 140
FM69 FC Electrical voltage low Thermal fatigue 4.0 10.0 3.0 120
FM70 FC Gas mass flow rate low Corrosive attack 4.0 10.0 3.0 120
FM71 FC Gas mass flow rate low Thermal fatigue 4.0 10.0 3.0 120
FM72 Heater Thermal temperature low Thermal fatigue 4.0 10.0 3.0 120
FM73 Bunkering connection Liquid flow rate low Corrosive attack 3.0 10.0 4.0 120
FM74 Afterburner Thermal temperature low Corrosive attack 3.0 10.0 4.0 120
FM75 Compressor Gas mass flow rate low Brittle fracture 4.0 10.0 3.0 120
FM76 Compressor Gas static pressure low Brittle fracture 4.0 10.0 3.0 120
FM77 Condenser Liquid flow rate low Corrosive attack 3.0 10.0 4.0 120
FM78 Condenser Liquid temperature low Corrosive attack 3.0 10.0 4.0 120

FM79 Ammonia HEX Mixture gas–liquid mass flow rate
low Corrosive fatigue 2.0 10.0 5.0 100

FM80 Ammonia HEX Mixture gas–liquid static pressure
low Corrosive fatigue 2.0 10.0 5.0 100

FM81 Ammonia HEX Mixture gas–liquid temperature low Corrosive fatigue 2.0 10.0 5.0 100
FM82 Storage control valve Gas mass flow rate low Dielectric breakdown 2.0 10.0 5.0 100
FM83 Storage control valve Gas mass flow rate low Burnout 2.0 10.0 5.0 100
FM84 Storage control valve Gas mass flow rate low Silting 2.0 10.0 5.0 100
FM85 Heat exchanger Gas mass flow rate low Corrosive fatigue 2.0 10.0 5.0 100
FM86 Heat exchanger Gas static pressure low Corrosive fatigue 2.0 10.0 5.0 100
FM87 Heat exchanger Gas temperature low Corrosive fatigue 2.0 10.0 5.0 100
FM88 Heater control valve Gas mass flow rate low Dielectric breakdown 2.0 10.0 5.0 100
FM89 Heater control valve Gas mass flow rate low Burnout 2.0 10.0 5.0 100
FM90 Heater control valve Gas mass flow rate low Silting 2.0 10.0 5.0 100
FM91 Heater control valve Gas temperature low Burnout 2.0 10.0 5.0 100
FM92 Heater control valve Gas temperature low Dielectric breakdown 2.0 10.0 5.0 100
FM93 Heater control valve Gas temperature low Silting 2.0 10.0 5.0 100
FM94 Pressure relief valve Gas mass flow rate low Silting 2.0 10.0 5.0 100
FM95 Pressure relief valve Gas static pressure low Silting 2.0 10.0 5.0 100
FM96 Temp senor Continuous data low Dielectric breakdown 2.0 10.0 5.0 100
FM97 Bypass control valve Gas mass flow rate low Dielectric breakdown 2.0 10.0 5.0 100
FM98 Bypass control valve Gas mass flow rate low Burnout 2.0 10.0 5.0 100
FM99 Bypass control valve Gas mass flow rate low Silting 2.0 10.0 5.0 100
FM100 Bunkering control valve Liquid flow rate low Burnout 2.0 10.0 5.0 100
FM101 Bunkering control valve Liquid flow rate low Dielectric breakdown 2.0 10.0 5.0 100
FM102 Bunkering control valve Liquid flow rate low Silting 2.0 10.0 5.0 100
FM103 Bunkering vapour return Gas static pressure low Dielectric breakdown 2.0 10.0 5.0 100
FM104 Bunkering vapour return Gas static pressure low Burnout 2.0 10.0 5.0 100
FM105 Bunkering vapour return Gas static pressure low Silting 2.0 10.0 5.0 100
FM106 Reliq. control valve Gas mass flow rate low Dielectric breakdown 2.0 10.0 5.0 100
FM107 Reliq. control valve Gas mass flow rate low Burnout 2.0 10.0 5.0 100
FM108 Reliq. control valve Gas mass flow rate low Silting 2.0 10.0 5.0 100

Colour code: Red: High importance, Orange: moderate high, Yellow: moderate.
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