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Abstract: Even though validation is an important concept in safety research, there is comparatively
little empirical research on validating specific safety assessment, assurance, and ensurance activities.
Focusing on model-based safety analysis, scant work exists to define approaches to assess a model’s
adequacy for its intended use. Rooted in a wider concern for evidence-based safety practices,
this paper intends to provide an understanding of the extent of this problem of lack of validation
to establish a baseline for future developments. The state of the practice in validation of model-
based safety analysis in socio-technical systems is analyzed through an empirical study of relevant
published articles in the Safety Science journal spanning a decade (2010–2019). A representative
sample is first selected using the PRISMA protocol. Subsequently, various questions concerning
validation are answered to gain empirical insights into the extent, trends, and patterns of validation
in this literature on model-based safety analysis. The results indicate that no temporal trends are
detected in the ratio of articles in which models are validated compared to the total number of
papers published. Furthermore, validation has no clear correlation with the specific model type,
safety-related concept, different system life cycle stages, industries, or with the countries from which
articles originate. Furthermore, a wide variety of terminology for validation is observed in the
studied articles. The results suggest that the safety science field concerned with developing and
applying models in safety analyses would benefit from an increased focus on validation. Several
directions for future work are discussed.

Keywords: validation; model-based safety analysis; risk; resilience; reliability; socio-technical systems

1. Introduction
1.1. The Need to Understand the State of the Practice in Validation of Model-Based Safety Analysis

Safety science is an interdisciplinary field of study that contains a broad range of
theories, ideas, and scientific traditions [1]. While research in safety science produces
many ideas and approaches for safety assessment, assurance, and ensurance, few of
these are systematically tested according to academic procedures. Consequently, the
scientific validity of many approaches and activities remains open for debate, which is
one of the several factors contributing to difficulties in establishing evidence-based safety
practices [2,3]. This, furthermore, can lead to uncertainty in industrial contexts in terms of
choosing concepts and tools in what has been labeled by some practitioners a “nebulous
safety cloud” [4].

In papers and commentaries addressing fundamental issues in risk and safety science,
lack of focus on validation has repeatedly been raised as an important issue [5–7]. Indeed,
validation has been discussed and investigated in some subfields of safety science. For
instance, the effectiveness of the occupational health and safety management system is
reviewed through a systematic literature review [8]. Another example is a literature review
paper focusing on maturity models for assessing safety culture [9]. In this paper, the
authors assert that “validity of the use of maturity models to assess safety culture tends to
be the exception, rather than the rule”. Furthermore, some articles have been published in
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which the results of different safety analysis methods are compared through a case study,
such as a comparison of FMEA and STPA safety analysis methods [10] and a comparison of
three waterway risk analysis methods [11]. This can also be seen in the work of Suokas and
Kakko [12], Amendola et al. [13], and Laheij et al. [14] where comparative model-based
safety analyses are presented in different industrial contexts.

Notwithstanding the existence of such comparative case studies, there is very little
explicit focus on validation of model-based safety analysis, in the sense of providing
evidence that models are useful as intended in the envisaged practical contexts. From an
academic perspective, the extent of this problem is furthermore not clearly understood,
i.e., there is, to the best of the authors’ knowledge, a lack of systematic evidence of the
extent to which model-based safety analyses presented in the academic literature have
been validated. This is not merely an academic issue. This can also lead to uncertainties
in industrial contexts, because it may result in models being implemented and used even
though they provide unreliable, incomplete, or even misleading results [4]. From a practical
safety perspective, the scientific validation of models should thus be a concern.

Validation has been discussed elaborately in different fields focusing on the devel-
opment of modeling approaches, such as system dynamics [15], simulation [16], and
environmental and decision sciences [17]. In contrast, although model-based safety anal-
yses are widely applied in the academic field of safety science and practical safety work,
there is scant literature on validation of model-based safety analysis [7,18]. The literature on
model-based safety analysis has been mainly focused on proposing new models, adjusting
or integrating existing ones, or employing an existing model to obtain insights into safety
issues for particular problems in various industries, such as the chemical industry [19], the
nuclear industry [20], the maritime industry [21], and the transportation industry, including
railway [22] and road safety [23]. However, establishing the validity of such models is still
a major challenge. Goerlandt et al. [6] argue that the reason for this challenge is two-fold.
First, there are different perspectives on how to understand validation as a concept. Second,
there is a lack of consensus of appropriate criteria and processes for how to assess validity,
or sometimes even a lack of awareness that such criteria need to be specified.

In modeling contexts, validation is often seen as an important step to establish the
credibility of a model [17], so that it can be used appropriately as a basis for practical
decision making. Hence, model validation is an important topic in general, and arguably,
even more so in a safety context since the results obtained from a safety analysis model can
exert a considerable influence on safety improvements [24].

To the best of our knowledge, there is a lack of research aiming to provide empirical
insights into the state of the practice in validation in the context of model-based safety
analysis in socio-technical systems. Thus, the current work intends to address this gap as
a step towards understanding the extent of this problem in the scientific community. In
addition to providing a baseline understanding of the state of the practice, the aim is to
raise further questions and to explore pathways for improving the current situation.

1.2. Scope of This Research

Before stating the research questions, the scope of this research needs to be clarified.
The first issue concerns the meaning of model-based safety analysis in the context of this
work. In general, models are a way to provide information in a simplified form [25].
Complex systems cannot be comprehensively understood without modeling [26]. Models
make informal ideas formal and clear, based on which implications of the underlying
assumptions can be systematically approached [27]. The purpose and use of models vary,
ranging from prediction to social learning [28], and they may describe components, pro-
cesses, organizations, events, dependencies, factors, or causation [25]. In our current study,
we include different types of models, such as mathematical, statistical, and qualitative,
which are also sometimes referred to as methods, approaches, and/or frameworks in
the literature. Although these terms may have different meanings in different contexts,
in the scope of this research, they are all taken to have the overall objective of dealing
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with a safety challenge in a socio-technical system through a structured way of thinking
involving the development of a model-based representation of safety-relevant aspects of a
socio-technical system.

Second, in addition to safety, the closely related concepts of risk, reliability, and re-
silience are also included in the scope of this research, hence including a wide range of
model-based safety analyses. These concepts represent different approaches to achieve
safety, often based on diverging theoretical commitments to accident causation. Accord-
ingly, these concepts are collectively referred to as “safety concept(s)” throughout this paper.

Third, for clarity of scope, we define the term socio-technical systems, as this is the
context in which we frame our study of model-based safety analysis validation. According
to Kroes et al. [29], modern complex systems comprise different elements: social institutions,
human agents, and technical artifacts, which interact to deliver outcomes that cannot
be achieved by humans or technology in isolation. Therefore, such systems, known
as socio-technical systems, need to be investigated in terms of their interactions and
interrelationships between the relevant human, technical, and social aspects.

Fourth, this research only focuses on studies addressing harm/accidents to people
or systems (human and industrial safety). Thus, other types of risks, such as financial or
environmental risks, are excluded from the scope.

Finally, we limited the scope of this research to one journal, Safety Science, which
publishes work on model-based safety analysis in complex socio-technical systems. There
are two main reasons for this scope limitation. First, it proved unfeasible to accurately
delineate the wider literature of model-based safety analysis. Second, a poorly defined
study population would lead to significant methodological flaws and unreliable results.
The journal Safety Science was selected as it is one of the leading journals in safety research,
with a comparatively long publication history [30]. It is among the highest-ranked journals
in safety research, with a high reputation among academics [31], and hence is widely
considered to be academically impactful. Furthermore, as a multidisciplinary journal,
model-based safety analyses represent an important cluster in its publication records [30].
Based on this, further acknowledging that related empirical work on the state of practice of
system safety evaluation [2] makes a similar scope limitation; the authors believe limiting
the scope to Safety Science to be a defensible choice for the current purposes.

1.3. Research Questions

The main, overarching research question of this paper is “What is the state of practice
in the academic literature regarding the validation of model-based safety analysis in socio-
technical systems?” To more precisely answer this broad question based on empirical
insights, the relevant literature is interpreted considering the following specific sub-questions:

RQ 1. In what percentage of relevant published articles did the authors attempt to
validate their models?

RQ 2. Which validation approaches are used for model-based safety analysis in the
articles, and what are the frequencies of the approaches?

RQ 3. Is there any trend in the ratio of the number of articles in which models are
validated to the total number of papers in each year?

RQ 4. Are articles utilizing specific model types more likely to address validation?
RQ 5. Are articles focusing on a specific safety concept more likely to address validation?
RQ 6. Are articles focusing on a specific stage of a system life cycle more likely to

address validation?
RQ 7. Are articles proposing a model for a specific industry more likely to address validation?
RQ 8. Are articles originating from specific countries more likely to address validation?
RQ 9. What terminology is used for validation, and what are the frequencies of the

terms used?
RQ 1 is chosen to investigate the percentage of the papers in our sample in which

the models were validated. It has been raised previously that validation has not been a
topic of much explicit focus in safety research, but there is no empirical evidence available
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regarding the extent of this issue in articles proposing or using models to analyze safety in
socio-technical systems. Hence, this question aims to contribute to building evidence.

RQ 2 is selected to investigate the existing validation approaches in the model-based
safety analysis in the literature. The aim of this is to shed some light as to what authors
believe they should do to validate a model-based safety analysis. As there are different
approaches available, with their comparative merits and limitations not conclusively agreed
upon in the academic and professional communities, the relative frequency of different
validation approaches is of interest.

RQ 3 is included to investigate whether validation has gained more attention over time
in the studied period. As mentioned in Section 1.1, several articles and commentaries about
fundamental issues in risk and safety science have raised the lack of focus on validation
in safety research as an important issue. Hence, this question explores whether such
commentaries have led to a gradual increase in models being validated by the authors.

RQ 4 is included to explore the hypothesis that some of the safety analysis model
types could have been more frequently validated than others. The rationale behind this
hypothesis is that, as mentioned in Section 1.1, validation has been more elaborately
considered in the parent academic disciplines focusing on the theory and development
of specific modeling approaches, such as simulation, which is one model type identified
as being used for model-based safety analysis (see Section 2.2.4). The existence of rich
validation literature on simulation models would suggest that such models may be more
validated also in a safety analysis context. If this is the case, this may suggest a more
mature application community, from which proponents and users of other safety analysis
model types may learn.

RQ 5 concerns the possible relationship between validation and different relevant
concepts to model-based safety analysis. As mentioned in Section 1.2, in addition to
safety, the closely related concepts of risk, reliability, and resilience are also included in the
scope of this research. As these concepts are the associated analysis methods to a large
degree proposed and studied by different communities within safety science, this question
investigates whether different conceptual focuses lead to different degrees of attention to
validation of the associated models.

In RQ 6, the phase of a system’s lifecycle is taken as another factor with a possible
relation to the validation of model-based safety analysis. According to Amyotte et al. [32],
inherently safe design, which focuses on considering safety requirements early in the
design phase and eliminating hazards, is one of the principles that could prevent major
accidents. While the subsequent phases of a system’s life cycle are clearly important as
well, the design phase is often seen as having a major role in the overall system safety
performance, with emphasis on the design phase being necessary to avoid re-design and
extra costs [33,34]. In addition, considering that validation may not be equally feasible to be
performed in practice for analyses in different system lifecycles, this question investigates
whether validation has been given more consideration in different stages of the system
lifecycle, particularly in the design phase.

In the last two questions (RQ 7 and RQ 8), the assumptions concern the relationship
between validation and the countries of origin of the publication, and the industrial sector
in which the model is applied. These questions are rooted based on the understanding that
safety analyses are often executed as part of regulatory requirements, the specifics of which
may differ significantly between countries and industries. Hence, these questions aim to
provide some insight into whether such contextual factors lead to significant differences in
the degree of validation of model-based safety analyses originating from different countries
or industry sectors.

The remainder of this article is organized as follows. In Section 2, the process of
constructing the dataset is described, which includes identifying the relevant literature and
the sampling strategy. This section also provides a descriptive overview of the resulting
sample. Section 3 presents the analysis results, providing answers to the above-listed
research questions. Subsequently, Section 4 summarizes the findings and connects the
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specific findings of the research questions to make an overall assessment of the state of
the practice in validation of model-based safety analysis. This section also identifies the
limitations of the study and discusses future research directions. Section 5 concludes.

2. Materials and Methods
2.1. Identifying Relevant Literature and Sampling

The preferred reporting items for systematic reviews and meta-analyses (PRISMA)
statement is used to identify, screen, determine eligibility, and include studies for analysis
from search results [35]. The flow diagram is shown in Figure 1.

Figure 1. The process of constructing the dataset based on PRISMA Flow Diagram.

In literature analyses, it is critical to use an appropriate set of keywords to identify
and include an adequate range of papers [36]. We used two sets of keywords. One of these
is a term related to safety, risk, reliability, and/or resilience to identify safety-related papers.
The second set of terms relates to our focus on the use of a model, method, approach,
and/or framework. The search was executed using Web of Science (WoS) in July 2020,
limited to articles published in Safety Science. WoS is a database that includes bibliographic
information of articles of the world’s most impactful and high-quality journals [37]. A
further scope restriction is made to retain only published articles in the period 2010 to 2019,
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to focus on the more recent developments, and to investigate the potential trends in this
period. This research only includes articles written in English.

To identify records following process is performed:

a. The below query is run on WoS:

TS = ((“Safety” OR “Risk” OR “Reliability” OR “Resilience”) AND (“Model” OR
“Method” OR “Approach” OR “Framework”))

b. To limit the search to the Safety Science journal, its ISSN code is considered in a new
query, which is IS = (0925–7535). Additionally, the 2010 to 2019 period is selected in
WoS, further limiting the search.

c. Finally, the result of the first query is combined with the second query, using the
“AND” operator.

The title and abstract of the identified papers were thoroughly reviewed to provide
an initial screening for applicability mentioned in Section 1.2. After removing articles
in the initial screening phase, the dataset contained 282 documents for further analysis.
The text of each of the 282 remaining articles was scrutinized using the close reading
method [38] to ensure that they all are within the intended scope of this research. As a
result, an additional 35 documents were dropped during the eligibility review, resulting
in 247 retained papers. To limit the number of papers for further analysis, a sample size
with a confidence level of 95% and a confidence interval of 5% was selected [39]. This
culminated in 151 papers selected from the 247 papers to give a representative sample.
Since the number of articles differed between years, acknowledging the upward trend in
the number of articles published from 2010 to 2019 [40], a proportional stratified sampling
strategy is used. In this approach, the number of papers selected for each year is based
on the proportion to their size in the population [39]. Based on the calculated number
of samples, papers are randomly drawn within each category. In Table 1, the number of
selected papers from each year is shown.

Table 1. Number of articles selected for each year.

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Number of Articles 8 7 12 10 11 16 13 16 28 30

2.2. Data Retrieval Process and the Overall Trends in the Data

The close reading method [41] for extracting data from selected papers is employed.
For this, papers are thoroughly read, focusing on statements related to the research ques-
tions listed in Section 1.3. If the required data are explicitly stated in the text, they are
recorded. If not, text clues are identified. The extracted data from each paper consist of
the title of the paper, name of the author/authors, digital object identifier (DOI), safety
concept, year of publication, country of origin, stage of the system life cycle, industrial
application domain, model type/approach, validation approach, and terminology used
for validation. These are all referred to as ‘variables’ throughout this paper. The first three
variables, which are the title of the paper, the name of the author/authors, and DOI, are
recorded easily based on the bibliometric information. The other variables each have their
own specific categorizations, informed by the relevant literature and emerging from the
studied sample.

To define the categories, related categories available in the literature are identified
and considered as a first version. Then, the data extracted from the articles in the sample
are analyzed, with repeating themes found and coded for each variable. Combining
the categorization from the literature with the identified themes in the dataset, the final
categories are determined. In the following subsections, each variable and its associated
categories, along with the reasons for selecting these categories, are provided. Furthermore,
a visual overview of the information about the variables are provided to give high-level
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insights in the contents of the investigated sample. The variables and the associated
categories are also provided in Table A1 in Appendix A.

2.2.1. Country of Origin

To obtain a general perspective on the dataset, the publications are investigated at the
country level. In the analyzed articles, 34 countries are identified, with their geographical
distribution shown in Figure 2. China and the United Kingdom are leading countries in
our sample papers, which is in line with the general trends in terms of the countries with
most contributions to the Safety Science journal [40].

Figure 2. Geographical distribution of the articles in the data sample, period 2010–2019.

2.2.2. Stages of a System Life Cycle

The stages of a system life cycle considered in a paper can vary based on the aim of the
study, the author’s point of view, and the industrial application domain. For instance, the
life cycle phases of offshore wind power systems include resource extraction, component
manufacturing, construction, transportation, operation, maintenance, and disposal [42].
In another article [43], the stages of a life cycle are steel fabrication and raw material
extraction, shipbuilding, operation, maintenance, and end of life. Since, in this study,
there is a broad range of articles in different settings and industries, we adopt a more
generic categorization for the stages of a system life cycle. Therefore, in the context of this
article, four major categories for a system’s life cycle are considered: design, manufactur-
ing/construction/development, operation, and decommissioning. This categorization is based on
a study by Kafka [44], in which design, manufacturing, operating, and decommissioning
are mentioned as stages. The reason why we combine three words (‘manufacturing’, ‘con-
struction’, and ‘development’) for the second stage is that different industries use different
terms for the implementation of the design. For instance, in a study with a focus on the
aviation industry [45], the term ‘manufacturing’ is used while another article concerning
the construction industry used the term ‘construction’ [46]. Although different terms are
used in these two example papers, their stages of the system life cycle refer to the imple-
mentation of the design, which is a phase after design and before operation. It should be
noted here that articles focusing on the maintenance activities are grouped in the operation
stage, because such work is commonly considered a major part of the operation stage [47].
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As can be seen in Figure 3, in our dataset, 131 papers focused on the operation phase,
while only one paper focused on decommissioning in which the author proposes a risk
assessment method for the ship recycling sector [48].

Figure 3. Waffle chart, distribution of the papers in terms of stage of the system life cycle.

2.2.3. Industrial Application Domain

The analysis of the industrial application domain shows that 44 of the papers applied
an existing model or proposed a novel model for general application. Aside from this
category, 12 industries are identified (Appendix A). Maritime and aviation are the first and
second most prevalent industries in the sample with 28 and 16 articles, respectively. The
petrochemical, robotics, and energy industries each have one paper. The distribution of
articles in terms of the industrial application domain is shown in Figure 4.

Figure 4. Distribution of papers considering industrial application domain.

2.2.4. Model Type/Approach

The categories adopted for classifying the model types are first defined based on the
proposed categorization by Lim et al. [49]. Together with the categorization emerging
from the articles in our sample, a slightly different categorization is adopted, in which
10 model types are defined. The categories are hazard/accident analysis method, fuzzy approach,
mathematical modeling, data analysis and data mining, Bayesian approach, simulation, statistical
analysis, analytic hierarchy process (AHP) method, artificial intelligence technique, and other (also
mentioned in Table A1 in Appendix A).
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The reason for defining the hazard/accident analysis method category is two-fold.
First, the sample papers that are considered in this category are mapped with the list in
the literature review paper by Wienen et al. [50], which presents a comprehensive list of
accident analysis methods available in the literature. Second, although hazard analysis
and accident analysis have a different focus (proactive vs. reactive), these model types
are similar in nature and can be considered in one category. Hazard analysis is a way
to discover potential forms of harm, their effects, and causal factors [51]. The accident
analysis method is used to identify the reasons why an accident occurred and to prevent
future accidents [50]. Additionally, according to a common view on safety management,
the safety of a system should be ensured through both safety audits and inspections, as
well as tracking and analysis of accidents [52]. Thus, we assign one category for all the
hazard/accident analysis methods. It is furthermore noted that this category encompasses
methods for analyzing incidents or near misses as well. This is because, according to
Wienen et al. [50], the term ‘near misses’ can be used interchangeably with incidents and
act as a proxy for accidents. In their words, incidents or near misses mean “an undesired
and unplanned event that did not result or only minimally resulted in a loss, damage, or
injury, due to favorable circumstances. Were the circumstances different, it could have
developed into an accident”.

The fuzzy approach can deal with vagueness in the meaning of linguistic variables in
safety-related models, extending the binary or classical logic [53]. The mathematical modeling
category includes papers in which models have a set of mathematical equations, while not
falling under any other categories in which mathematical operations are used, such as the
fuzzy approach or Bayesian approach. The other category includes model types that do not
belong to any of the mentioned categories.

According to Figure 5, hazard/accident analysis method came as the most frequently used
model type, followed by the fuzzy approach.

Figure 5. Number of publications in each model type.

2.2.5. Validation Approach

The papers are grouped in 7 categories with respect to the validation approach. In a
review by Goerlandt et al. [54], following a paper by Suokas [55], the following categories
are adopted for the validation approach: reality check (comparing the results of a model or
a part of the model with real-world data), peer review (examination of the model by inde-
pendent technical experts), quality assurance (examining the process behind the analysis),
and benchmark exercise (comparing the model results with a parallel analysis either partially
(partial model scope) or completely (full model scope)). In the current study, partial and
complete benchmark exercises are considered as one category. Although these four cate-
gories are specifically proposed for validation of qualitative risk assessment (QRA), the
authors believe these are meaningful also for the wider safety analysis literature. Indeed,
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these methods can be found in the general modeling literature as a means of validation.
For instance, reality check is used in system dynamics modeling [56] and human reliability
analysis (HRA) [57]. An example of benchmark exercises can be found in cognitive modeling
for educational psychology in a literature review on human reliability analysis [58]. Expert
opinion (peer review) is employed for the validation of a decision support system (DSS) [59].
Lastly, a quality assurance technique is used to assess the quality of a mathematical model
for the consequences of major hazards as a means of validation [60]. Combined, this
indicates the adequacy of the mentioned four categories in the context of model-based
safety analysis.

In the present work, three more categories are added to the above-mentioned vali-
dation approaches based on our findings in the sample papers, which are validity tests,
statistical validation, and illustration.

Validity tests is a category comprising tests applied to the formulation of a model
to build an argument for its validity, without comparing the model results to external
empirical data [61]. Many validity tests can be found in operation research or system
dynamics modeling [62], several of which can also be employed in general modeling
practices. For instance, Schwanitz developed an evaluation framework for models of
global climate change based on the experience of other modeling communities [63]. One
relatively well-known example of a validity test is sensitivity analysis, in which the values
of model parameters are varied and the corresponding changes in the results analyzed in
terms of how well those changes align with experts’ expectations or prior knowledge [64].
In our current study, any paper in which the validity of a model is tested quantitatively
through the application of one or more specified tests is included this category. It is worth
noting that model validation cannot be made entirely objectively, and that some part of
this process is subjective [65]. However, if the dominant approach to validation is applying
validity tests, the paper is considered in this category. As an example, in our sample
papers, Mazaheri et al. [61] performed a sensitivity analysis for validating a Bayesian belief
network, following ideas from Pitchforth and Mengersen [66].

The statistical validation category represents statistics-based quantitative methods,
where the model performance is compared to external empirical data. This category in-
cludes but is not limited to tests of means, analysis of variance or covariance, goodness of
fit tests, regression and correlation analysis, spectral analysis, and confidence intervals [64].
In statistical validation of engineering and scientific models, the focus is on the process of
comparing the model prediction and experimental observations [67]. This method may
at first sight appear to be similar to the reality check category. However, in statistical
validation, the difference between model prediction and experimental observations is quan-
tified through statistical metrics [67] as opposed to reality check, in which the difference is
considered subjectively and primarily qualitatively. As an example in our sample, Ayhan
and Tokdemir defined test cases to observe the predictive performance of their model as
a means of validation [68]. In another paper, a measure of goodness-of-fit of the data is
applied to validate the model [69].

Illustrations are sometimes presented when proposing a new safety analysis model
or approach through a case study. In general, case studies are used to analyze new or
ambiguous phenomena under real-world conditions in authentic contexts [70]. These are
then used to build a conclusion that is drawn from the collected evidence and observed
outcomes [71]. Nevertheless, there are different types of case studies, including illustrative
or exploratory case studies [72], which have different aims, such as providing a description,
testing a theory, or generating a theory [73]. In our present study, the illustration category
denotes articles where an example case study is presented to show how the presented
model works. Compared to other validation categories, illustrative case studies do not
provide much confidence that the model provides correct or useful results. Instead, these
merely show that a proposed model can indeed be applied, how this is done, and what
results are obtained. As an example, in our sample papers, Yan et al. [74] applied their



Safety 2021, 7, 72 11 of 26

developed fuzzy-set based risk assessment model to a rail transit project in China to an
example case study.

The distribution of the sample papers in terms of the adopted validation approach
(which is also an answer to research question 2) is discussed in Section 3.2.

2.2.6. Terminology Used for Validation

There is no consensus on the words used for validation, while there is a set of ter-
minology that has been used interchangeably in the sample. These words are validation,
evaluation, verification, comparison, effectiveness, usefulness, and trustworthiness (Table A1 in
Appendix A). This issue is not limited to our study context, and it is well known that
terminological inconsistency is common in safety [75], risk [5], and validation research [76].
Many definitions of risk and risk-related concepts exist. It has been argued that this results
in a chaotic situation, which continues to present problems to academic and practitioner
communities [77]. The unclear terminology presents a significant obstacle to a sound
understanding of what model validation is, how it works, and what it can deliver [78].
The identified terminology used for validation in the sample data is further discussed
in Section 3.4.

2.3. Reliability Check of the Extracted Data

Finally, it is acknowledged that, since the data are extracted from papers, in which
all the required information is not explicitly stated, there is a methodological risk of
the analyst’s judgments subjectivity interpreting the results. That is, the person who
extracts the data inevitably makes some judgments during the data retrieval process.
Therefore, to assess the reliability of the retrieved data, an inter-rater reliability experiment
is performed [79]. The following steps are executed: the first author extracted the data
from the 151 articles. Then, the second author extracted the data from 15 randomly selected
papers, i.e., 10% of the total number of papers, and recorded the results for each variable
separately. Subsequently, the agreement between the responses of the two authors for
the selected 15 papers is calculated through the Cohen Kappa index, which is the most
popular index [80], using R programming language. Based on the gained Kappa score
(0.887), it can be concluded that there is a very high level of agreement in the judgments of
categorization [81]. Due to the subjectivity of many categorical scales, achieving perfect
agreement is highly uncommon [80]. It is noted that the categorization of the adopted
validation approach, which is the main focus of this paper, was always the same in the
results of both authors, indicating that the inter-rater reliability of the data extraction is
acceptable for our current purposes.

2.4. Data Analysis Method

In this study, all the data visualizations and statistical analysis tests are carried out
using R programming language.

In Section 3.3, the correlation between validation and other variables in our dataset,
including the year of publication, safety concept, model type/approach, country of origin,
industrial application domain, and stage of the system life cycle is tested. The year of
publication is an ordinal categorical variable, while others are nominal categorical variables.
A new nominal categorical variable is added to the dataset called validation, which shows
whether a paper is validated or not, so it has two levels: yes or no. To investigate whether
there is a statistical correlation between validation and nominal variables, their statistical
dependency is studied using Fisher’s exact test. This is an alternative to Pearson’s chi-
square test of independence when the sample size is small [80,82]. The significance of
the correlation is tested by computing the p-values. Furthermore, a stacked bar plot is
used to show their contingency tables, which include the frequency distribution of the
variables [80].

A separate section (Section 3.3.2) is dedicated to the relationship between validation
and the year of publication, for which a Kruskal–Wallis test is performed [83]. This test is
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the non-parametric equivalent of one-way ANOVA, and it is best for cases when there is
one ordinal and one nominal variable.

3. Results

In this section, the answers to research questions proposed in Section 1.3 are provided.

3.1. Percentage of the Papers in Which the Models Are Attempted to Be Validated

In this section, the answer to research question 1 is investigated. Here, the articles are
divided into two subgroups: those in which the models are not validated, and those in
which they are. The data analysis shows that, in only 37% of the articles, a validation of the
proposed or applied models is performed, while in 63% of the articles, no model validation
is presented.

In the left plot in Figure 6, the total number of papers and the number of papers in
each subgroup in each year are shown through a stacked bar plot. Each bar is divided into
two parts, representing the subgroups, with the number of papers in which the models
are validated shown in dark gray and the number of papers in which the models are not
validated shown in light gray. As mentioned in Section 2.1, and as can be seen in the figure,
there is an upward trend in the number of published papers from 2010 to 2019, with a
significant spike in the number of articles in 2018 and 2019 compared to previous years.

Figure 6. Count and the percentage of the papers in which the models are validated and the papers in which the models are
not validated over the 10 years period.

In the right plot in Figure 6, the percentage of each subgroup is represented. The
proportion of papers with validated models does not show a clear trend over the past
ten years. For instance, in 2013 and 2017, about half of the authors attempted to validate
their models in some way, while in 2012 and 2018, the percentage was 32%.

3.2. Approaches on Validation of Model-Based Safety Analysis

This section answers research question 2. As discussed in Section 2.2, the articles in
which validation is performed are grouped into seven categories in terms of the adopted
validation approach. Figure 7 shows the percentage of applied validation approaches in the
sample papers as a pie chart. It is seen that 19.7% of the papers applied benchmark exercises
to validate their models. For instance, Chen et al. compared their results with those of
two other models: AHP and fuzzy weighted-average models as a means of validation [84].
Additionally, 7% of the papers applied a reality check approach, in which the output of the
model is compared with the real-world data. The real-world data can be experimental
results (e.g., [85]) or field data (e.g., [86]). In another approach, peer review, the model
is examined by experts in that field. This approach is employed in 15.5% of the papers
in which models are validated. Considering quality assurance, the approach examining
the process behind the analysis, 2.8% of the papers applied this approach for validation.
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The percentage of the other three validation approaches, which are validity tests, statistical
validation, and illustration, are 18.3%, 12.7%, and 23.9%, respectively.

Figure 7. Pie chart-showing the distribution of articles in terms of the adopted validation approach,
for cases where validation is performed.

It should be highlighted that some papers applied a mixture of these approaches
to validate their models. In a paper by Mohsen and Fereshteh [87], the results of the
proposed model are compared with a conventional method. Additionally, sensitivity
analysis and expert opinions are used to validate the results. Thus, this work falls under
the benchmark exercise, validity tests, and peer review categories, respectively. In another
example, a three-step validation process is applied, in which the model development
process is inspected (quality assurance), the sensitivity of results to changes in the model
investigated (validity tests), and the model results compared with other approaches, such as
FT and BN (benchmark exercise) [88].

In conclusion, it is seen that benchmark exercise and illustration are the most frequent
validation approaches, while quality assurance is the least frequently adopted approach
applied for validating model-based safety analyses reported in Safety Science.

3.3. Relationship between Validation and Other Variables

In this section, the correlation between validation and other variables, including
year of publication, safety concept, model type/approach, country of origin, industrial
application domain, and stage of the system life cycle, are investigated to find an answer
to research questions 3, 4, 5, 6, 7, and 8. That is, it is studied whether validation has been
more focused on in terms in relation to the above-mentioned variables.

3.3.1. Relationship between Validation and Safety Concept, Model Type/Approach,
Country of Origin, Industrial Application Domain, and Stage of the System Life Cycle

This section answers research questions 4 to 8. As mentioned in Section 2.4, Fisher’s ex-
act test is used to test whether there is a significant statistical correlation between validation
and other nominal variables, including safety concept, model type/approach, country of
origin, industrial application domain, and stage of the system life cycle. The null hypothesis
for each of the tests associated with the related research questions are mentioned in Table 2.
The significance of the correlation is tested by computing the p-values. For p-values greater
than the 0.05 significance level, we can conclude that no statistical correlation between the
variables can be found, and that they are not dependent. The calculated p-value for each
test is shown in Table 2.
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Table 2. Correlation between validation and other nominal variables.

Variables Research Question Null Hypothesis p-Value

Validation and safety concept RQ 4 There is no correlation between validation
and safety concept 0.4974

Validation and model
type/approach RQ 5 There is no correlation between validation

and model type/approach 0.5437

Validation and country of origin RQ 6 There is no correlation between validation
and country of origin 0.5982

Validation and industrial
application domain RQ 7 There is no correlation between validation

and industrial application domain 0.5953

Validation and stage of the
system life cycle RQ 8 There is no correlation between validation

and stage of the system life cycle 0.6027

Based on the results (p-values), the null hypotheses cannot be rejected meaning that no
correlation can be found between validation and the other investigated variables. Therefore:

• No relationship was found between how frequently validation was considered and
models associated with particular safety-related concepts, including safety, risk, relia-
bility, and resilience.

• No relationship was found between how frequently validation was considered and a
specific model type/approach.

• No relationship was found between how frequently validation was considered and
articles originating from a specific country.

• No relationship was found between how frequently validation was considered and a
specific industry.

• No relationship was found between how frequently validation was considered and a
specific stage of a system’s life cycle.

As mentioned in Section 2.4, stacked bar plots visualize contingency tables. In
Figures 8–12, the stacked bar plots of validation and other variables are shown. The figures
further confirm that no correlation can be found between validation and the other variables.

Figure 8. Stacked bar plot showing validation versus safety concept.
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Figure 9. Stacked bar plot for validation versus stage of the system lifecycle.

Figure 10. Stacked bar plot for validation and model type/approach.

Figure 11. Stacked bar plot for validation and industry.
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Figure 12. Stacked bar plot for validation and country.

3.3.2. Relationship between Validation and the Year of Publication

This section seeks an answer to research question 3. According to Figure 6, no trend
can be observed in the relative number of papers in which the models are validated over
the past 10 years in the sample. To confirm this observation, as described in Section 2.4, a
Kruskal–Wallis test is performed to investigate whether there is a correlation between these
two variables. The result of the test shows that there is no significant difference between
the number of validated papers in different years. This confirms that no correlation can be
found between the number of validated papers and the year of publication, and validation
has not been more focused on in a specific year.

3.4. Terminology of Validation

This section answers research question 9. Having analyzed all the articles in the se-
lected sample, the language of the validation in the model-based safety analysis was found
to be inconsistent. The terms validation, evaluation, effectiveness, verification, comparison, and
usefulness are used interchangeably in the selected papers. Furthermore, two articles in the
sample apply the term trustworthiness [89,90]. There is also one paper [91] in which different
terms, both effectiveness and evaluation, are used for validation throughout the article.

The distribution of the papers in terms of the terminology applied for validation is
shown in Figure 13. The figure shows that, although a large variety in the validation-
related terminology is found in the literature, validation is the most commonly used word
in our sample.
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Figure 13. Distribution of papers in terms of the terminology used for validation.

4. Discussion
4.1. The Choice of Sub-Questions

In this study, the state of the practice in validation of model-based safety analysis in
the academic literature is studied. To concretize this broad question, nine sub-questions
are selected in Section 1.3. These sub-questions primarily aim to provide empirical evi-
dence for arguments and claims in the academic community that validation is, in general,
insufficiently considered in safety research, which contributes to a lack of evidence-based
safety practices.

To the best of the authors’ knowledge, no earlier work has systematically investigated
validation in the context of model-based safety analysis in socio-technical systems; the
focus of this work is exploratory and scoping in nature. Hence, the main purpose of the
work is to better understand the extent of this problem of lack of attention to validation.
Furthermore, we believe gaining insights into high-level trends and patterns in the issue
of validation in relation to other aspects of model-based safety analysis can be useful to
further advance this issue in the academic community and beyond.

In light of this, the percentage of articles in which the models are validated (RQ 1) and
the trend over the past decade (RQ 3) are analyzed to scope the extent to which validation
is considered and if temporal trends can be observed. Additionally, a better understanding
of the identified validation approaches/methods (RQ 2) is useful, as it has been argued
that it is not self-evident that validation exercises actually improve the model performance
in relation to its intended use [92]. Closely related to this is the issue of the adopted
terminology (RQ 9), which has been raised as an important foundational issue in safety
science, because a different understanding of fundamental concepts can lead to different
practical actions [93].

Furthermore, the relationships between validation and other aspects of model-based
safety analysis are investigated to provide a broader exploratory understanding of the
phenomenon (RQs 4 to 8). The underlying assumption of RQs 4 to 8 is that there are
relationships between validation and model type/approach, safety concept, stage of the system
life cycle, industry, and country, respectively. Through a series of statistical tests, these
relationships are tested. From Section 3.3, it is, however, concluded that no relationship
can be found between validation and a specific safety concept, model type/approach,
industrial application domain, country of origin, or stage of the system life cycle. This
suggests that the limited attention to validation is prevalent across the subdomains of
safety research concerned with model-based safety analysis and thus in different academic
communities working on different conceptual, theoretical, or methodological foundations
and in various industrial application domains and countries.
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If the results of some of the tests were affirmative, we could then investigate the
reasons why validation is more prevalent in those areas in follow-up research to gain an
understanding of why this is the case. Such investigations would require other research
methods such as document analysis and interviews. Furthermore, the results could also be
used as a basis for prioritizing research into the evidence of the effectiveness of validation
practices, as considered in the next section.

4.2. Adequacy of the Applied Validation Approaches in the Investigated Sample

In our analysis, we made no judgment about the quality or effectiveness of the applied
validation methods. We simply considered that, if the authors claimed that they have
validated their models using any of the validation approaches of Figure 7, we considered
those articles as indeed having validated the models.

As mentioned in Section 2.2, our sample contains seven categories of the adopted
validation approaches. These are reality check, peer review, quality assurance, benchmark
exercise, validity tests, statistical validation, and illustration. These categories are identified
based on the approaches to validation as declared by the authors of the articles in our
sample. Clearly, an important question is whether employing these methods improves
the safety model and/or its results, i.e., whether these validation methods are, indeed,
adequate. As argued by Goerlandt et al. [54], an inappropriate validation method may
aggravate the problem and just add another layer of formalization by providing a false
assurance of safety, through providing a seemingly adequate safety analysis, while this, in
fact, is not the case [94]. Furthermore, performing validation work requires resources, such
as time and money [95], so the effectiveness of such safety work should be questioned.

Although the identified validation approaches have been used in our investigated
sample and other disciplines concerned with modeling, such as operations research and
systems dynamics, they may not suffice to validate a model or its resulting outputs. In
the wider literature on model validation, some of these methods are argued not to be
adequate approaches to validation. According to Pitchforth and Mengersen [66], model
validity is not simply a matter of a model’s fit with a set of data but is a broader and
more complex construct. The process of validating a model must go beyond statistical
validation [64]. Oberkampf and Trucano [96] argue that reality checks are inadequate
approaches to validation. They claim that “this inadequacy affects complex engineered
systems that heavily rely on computational simulation for understanding their predicted
performance, reliability, and safety”. Therefore, we do not claim that the identified ap-
proaches to validation in our sample are adequate for model-based safety analyses. Indeed,
we argue that there is a limited understanding of if, how, under what conditions, and to
what extent the application of these validation approaches indeed improves the results.
Therefore, it appears an important and fruitful avenue for future research to investigate the
adequacy of these approaches.

One future research direction that may improve the practice of validation of model-
based safety analysis is to develop and test a validation framework that encompasses
different elements of a model in the validation process, not just a specific part of the model
or its output. For instance, the model’s underlying assumptions [16] and data valida-
tion [30] could be important parts of a more comprehensive model validation framework.
In a study by Shirley et al. [97], full scope validation of a technique for human error rate pre-
diction (THERP) method focuses on the internal components of the model rather than just
the output of the model. Developing a validation framework for model-based safety analy-
ses could help authors have a more thorough validation assessment, which may provide
more confidence for safety practitioners in selecting and applying particular models.

Once the validation framework is developed, it should be tested to determine whether
it improves the results, where aspects related to cost-effectiveness should be considered as
well. We note here that “improving the results” concerns the aims and functions of a model-
based safety analysis in relation to how this is intended to be used. This further suggests
that a validation framework can have different functions, including but not limited to:
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• Establishing confidence in a model;
• Identifying more hazards; and
• Improving the agreement of a model’s output with empirical data.

Therefore, the validation framework should be tested to determine to what extent it
satisfies its envisaged functions. To develop such a validation framework for model-based
safety analysis (either a generic framework or one for a specific combination of model type,
safety concept, and other relevant aspects), model validation frameworks developed in
other scientific disciplines, such as environmental modeling or operation research, could
be explored to see if and how these can be elaborated in a safety context. Nevertheless, due
to the specific nature of the concepts for which models for safety analysis in socio-technical
systems are built, which typically concern non-observable events or system characteristics,
existing model validation approaches likely need to be modified.

4.3. Investigating the State of the Practice in Validation of Model-Based Safety Analysis
among Practitioners

Based on the results of Section 3, it can be concluded that validation is not commonly
performed in scientific work when proposing new model-based safety analyses or when
applying them to new problems. Furthermore, acknowledging arguments for a need
to strengthen the link between safety academics and safety practice [98], it is fruitful to
dedicate future research to understand the state of the practice in validation of model-based
safety analysis in practical safety contexts. In a study by Martins and Gorschek [99], the
practitioners’ perceptions on safety analysis for safety-critical systems are investigated.
Their research indicates that should researchers focus not only on developing new models,
but also on validation of those developed models, which could further culminate in
increased trust in those models. More generally, they argue that more research should
be dedicated to understanding how and why practitioners use specific approaches for
eliciting, specifying, and validating safety requirements.

It would benefit both academics and practitioners to acquire qualitative evidence and
empirical data regarding the validation of model-based safety analysis among practitioners.
This can focus, for instance, on the merits and demerits of validation, their objectives in
performing validation, the methods they use, and the challenges they face or may face in
the process of validation. Their views on the function and effectiveness of the validation,
i.e., whether validation indeed improves the model results, adds value for improving
system safety, or if validation improves a model’s credibility. This could inform the
development of a framework for safety model validation. Finally, we believe that gaining
more understanding of how practitioners see validation of model-based safety analysis
in different industrial contexts can lead to further research directions and contribute to
evidence-based safety practices.

4.4. Conceptual-Terminological Focus on Validation as a Foundational Issue

Another finding of Section 3 is that validation-related terminology in the academic lit-
erature on model-based safety analysis is not consistent. This issue of lack of terminological
clarity in the safety and risk field has been raised by several authors [92,96]. Some attempts
have been made to clarify the terminology of validation in other scientific domains. For
instance, in an article by Finlay and Wilson [100], a list of 50 validity-related terms and their
definitions in the field of decision support systems is provided. One reason why careful
consideration of terminology is important is that there can be large differences in the way
one conceptualizes and understands validation, which can, in turn, influence how one
believes the validity of a safety model should be assessed [101,102]. When authors rely on
a different understanding of the meaning of validation as a concept, this may be reflected
in the terminology applied to refer to this idea. This appears plausible based on findings
by Goerlandt and Montewka [102], who empirically investigated definitions of risk and
the metrics that are used in the associated risk descriptions.
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Amongst others, Aven has argued for the need to strengthen the foundations of
safety science as a (multi-)discipline [93] by increased attention to issues such as meaning
and implications of fundamental concepts underlying the discipline or its subdomains.
Explicitly addressing such fundamental issues may strengthen the scientific pillars of
safety science and ultimately improve safety practices. Considering the variety of implicit
commitments in the approaches to validation taken in the articles in our investigated
sample and the various options for what validation could do to “improve the results” of
an analysis, as discussed in Section 4.2, giving explicit attention to validation as a concept
could be a fruitful path for future scholarship.

4.5. Limitations of This Study and Further Future Research Directions

As this is, to the best of the authors’ knowledge, the first systematic study on the state
of the practice in validation of model-based safety analysis, this research has several limitations.

First, we limited the scope of this research to a specific safety-related journal Safety
Science. While, as discussed in Section 1.2, we believe this is a defensible choice as a
basis for our exploratory and scoping analysis, we acknowledge that limiting the scope
to Safety Science affects the results, such that they are not necessarily representative of all
the literature on model-based safety analysis. For example, as mentioned in Section 2.2.1,
articles originating from China and the United Kingdom occur most frequently in our
sample. This follows the trend we observed in the safety science journal, in which the
United Kingdom and China ranked first and third contributors, respectively [40], but this
is not necessarily a good reflection of all academic work on model-based safety analysis.
Likewise, the focus on the operation stage of the system lifecycle in our sample, as observed
in Figure 3, should be understood from the fact that Safety Science was formerly published
as the Journal of Occupational Accidents and has a legacy of having a significant focus on
occupational safety [103].

Therefore, it may be fruitful to perform similar analyses for other journals where
model-based safety analysis is proposed or applied with a focus on other stages of the
system lifecycle [104], such as Reliability Engineering and System Safety, Risk Analysis, Struc-
tural Safety, and Journal of Loss Prevention in the Process Industries. For instance, performing
this research in a journal with a focus on the Design phase rather than Operation phase
of a system lifecycle could provide complementary insights into the state of practice of
validation in academic work.

A second limitation is that this research is confined to articles published between 2010
to 2019. Extending this period could provide further insights into possible temporal developments.

Third, in this research, we only study the state of the practice in validation for model-
based safety analysis. Validation has not been a significant research theme in safety science
across problem domains [7]. Therefore, similar research in other areas in safety science,
such as safety management systems or behavior-based safety, could also be beneficial.

5. Conclusions

In this paper, an analysis is performed of the relevant literature on model-based safety
analysis for socio-technical systems, focusing on the state of the practice in validation of
these models. Although lack of attention to validation in safety science has been raised
in academia before, we aimed to provide empirical insights to understand the extent of
this issue and to explore some of its characteristics. Nine research sub-questions are used
to help characterize the extent, as well as possible trends and patterns in the state of the
practice of model-based safety validation.

The analyses revealed that 63% of articles proposing a novel safety model or employ-
ing an existing model do not address validation in doing so. This shows that performing
validation of model-based safety analysis is not a common practice in the considered
sample. In this analysis, spanning a period of ten years (2010–2019), we could not find a
systematically increasing or decreasing trend in the attention given to validation in the
considered model-based safety analysis literature. Similarly, no correlation can be found
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between validation and other investigated variables, including the safety concept, model
type/approach, stage of the system life cycle, country of origin, or industrial application
domain. Together, this suggests that the state of practice in validation is highly variable in
the considered literature, and thus that the lack of focus on validation is prevalent across
subdomains of safety science, across different communities working on different theoretical
or methodological foundations, and in various industrial application domains.

In the remaining 37% of the articles, some form of validation is performed. Seven cate-
gories are identified: benchmark exercise, peer review, reality check, quality assurance, validity
tests, statistical validation, and illustration. In our discussion, we argued that these ap-
proaches may not suffice to comprehensively validate a model, and that these different
approaches in fact represent a variety of views on what function(s) validation can have
in a safety analysis context. We furthermore argued that the terminological variety when
referring to ‘validation’ as an activity may be based on significantly different, but often
implicitly held, opinions of what validation means and what its purpose is in a context
of model-based safety analysis. Therefore, we believe that increased academic attention
to the meaning of validation as a concept in a safety analysis context may be a fruitful
avenue for academic work. Ultimately, a focus on such foundational issues in safety science
may strengthen the foundations of the discipline and could contribute to strengthening
evidence-based safety practices in practical safety work.

Another way to improve the current situation could be to develop a validation frame-
work, accounting for the function(s) of validation, the intricacies of the specific safety
concepts addressed, and the model type, as well as procedural aspects of the model devel-
opment and use. Once such a validation framework is developed, it would require testing
to ascertain whether it improves the model’s results as intended and whether it does so in
a cost-effective manner. We believe that such practice-oriented work would benefit from
the earlier mentioned foundational focus on validation as a concept.

This work has several limitations, of which the scope limitation to the Safety Science
journal is, arguably, the most significant one. This choice influences the results, so that
they may not be representative of the wider literature on model-based safety analysis.
In particular, the articles in our investigated sample focus primarily on the operation
stage of the system lifecycle, which aligns well with the main focus in Safety Science but
leaves the question open whether the situation is similar for other system lifecycle phases.
Therefore, a future area of work would be to perform similar research for other journals
with different focuses.

Overall, the authors hope that providing an understanding of the extent of the lack of
attention to validation in model-based safety analysis and of some associated trends and
patterns can provide some empirical grounding for earlier made arguments that validation
would benefit from more academic work. We outlined some areas of future work, including
a conceptual focus on the meaning and purpose of validation of model-based safety
analysis, an improved understanding of validation practices in real-world organizational
contexts, and practice-oriented work in developing and testing validation frameworks.
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Appendix A

Table A1. Variables and the associated categories.

Variables Categories

Title of the paper -

Name of the Author/Authors -

Digital Object Identifier (DOI) -

Safety Concept
• Safety
• Risk

• Reliability
• Resilience

Year of publication This ranges from 2010 to 2019.

Country of origin

• Argentina
• Australia
• Brazil
• Canada
• China
• Czech Republic
• Finland
• France
• Germany
• Greece
• India
• Iran
• Ireland
• Israel
• Italy
• Japan
• Malaysia

• Morocco
• The Netherlands
• Norway
• Poland
• Portugal
• Serbia
• Singapore
• Slovenia
• South Africa
• South Korea
• Spain
• Sweden
• Switzerland
• Taiwan
• Turkey
• United Kingdom
• United States

Stage of the system life cycle

• Design Phase
• Manufacturing/Construction/Development Phase
• Operation Phase
• Decommissioning Phase

Industrial application domain

• Automotive Industry
• Aviation Industry
• Chemical Industry
• Construction Industry
• Energy Industry
• General Application
• Maritime Industry

• Mining Industry
• Nuclear Industry
• Oil and gas Industry
• Petrochemical Industry
• Rail Industry
• Robotics Industry

Model type/approach

• Artificial Intelligence
Technique

• Accident Analysis
Method

• AHP Approach
• Bayesian Approach
• Data Analysis and Data

Mining
• Fuzzy Approach

• Mathematical Modeling
• Simulation
• Statistical Analysis
• Other
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Table A1. Cont.

Variables Categories

Validation approach

• Benchmark Exercise
• Reality Check
• Peer Review
• Quality Assurance

• Validity Tests
• Statistical Validation
• Illustration
• No Validation

Word used for validation

• Validation
• Evaluation
• Verification
• Comparison

• Usefulness
• Trustworthiness
• Effectiveness
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