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Abstract: The unobserved heterogeneity in traffic crash data hides certain relationships between
the contributory factors and injury severity. The literature has been limited in exploring different
types of clustering methods for the analysis of the injury severity in crashes involving large trucks.
Additionally, the variability of data type in traffic crash data has rarely been addressed. This study
explored the application of the k-prototypes clustering method to countermeasure the unobserved
heterogeneity in large truck-involved crashes that had occurred in the United States between the
period of 2016 to 2019. The study segmented the entire dataset (EDS) into three homogeneous clusters.
Four gradient boosted decision trees (GBDT) models were developed on the EDS and individual
clusters to predict the injury severity in crashes involving large trucks. The list of input features
included crash characteristics, truck characteristics, roadway attributes, time and location of the crash,
and environmental factors. Each cluster-based GBDT model was compared with the EDS-based
model. Two of the three cluster-based models showed significant improvement in their predicting
performances. Additionally, feature analysis using the SHAP (Shapley additive explanations) method
identified few new important features in each cluster and showed that some features have a different
degree of effects on severe injuries in the individual clusters. The current study concluded that the
k-prototypes clustering-based GBDT model is a promising approach to reveal hidden insights, which
can be used to improve safety measures, roadway conditions and policies for the prevention of severe
injuries in crashes involving large trucks.

Keywords: large trucks; severe injuries; heterogeneity; k-prototypes; clustering; GBDT; machine learning

1. Introduction

Large trucks play an indispensable role in freight logistics and the economic develop-
ment of a country. According to a commodity flow survey of 2017, trucks alone moved
8.8 billion tons of goods. However, large trucks are also responsible for increasing the
chances of severe injuries and fatalities in traffic crashes. Severe injuries and fatalities in
crashes cause substantial social and economic loss for human society. From 2016 to 2018,
the total fatalities in large truck-involved traffic crashes increased by almost 6 percent in
the United States (US) [1]. Besides, the unique characteristics of large trucks such as long
vehicle length, heavy vehicle weight and poor deceleration system may play key roles in
increasing the probability of severe injuries [2,3]. The statistics and claims of past studies
clearly signify the importance of researching the injury severity in crashes involving large
trucks. Previous studies have explored different types of contributory factors (e.g., crash,
location, roadway, weather, light and truck, etc.) that affect the injury outcomes of crashes
involving large trucks [4–12]. However, the heterogeneous nature of traffic crash data
significantly obscures the effects of contributory factors on injury outcomes. Several studies
have recognized the unobserved heterogeneity as a major barrier for the analysis of traffic
crash data [10,13,14].

Unobserved heterogeneity refers to the correlation between the unobserved factors
and the observed variables. Leaving the issue of heterogeneity unaddressed might leave

Safety 2021, 7, 32. https://doi.org/10.3390/safety7020032 https://www.mdpi.com/journal/safety

https://www.mdpi.com/journal/safety
https://www.mdpi.com
https://orcid.org/0000-0002-1024-1006
https://doi.org/10.3390/safety7020032
https://doi.org/10.3390/safety7020032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/safety7020032
https://www.mdpi.com/journal/safety
https://www.mdpi.com/article/10.3390/safety7020032?type=check_update&version=2


Safety 2021, 7, 32 2 of 18

crucial insights hidden [13,15]. Besides, a subset of factors may have inconsistent effects
on the severity of injury under different traffic crash scenarios [16,17]. For example, the
severity of injury in crashes involving large trucks and under dark unlighted conditions
may differ because of changes in the posted speed limit. To account for unobserved
heterogeneity, it is possible to separate a certain type of crash based on domain knowledge
and build an injury severity model for that type of crash only. Some past studies have
analyzed the injury severity in certain types of truck-involved crashes based on the crash
type [18,19], location [2,12,20], environmental factors [21], temporal characteristics [22],
and truck characteristics [11]. However, such an approach will generate a large number of
subgroups, and consequently, it would be infeasible to build a model for each subgroup.
Additionally, some subgroups may include an insufficient number of observations to build
a viable injury severity model. Segmenting the crash data according to domain knowledge
or studying specific crash types may account for heterogeneity to a certain extent, but it
does not guarantee homogeneity in the subgroups [13].

In the field of road safety, a lot of studies have successfully employed cluster analysis,
which is an unsupervised data mining method, to account for unobserved heterogeneity in
different types of crash data (e.g., all road users, pedestrians, bicycles, motorcycles, and
trucks) [23–31]. The objective of cluster analysis is to identify the latent homogeneous
clusters in the data. Previous studies have reported that certain relationships between
the contributory factors and injury severity cannot be uncovered without segmenting the
aggregated crash data into homogeneous clusters. Additionally, some contributory factors
have different magnitudes of effects under different crash scenarios [13,23,24,30]. It is a
well-established fact that different crash scenarios require different types of preventive
measures. Therefore, it is crucial for road safety authorities and traffic engineers to obtain
comprehensive and accurate insights about the effects of contributory factors on injury
outcomes. Such insights can be used to improve traffic laws, policies, road infrastructures,
and road user’s awareness for the reduction in severe injuries in crashes involving large
trucks. Fewer severe injuries and fatalities will substantially reduce the social and eco-
nomic costs caused by traffic crashes. Consequently, it will lead to a more sustainable
transportation system.

A review of the past studies has revealed that the literature on the analysis of the injury
severity in crashes involving large trucks has been limited in exploring an appropriate
clustering approach, which can account for the heterogeneous nature and variability of
data type in crash data. The current study has explored the application of k-prototypes
clustering-based machine learning models for the analysis of severe injuries in crashes
involving large trucks. To the best of the author’s knowledge, none of the previous studies
have applied both of the approaches together. A feature analysis with the help of the
SHAP method was conducted to demonstrate the effectiveness of the application of k-
prototypes cluster analysis. The rest of the study is organized with a literature review,
methodology and materials, results, discussion and conclusion, and limitations and future
research opportunities.

2. Related Work

In recent times, a wide variety of research efforts have been conducted for the analysis
of the severity of injury in different types of crashes involving large trucks [5,8,10,18,28,29].
However, this study aims to explore the application of the k-prototypes clustering-based
ensemble learning method for the analysis of severe injuries in crashes involving large
trucks. Therefore, the current study has discussed the commonly applied methods that have
been used to mitigate unobserved heterogeneity and investigate the factors influencing the
injury outcomes of crashes involving large trucks.

2.1. Unobserved Heterogeneity in Crash Data

The random parameters logit model (mixed logit) and latent class clustering (LCC)
have been the two commonly used approaches to account for the heterogeneous nature of
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different types of traffic crash data. A large number of studies have used the random pa-
rameter logit model for the analysis of large truck-involved crash injury severity [3,5,10,32].
Behnood and Mannering [10] used the random parameters logit model to explore the
effects of time of day variations and temporal instability on the injury severity in large
truck crashes. Rahimi et al. [32] investigated the injury severity of single vehicle truck
crashes using the random parameter logit model. The random parameter logit model
allows the parameters to vary across observations, as opposed to a single parameter repre-
senting all observations. However, cluster analysis is a better approach for the mitigation
of unobserved heterogeneity because it identifies the latent homogeneous clusters within
the crash data. Additionally, the characterization of those homogeneous clusters gives a
clearer interpretation of the crash scenarios. Developing the injury severity model on the
homogeneous clusters gives more accurate estimations about the effects of the contributory
factors on injury outcomes. Several studies have demonstrated the benefits of cluster
analysis for the mitigation of unobserved heterogeneity in traffic crash data [23–25,33].

Ona et al. [23] used LCC for the analysis of the injury severity in crashes on rural
highways. The study showed that certain contributory factors are important only in the
individual clusters. Sasidharan et al. [26] combined LCC with the binary logit model for
the analysis of pedestrians crash injury, and reported that certain relationships between
the injury outcome and exploratory factors would have remained hidden without cluster
analysis. LCC is a statistical model-based clustering approach, and the final class solution
depends on the user [34]. If the model is user-specified, then the results of the model may
not be reproducible.

Another type of clustering is the similarity-based approach, which maximizes the
similarity between the observations within the clusters and dissimilarity between the
inter-clusters based on some distance measure. The k-means, k-modes, and hierarchical
clustering are similarity-based approaches. One of the advantages of using the k-means
clustering method is its efficiency and simplicity for processing large datasets [35]. Sohn
and Lee [36], and Iranitalab and Khattak [37] developed k-means clustering-based models
for the prediction of injury outcomes. Nandurge and Dharwadkar [38] used the k-means
clustering method as the primary tool for the segmentation of traffic crash data in ho-
mogenous subgroups. However, the k-means is appropriate for datasets that include only
numerical features, and road accident datasets rarely include only numerical features. The
k-modes clustering method is more appropriate for datasets that include only categorical
features and uses the mismatches between the observations as a dissimilarity measure.
Kumar et al. [39] have used the k-modes clustering method to improve classification per-
formances. The hierarchical clustering method segments the data by building a tree of
clusters [34]. Taamneh et al. [25] used hierarchical clustering before performing the classifi-
cation of traffic crashes. This method is not user-defined, but it is inherently incapable of
handling categorical features, and the memory space and time required by it is infeasible
for large datasets.

There are some advantages of these clustering methods, and in some cases, they can
produce satisfactory results. However, traffic crash datasets are often large and include
both numerical and categorical features. For example, the total number of vehicles is a
numerical feature, and the manner of collision is a categorical feature with five or six unique
values (e.g., front-to-front, rear-end and sideswipe). Most of the clustering methods convert
the unique values of the categorical features into dummy features (where the presence of a
unique value in the observations is denoted by 1 and the absence as 0). This technique loses
the information inherited by the categorical feature. Additionally, converting categorical
features into dummy variables increases the total number of features, which will require
more memory and time for processing the data.

2.2. Severity Modeling

Several research efforts on the severity of injury in truck-involved traffic crash applied
logit-based or ordered probability type statistical models [2,21,40,41]. The non-linear re-
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lationships between injury outcome and contributory factors make such types of model
inappropriate. Moreover, statistical models have model-specific assumptions and prede-
fined underlying relationships between dependent and input features. The violation of
those assumptions may lead to erroneous results [24,42]. A lot of studies have shown
that machine learning models are better at predicting the injury outcomes [37,43–45]. A
few studies on truck-involved crashes also have shown promising results using machine
learning methods. Chang and Chien [42], and Eustace et al. [46] applied the classification
and regression trees (CART) to identify the important factors that influence the severity of
truck-involved crashes. Zheng et al. [47] used the GBDT machine learning model for the
analysis of commercial truck crash injury severity.

A limited number of studies have used the clustering approach for analysis of the
injury severity in crashes involving large trucks. Rahimi et al. [28] used the block clustering
method to identify patterns, and the conditions contributing to the patterns in large
truck-involved traffic crashes. The study was limited to cluster analysis only. Another
study combined LCC with the partial proportional odds model for the exploration of
heterogeneities in truck-involved severities only at cross and T-intersections [29].

The current study has identified a few limitations in the existing literature. Firstly, a
very limited number of studies have used the clustering approach for the mitigation of
unobserved heterogeneity in crashes involving large trucks. Secondly, the variability of
data type has rarely been addressed. Lastly, none of the previous studies have employed
a clustering-based machine learning model for the analysis of severe injuries in crashes
involving large trucks. In light of these gaps in the literature, the current study has
proposed the k-prototypes clustering-based GBDT machine learning model for the analysis
of severe injuries in crashes involving large trucks. The k-prototypes clustering method
was proposed by Huang [35]. The method is capable of clustering datasets with both
numerical and categorical type features. Further, the study has developed cluster-based
GBDT machine learning models for predicting the injury outcomes of crashes involving
large trucks. The GBDT model has shown significant success in the prediction of injury
outcomes in traffic crashes [43,47]. Another distinguishable feature of the study is the
application of the SHAP method to estimate the varying effects of the contributory factors
on severe injuries across the EDS and each cluster. The SHAP method was proposed by
Lundberg and Lee [48] for the interpretation of machine learning models.

3. Methodologies and Materials

This section of the study includes a description of the k-prototypes clustering method,
and the GBDT ensemble learning method. It also includes descriptions of the data used
for this study, the evaluation metrices of predicting performance, and the details of the
SHAP method.

3.1. The K-Prototypes Clustering Method

Here, we show the distance measure used by the k-prototypes clustering method. The
k-prototypes uses the squared Euclidian distances for the numeric features and a simple
matching coefficient for the categorical features. We have summarized the cost function in
Equation (1) according to [35]. The distance between the observations and the assigned
prototype is represented by the cost function.

E = ∑k
l=1 ∑n

i=1 yild(Xi, Ql) (1)

where the objective of the algorithm is to minimize E (cost function), and divide the dataset
X into k number of clusters and Ql is center of prototype l, yil is the dummy variable that
equals to 0 when data object i is assigned to prototype l, and d(Xi, Ql) is the dissimilarity
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measure for both the numerical and the categorical attributes; Equation (2) describes the
d(Xi, Ql) function in more detail.

(Xi, Ql) = ∑p
j=1 (xr

ij − qr
ij)

2 + γl ∑m
j=p+1 δ(xc

ij, qc
ij) (2)

where the first term is the squared numerical distance of attribute j of data object i from
the center for attribute j of prototype l, and the γl in the second term is the weight for
categorical features for cluster l. The second term is the dissimilarity measure of attribute j
of data object i from the center for attribute j of prototype l. In Equation (2), superscript
r represents the numeric features and c represents the categorical features. Then, the
complete cost function for prototype l is computed by the following equation.

El = ∑n
i=1 yil ∑mr

j=1 (xr
ij − qr

ij)
2 + γl ∑n

i=1 yil ∑mc
j=1 δ(xc

ij, qc
ij) = Er

l + Ec
l (3)

where the term is explained in Equation (4). In the following equation Cj is the set of
all discrete values of the categorical attribute j, and p(cj ∈ Cj|l) is the probability of the
discrete value qj from Cj being in prototype l.

Ec
l = γl ∑mc

j=1 nl(1− p(qc
ij ∈ Cj|l)) (4)

3.2. Gradient Boosted Decision Trees

The GBDT is a type of ensemble learning method that combines many weak decision
trees (base learners) to produce more robust and accurate models. It integrates the gradient
boosting technique to extend and improve the weak-decision trees [49]. In the field of
machine learning, boosting means training multiple weak learners in a sequential manner,
where each learning algorithm is adjusted based on the error of its predecessors. The reason
we have selected GBDT is because traffic crash data usually come in a tabular form, and
often GBDT is the state-of-the-art model for tabular data [50]. The GBDT algorithm follows
the steps below to reach the final model.

1. Initialize the model with a constant value F0 = argmin ∑n
i=1 L(yi, γ); here, yi is the

observed values, L is the loss function and γ is the prediction of the model, which
minimizes the loss function. In a classification task, γ is the value of the log (odds).

2. For m = 1,2,3 . . . to M:

(a) Calculate the pseudo residuals, rim =
[

δL(yi ,F(x))
δF(xi)

]
F(x)=Fm−1(x)

, for i = 1, 2, 3 . . .
. . . , n.

(b) Fit a decision tree hm to the pseudo-residuals and create the terminal regions.
Each leaf of the tree represented by Rjm for j = 1, 2, 3..., Jm.

(c) For j = 1, 2, 3 . . . , m, calculate γjm = argmin(∑xi∈Rjm
L(yi, Fm−1(xi) + γhm(xi)).

(d) Update the Fm(x) = Fm−1(x) + γhm(x).

3. Output F(x) = ∑m Fm(x).

There are two major hyperparameters of GBDT: one is the number of sequential weak
decision trees, and another is the learning rate, which determines the magnitude of the
contribution of each tree in the right direction of prediction. In the training process, the
algorithm keeps adding weak decision trees in a forward-stage-wise manner until it reaches
the best fit. The optimal combination of the number of weak decision trees and learning
rate can avoid over-fitting and increase the performance of the model.

3.3. Data Description

For this study, the data were collected from the Crash Report Sampling System (CRSS)
of the National Highway Traffic Safety Administration (NHTSA). CRSS is a sample of
police reported crashes involving all types of motor vehicles, pedestrians, and cyclists.
A crash record in CRSS includes information about the crash characteristics, location of
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the crash, roadway characteristics, involved vehicles, drivers, occupants, pedestrians and
cyclists, and environmental factors. Our data include only large truck-involved traffic
crashes that occurred in the United States from 2016 to 2019. Any medium or heavy
truck excluding buses and motorhomes, with a gross vehicle weight rating (GVWR) over
10,000 (10 k) lb, is considered a large truck. The descriptions and codes for large trucks
are given in Table 1. At first, we filtered the traffic crashes involving large trucks based on
the vehicle body type and GVWR from the vehicle data file. Then, we merged the traffic
crashes from the vehicle data file with the crash data file by the case number data element.
Redundant features, duplicated crash records, and crash records involving values such
as “reported as unknown” or “unknown” were removed from the data. The end data
included 9534 traffic crashes involving large trucks, where the injured persons were drivers,
occupants, pedestrians, and pedal cyclists.

Table 1. Descriptions and codes for large trucks.

Codes Descriptions

60 Step van (GVWR > 10,000 lb)
61 Single-Unit Straight Truck or Cab-Chassis (10,000 lb < GVWR < 19,501 lb)
62 Single-Unit Straight Truck or Cab-Chassis (19,501 lb < GVWR < 26,000 lb)
63 Single-Unit Straight Truck or Cab-Chassis (GVWR > 26,000 lb)
64 Single Unit Straight Truck or Cab-Chassis (GVWR unknown)
66 Truck-Tractor (cab only or with any number of trailing units)
67 Medium/Heavy Pickup (GVWR > 4536 kg)

71 Unknown if Single-Unit or Combination-Unit Medium Truck (10,000 lb < GVWR
< 26,000 lb)

72 Unknown if Single-Unit or Combination-Unit Heavy Truck (GVWR > 26,000 lb)
78 Unknown Medium/Heavy Truck Type
79 Unknown Truck Type (Light/Medium/Heavy)

For traffic crashes with multiple injuries, the severity of the injury is determined
by the most injured person. In the CRSS crash data, the severity of injuries follows the
KABCO scale. This study has placed no injury (O), possible injury (C), suspected minor
injury (B) into one category as “Non-severe injuries”; and suspected serious injury (A) and
fatal injury or killed (K) into another category as “severe injuries”. Table 2 describes the
definitions and the distributions of severity of injury.

Table 2. Definitions and distributions of injury severity (dependent variable).

Level of Injury Frequency (%)

K = Fatal injury or killed: any injury that results in death of a living
person immediately after the crash or within 30 days of a motor vehicle
crash.

323 (3.39%)

A = Suspected serious injury: any injury (except fatal injury) that
prevents the injured person from continuing his/her usual activities like
before the crash (e.g., lacerations, broken or distorted limbs, skull or
chest injuries).

865 (9.07%)

Severe injuries (K + A) 1188 (12.46%)

B = Suspected minor injury: any injury that is evident to the observers at
the scene (e.g., lump on the head, abrasions, bruises, minor lacerations). 964 (10.12%)

C = Possible injury: any injury that was claimed or complained about but
was not evident as fatal, serious injury, or minor injury (e.g., momentary
unconsciousness, claim of injury but not evident).

1298 (13.61%)

O = No injury: No person was injured, and only properties were
damaged. 6084 (63.81%)

Non-severe injuries (B + C + O) 8346 (87.54%)
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The current study has selected 22 input features, and Table 3 describes the names,
unique values, and distribution of the input features. The readers can follow the CRSS
analytical user’s manual of 2016–2019 for more details [51]. It should be noted that for this
study, the contributory factors and input features hold similar meaning.

Table 3. Description of input features.

Feature Names Frequency (%) Feature Names Frequency (%)

Vehicle Characteristics Crash Characteristics

1. Cargo body type (cargo_bt) 15. Pre-crash movement
Van/enclosed box 3041 (31.90%) Going straight 4846 (50.83%)

Other types 2459 (25.79%) Turning left 765 (8.02%)
Unknown 1859 (19.50 %) Negotiating a curve 697 (7.31%)

Flatbed 864 (9.06%) Stopped in roadway 690 (7.24%)
Dump 535 (5.61%) Changing lanes 660 (6.92%)

No cargo body 435 (4.56 %) Turning right 580 (6.08%)
Cargo tank 341 (3.58%) Backing up 438 (4.59%)

2. Gross vehicle weight (gvwr)
Others (e.g., starting in road,

entering parking position,
merging, etc.)

383 (4.02%)

GVWR > 26,000 (26 k) (lb) 6024 (63.18%) Decelerating in road 377 (3.95%)

10 k (lb) < GVWR < 26 k (lb) 3510 (36.82%) Passing or overtaking another
vehicle 98 (1.03%)

3. Trailing unit 16. Manner of collision
Yes 4962 (52.05%) Front to rear 2753 (28.88%)
No 4572 (47.95%) Sideswipe, same direction 2306 (24.19%)

4. Hazardous material involvement No collision with motor
vehicle in transport 1926 (20.20%)

No 9421 (98.81%) Angle 1696 (17.79%)
Yes 113 (1.19%) Others 332 (3.48%)

5. Speed related Sideswipe, opposite direction 302 (3.17%)
No 9156 (96.04%) Front-to-front 219 (2.30%)
Yes 378 (3.96%) 17. Most harmful event

6. Number of vehicles in crash Mean = 2, Std = 0.63 Colliding vehicle in transport 7529 (78.97%)
7. Number of occupants Mean = 1.18, Std = 0.53 Colliding fixed object 754 (7.91%)

Roadway Characteristics Rollover/overturn 347 (3.64%)

8. Trafficway type Colliding parked motor
vehicle 261 (2.74%)

Two-way, not divided 3687 (38.67%) Colliding vehicle outside
trafficway 169 (1.77%)

Two-way divided with
positive median barrier 3026 (31.74%) Others 127 (1.33%)

Two-way, divided,
unprotected median 1603 (16.81%) Colliding pedestrian 107 (1.12%)

Two-way, not divided with
continuous left-turn lane 419 (4.39%) Colliding live animal 101 (1.06%)

One-way 280 (2.94%) Hitting guardrail/face 97 (1.02%)
Non-trafficway or driveway

access 267 (2.80%) Colliding pedal cyclists 42 (0.44%)

Entrance/exit ramp 252 (2.64%) Temporal Attributes
9. Roadway alignment 18. Day of week

Straight 8300 (87.06%) Weekdays 8338 (87.46%)
Curve left 433(4.54%) Weekends 1196 (12.54%)

Others 406(4.26%) 19. Time of the day (hour)
Curve right 395(4.14%) Non-peak (10 a.m.–16 p.m.) 4238 (44.45%)
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Table 3. Cont.

Feature Names Frequency (%) Feature Names Frequency (%)

10. Roadway grade AM peak (5 a.m.–10 a.m.) 2782 (29.18%)
Level 7573 (79.43%) Pm Peak (16 p.m.–19 p.m.) 1162 (12.19%)

Grade unknown slope 885 (9.28%) AM (0 a.m.–5 a.m.) 732 (7.68%)
Downhill 361 (3.79%) Night (19 p.m.–23:59 p.m.) 620 (6.50%)

Uphill 284 (2.98%) Environmental Characteristics
Non trafficway/driveway

access 267 (2.80%) 20. Road surface condition

Others 164 (1.72%) Dry 7662 (80.37%)
11. Traffic control device Wet 1278 (13.40%)

No controls 7090(74.37%) Others 594 (6.23%)
Traffic control signals 1601 (16.79%) 21. Lighting condition

Stop sign 428 (4.49%) Daylight 7470 (78.35%)
Other sign signals 415 (4.35%) Dark-not lighted 1007 (10.56%)

12. Posted speed limit Mean = 47.32, Std = 16.68 Dark-lighted 734 (7.70%)

13. Interstate highway Dark unknown light and
others 323 (3.39%)

No 7242 (75.96%) 22. Weather condition
Yes 2292 (24.04%) Clear 6696 (70.23%)

14. Location Cloudy 1667 (17.48%)
Urban 6583(69.05%) Rain 860 (9.02%)
Rural 2951 (30.95%) Snow 182 (1.91%)

Others 129 (1.35%)

3.4. SHAP Method for Feature Analysis

Lundberg and Lee [48] proposed the SHAP (Shapley additive explanations) method
for the interpretation of the complex models/machine learning models. The concept
of SHAP is based on the game theory by Štrumbelj and Kononenko [52] and the local
explanations by Ribeiro et al. [53]. Initially, the SHAP method builds a model with all
the features, and then builds another model without the feature of interest to see how the
model performs without the feature of interest. The SHAP value of a feature is the marginal
contribution of the feature for the prediction of the desired outcomes. The SHAP value of a
feature is calculated using the following equation:

∅i = ∑S⊆F{i}
|S|!(|F| − |S| − 1)!

|F|!

[
fS∪{i}(xS∪{i} − fS(xS)

]
(5)

In the above equation, ∅i is the contribution of a feature as the SHAP value, S is the
subset of all features, F represents the set of all features and xS represents the values of the
input features in the set S. To determine the effects of the feature of interest, a model fS∪{i}
is trained with the feature interest, and another model fS is trained without the feature of
the interest. Then, predictions from the two models are compared with the current output
denoted as fS∪{i}

(
xS∪{i}

)
− fs(xs). The effect of the feature of interest also depends on

the other features in the model. Therefore, the preceding differences are computed for all
possible subsets [48].

3.5. Predicting Performance Evaluation Metrices

The predicting performances of the models were evaluated based on accuracy, preci-
sion, sensitivity or recall, specificity, and precision-recall area under curve (PR-AUC) score.
These indicators derive from the components of the confusion matrix, and the components
are presented in Table 4. According to Saito and Rehmsmeier [54], the PR-curve can be
more informative than the traditionally used ROC (receiver operating characteristics) curve
to evaluate a model trained on an imbalanced dataset, and where the desired outcome is
dichotomous. The PR-curve is a graphical representation of the precision (on the y-axis)
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and the recall (on the x-axis) at different probability thresholds. The PR-AUC score sum-
marizes the curve with a range of threshold values as a single score. The PR-AUC score is
obtained by the trapezoidal interpolation of the precision. The PR-AUC score ranges from
0 to 1, where a score of 1 indicates a model with perfect skill.

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Sensitivity or Recall =
TP

TP + TN
(7)

Precision =
TP

TP + FP
(8)

Specificity =
TN

TN + FP
(9)

Table 4. Confusion matrix.

Classes Positive Prediction Negative Prediction

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

4. Results

The current study has demonstrated that the k-protypes clustering is a useful method
for the identification of homogeneous clusters within the EDS (entire dataset) of crashes
involving large trucks. Four GBDT models were developed: one before cluster analysis on
the EDS (entire dataset without clustering) and three on each cluster using the 22 input
features presented in Table 3. The dependent feature of the model includes two injury
severity outcomes (severe and non-severe). After cluster analysis, a GBDT model was
developed on each of the identified clusters using the same input features as the EDS-based
model to predict injury severity outcomes. To demonstrate the benefits of developing
cluster-based models, the predicting performances of the EDS-based model were compared
with the predicting performances of each cluster-based model. Subsequently, we used the
SHAP method to estimate and compare the varying effects of the contributory factors on
the severity of injury in the EDS and individual cluster-based model.

4.1. ClusterAnalysis

For k-prototypes clustering, the optimal number of clusters (k-value) needs to be
determined before applying the algorithm. In this study, the optimal number of clusters
was determined by visualizing the within-cluster sum of squares (WSS) in a plot. This
method is known as the elbow method. The idea of the elbow method is to run the
clustering method on the dataset for a range of values (1 to k values). Subsequently, the
WSS for each value of k is plotted in a line chart. If the line in the plot looks like an arm,
then the k value that corresponds to the “elbow” of the arm is the optimal number for
clustering. Generally, an elbow occurs when adding more clusters does not reduce the WSS
significantly. Figure 1 indicates a sharp elbow for three clusters. This means that clustering
the dataset into more than three clusters does not reduce the WSS significantly. Therefore,
we selected three as the optimal number of clusters.
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The study identified three clusters within the EDS using the k-prototypes clustering
and explored the cluster prototypes to characterize the clusters. The distribution of cluster
prototypes presented in Table 5 indicates that the identified individual clusters are more
homogeneous than the EDS. For example, almost 99 percent of the crashes in CL2 occurred
on non-interstate highways. On the other hand, almost 76 percent of the crashes in
the EDS occurred on interstate highways. Therefore, analysis of the EDS alone would
have given fewer compelling estimations about the crashes that occurred on the non-
interstate highways. Similarly, the distribution of the trafficway types in the EDS indicates
less homogeneity. In CL1, almost 78 percent and 75 percent of the crashes occurred on
two-ways divided with positive median barrier and in high-speed (over 60 mph) limit
zones, respectively. Thus, analysis of CL1 can reveal clearer insights about the crashes in
those types of locations. Besides, more than 93 percent of crashes in CL3 involved large
trucks without trailing units. In contrast, only close to 48 percent of the crashes in EDS
included such characteristics. The skewed distribution of these features in the individual
clusters indicates better homogeneity than the EDS. Based on the distribution of the cluster
prototypes, this study characterized the individual clusters in the following manner:

CL1: “crashes on two-way divided with positive median barrier and in high posted speed limit zone”;
CL2: “non-interstate highway crashes involving large trucks weighing over 26,000 (lb)”;
CL3: “non-interstate highway crashes involving large trucks without trailing unit”.

Table 5. Description of cluster prototypes.

Cluster Prototypes EDS 9534 (100%) CL1 2680 (28.11%) CL2 3460 (36.29%) CL3 3394 (35.6%)

Trailing Unit No 47.95% 19.25% 25.75% 93.25%
Yes 52.05% 80.75% 74.25% 6.75%

GVWR
Over 26 k (lb) 63.18% 87.05% 87.83% 19.21%
10 k–26 k (lb) 36.82% 12.95% 12.17% 80.79%

Traffic way

Two-way, not divided 38.67 % 1.83% 56.62% 49.47%
Two-way divided with

positive median
barrier

31.74% 77.76% 8.82% 18.77%

Two-way, divided,
unprotected median 16.81% 15.49% 18.01% 16.65%

Two-way, not divided
with continuous

left-turn lane
4.39% 0.37% 5.49% 6.45%

One-way trafficway 2.94% 1.38% 3.73% 3.36%
Non-trafficway or
driveway access 2.80% 0% 4.80% 2.98%

Entrance/exit ramp 2.64% 3.17% 2.54% 2.33%
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Table 5. Cont.

Cluster Prototypes EDS 9534 (100%) CL1 2680 (28.11%) CL2 3460 (36.29%) CL3 3394 (35.6%)

Posted speed
limit

25th percentile 35 (mph) 60 (mph) 35 (mph) 35 (mph)
50th percentile 45 (mph) 65 (mph) 40 (mph) 45 (mph)
75th percentile 55 (mph) 70 (mph) 55 (mph) 55 (mph)

Interstate
highway

Yes 75.96% 76.42% 1.45% 5.72%
No 24.04% 23.58% 98.55% 94.28%

Injury Severity Non-severe 87.54% 85.11% 87.2% 89.81%
Severe 12.46% 14.89% 12.8% 10.19%

4.2. Model Performance Evaluation

This study intended to show that the k-prototypes cluster-based models are better than
the EDS-based model at predicting the severity of injury in crashes involving large trucks.
All of the GBDT models were trained and tested on 70 and 30 percent of the sample data,
respectively. Then, the EDS-based model was compared with the k-prototypes clustering-
based models in terms of accuracy, precision, sensitivity, specificity, and PR-AUC score.
Table 6 shows the predicting performances of all the models.

Table 6. Predicting performance evaluation.

Dataset Validation Accuracy Precision Sensitivity Specificity PR-AUC
Score

EDS
Train 88.73% 70% 16.83% 98.97% 49.53%
Test 87.63% 51.06% 13.48% 98.16% 40.12%

CL1
Train 87.69% 78.57% 23.66% 98.87% 58.40%
Test 87.19% 74.29% 21.67% 98.68% 45.82%

CL2
Train 89.68% 78.3% 26.77% 98.91% 61.88%
Test 88.34% 62% 23.31% 97.90% 45.40%

CL3
Train 91.03% 78.43% 16.53% 99.48% 52.60%
Test 90.09% 56.52% 12.50% 98.91% 34.23%

Table 6 shows that accuracy for both the CL2 and CL3-based models increased slightly
during validation on both the training set and test set compared to the accuracy of the
EDS-based model. On the other hand, the accuracy of the CL1-based model decreased
for validation across both the training set and test set if compared to the accuracy of the
EDS-based model. Determining the predicting performance of a model that was trained on
an imbalanced dataset based on the accuracy alone would be misleading. However, the
differences in accuracy between the training set and test set can show whether or not the
model is overfitting. The difference between the accuracies indicated that all the models
have satisfactory generalization ability.

The precision, sensitivity, and PR-AUC score are better indicators of the predicting
performance of a model when it is critical to predicting the minority class accurately, and
there is a skewness between the classes of the dependent feature. In this study, severe
injuries are the minority class, and their social and economic effects are more damaging
than other types of crash severity. The prediction results indicated that the CL1 and CL2-
based models obtained better precision, sensitivity, and PR-AUC score than the EDS-based
model during validation on both the training set and test set. The performances of the
CL3-based model were lower than the EDS-based model in terms of the sensitivity, and
PR-AUC score during validation on the test set. This may have been caused because of the
lower proportion of severe injuries in CL3. When compared to the EDS-based model, the
specificity of the CL1 and CL3-based models increased during validation across the test set,
but the increases were not noteworthy. Based on these results, it is fair to conclude that



Safety 2021, 7, 32 12 of 18

segmenting the EDS using the k-prototypes clustering method increased the predicting
performances of the cluster-based models.

4.3. Feature Analysis

Feature analysis using the SHAP method demonstrated that the application of k-
prototypes cluster analysis is an effective step for capturing latent features, and their
varying effects on the severity of injury under different crash scenarios. Figures 2–5 show
the summary plot for the 15 most important features that influence severe injuries in the
EDS, CL1, CL2 and CL3-based model, respectively. The suffixes added to the label of each
feature represent the unique values of that feature. The x-axis of the figure displays the
effects of a feature on the model output, and the y-axis on the right side indicates the
value of the feature being low (blue) vs. high (red). Each dot in the figure represents an
instance from the test set, and the cluster of dots indicates overlapping instances for a
particular SHAP value. Moreover, a feature increases the likelihood of severe injuries when
a certain value of that feature results in higher SHAP values. On the contrary, a feature
reduces the probability of severe injuries when a certain value of that feature results in
lower SHAP values.
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Figures 2–5 show that features such as the number of vehicles, high posted speed limit,
a.m. (0–5 a.m.) hours, angle collisions, and pre-crash movements such as stopping in the
roadway increase the chances of severe injuries in crashes involving large trucks across all
the models. The direction of effects by these features is intuitively reasonable. It is possible
to assume that an increase in the total number of vehicles enhances the cumulative effects
of the crash, which can lead to severe injuries. Additionally, large trucks are more likely to
travel at higher speed in high-speed limit zones, and higher speed has more chances of
leading to severe injuries. On the other hand, sideswipe (same direction) collisions reduce
the probability of severe injuries across all the models.

The figures indicate that though the direction of effects for some features is similar
across all the models, their order of importance and magnitude of effects is not similar. For
example, the SHAP value for the number of vehicles is more than or close to 2 in the EDS,
CL1, and CL3-based models, but it is less than 2 in the CL2-based model. Similarly, angle
collisions have a lower SHAP value in the CL1-based model if compared to other models.

In Table 7, we have summarized the common important relationships across all the
combinations of models (including EDS) and the relationships that were important only in
the individual cluster-based models. Table 7 shows that front-to-rear collisions and dark
not lighted conditions increase the probability of severe injuries in the crash scenarios of
EDS and CL1. Seventy percent of the crashes in CL1 occurred on high-speed limit zones,
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which explains the increase in the severity of injury for CL1 crashes. Except for CL1 crashes,
front-to-front collisions and large trucks colliding with pedestrians significantly increase
the chances of severe injuries across the crashes of EDS, CL2, and CL3. Close to 57 and
50 percent of the crashes in CL2 and CL3 occurred on two-way not divided traffic ways. It
is intuitively reasonable to assume that due to the lack of a barrier between vehicles coming
from opposite directions, front-to-front collisions are more likely to occur on two-way not
divided traffic ways. Additionally, the majority of the crashes in CL2 and CL3 occurred
on non-interstate highways, where pedestrians are more likely to be present. Large trucks
colliding with pedestrians certainly will lead to severe injuries because pedestrians are the
most vulnerable road users without any protection. Large trucks colliding with a vehicle
in transport was a common important feature across EDS, CL1, and CL2-based models.
Daylight conditions reduce the likelihood of severe injuries in the crash scenarios of CL1
and CL3.

Table 7. Important common and unique features in the EDS and clusters.

Injury Outcome Input Feature Names EDS CL1 CL2 CL3

Severe injuries

Number of vehicles
√ √ √ √

Posted speed limit
√ √ √ √

Manner of collision: angle
√ √ √ √

Manner of collision: front-to-rear
√ √

Manner of collision: front-to-front
√ √ √

Hour: am
√ √ √ √

Pre-crash movements: stopped in roadway
√ √ √ √

Pre-crash movements: going straight
√ √ √

Most harmful event: colliding pedestrian
√ √ √

Most harmful event: colliding vehicle in transport
√ √ √

Most harmful event: rollover/overturn
√

Weather: clear
√

Trafficway type: two-way divided unprotected median
√

Cargo body type: van/enclosed
√

Cargo body type: others
√

Cargo body type: dump
√

Roadway alignment: curve left
√

Lighting condition: dark not lighted
√ √

Road surface condition: dry
√

GVWR: over 26 k (lb)
√

Urban/rural: rural
√

Non-severe injuries

Manner of collision: sideswipe same direction
√ √ √ √

Manner of collision: no collision with vehicle in
transport

√

Urban/rural: urban
√

Day of week: weekdays
√

Cargo body type: unknown
√

Lighting condition: daylight
√ √

Traffic control device: traffic control signals
√

GVWR: 10 k–26 k (lb)
√

Hour: pm peak
√

Roadway grade: unknown slope
√

From Table 7, we can also observe that some features were important only in certain
individual clusters. Roadway alignment curve left, van/enclosed box cargo body, and
two-ways divided with unprotected median increase the chances of severe injuries only
in the crashes of CL1. In contrast, pm peak hours and roadway grade unknown slope
reduce the likelihood of severe injuries. The rollover/overturn of large trucks enhances the
probability of severe injuries only in the crashes of CL2. The remaining exclusive important
features in the CL2-based model include cargo body type (i.e., others, unknown), clear
weather, and no collision with vehicle in transport. Features such as dump cargo body,
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urban and rural roadways, traffic control signals, and weekdays were important predictors
of injury outcomes only in the CL3-based model. The results indicated that unless the EDS
is segmented, the varying effects of some features under different crash scenarios cannot
be captured. Additionally, the importance of some features remained hidden during the
analysis of the EDS alone.

5. Discussion and Conclusions

Severe injuries and fatalities in crashes involving large trucks have serious impacts on
human lives, the local economy, and trucking companies. Moreover, the characteristics of
a large truck make the crashes more complex. The complex interactions of contributory
factors obscure their effects on injury outcomes and create heterogeneity in crash data. The
literature on the analysis of injury severity in crashes involving large trucks is limited in
exploring novel methods for the mitigation of unobserved heterogeneity in crash data.
Additionally, the variability of data types in crash data has not been addressed often.

This study has proposed the k-prototypes cluster analysis for the mitigation of unob-
served heterogeneity in crash data of large trucks. The data used for this study include
traffic crashes involving large trucks that occurred in the US from 2016 to 2019. Three
homogeneous clusters were identified in the EDS using the k-prototypes cluster analysis.
The distribution of the cluster prototypes indicated that the identified clusters were more
homogeneous than the EDS. Homogeneous clusters can provide clearer interpretations for
different types of crash scenarios involving large trucks. For example, almost 99 percent of
the crashes in CL2 occurred on non-interstate highways. In contrast, only around 24 percent
of the crashes in the EDS were non-interstate highway crashes. Therefore, the analysis
of CL2 can reveal more accurate estimations about the effects of contributory factors on
the injury outcome of large truck crashes that occurred on non-interstate highways. Road
safety authorities can gain crucial insights by comparing the crashes on the interstate and
non-interstate highways.

Further, the study developed four GBDT models on the EDS and three clusters to
predict the injury outcome of crashes involving large trucks. The EDS-based model was
compared to each cluster-based model in terms of their predicting performances to demon-
strate the superiority of the cluster-based models. The comparison of the predicting
performances showed that the CL1 and CL2-based GBDT models were better at predicting
the injury severity in crashes involving large trucks. The results indicated that developing
an injury severity model on the homogeneous clusters improves the model’s overall per-
formance. Similar conclusions were reported in a few previous studies that had developed
cluster-based models as well [23,25,33,55].

Additionally, the SHAP method was used to estimate and compare the varying effects
of the contributory factors on severe injuries in the EDS and individual clusters. The
results showed that some features such as the number of vehicles, posted speed limit,
angle collisions, a.m. hours (0–5 a.m.), pre-crash movements (i.e., stopped in roadway),
and manner of collision (i.e., sideswipe same direction) had the similar direction of ef-
fects in all the models. These estimations are also consistent with some previous studies.
Zheng et al. [47] and Islam and Hernandez [6] reported similar effects for the increase in
the number of vehicles in large truck-involved crashes. Uddin and Huynh [9], and Islam
and Hernandez [56] also reported that crashes occurring in high-speed limit zones and
between midnight to 6 a.m. increase the probability of severe injuries in crashes involving
large trucks, respectively. A few studies also found that sideswipe collisions are more
likely to be associated with non-severe injuries [10,21]. The magnitude of the effects by few
features was different in the cluster-based models if compared to the EDS-based model.
Further, some relationships between the contributory factors and injury outcomes were
important only in certain individual clusters. For example, large trucks rollover/overturn
was an important predictor of severe injuries only for the crash scenarios of CL2.

Based on the results of the study, it is fair to conclude that the application of the k-
prototypes clustering-based GBDT model is an effective approach for the analysis of severe
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injuries in crashes involving large trucks. The insights uncovered by the k-prototypes
clustering-based model have substantial value from the road safety perspective. Road
safety authorities can put signs and change traffic signals on the segments of non-interstate
highways, where large truck rollover/overturn are more likely to happen. Traffic engineers
may improve the road geometry to reduce the impacts of large truck rollover/overturn.
Such preventive measures can reduce severe injuries and fatalities caused by crashes
involving large trucks. A reduction in severe injuries and fatalities will lessen the social
and economic loss, improve road safety and contribute to sustainable transportation.

Limitations and Future Study

In general, the proportion of severe injuries is fairly low compared to minor injury
or property damage only in traffic crash data. As a result, models tend to become biased
towards the minor injury or property damage only crashes. This biasness can reduce the
accuracy of estimation about effects of the factors that influence severe injuries. The issue
of imbalance in injury outcomes can be addressed by over-sampling or under-sampling
methods. Future researchers can apply over-sampling or under-sampling measures on
the clusters to overcome the issue of class imbalance. Additionally, the study observed
that there is a lack of data about the truck driver’s attributes (e.g., level of fatigue prior
to the crash, driving experiences). The inclusion of such human factors in the data can
produce a better understanding about the causes of crashes involving large trucks. The
k-prototypes cluster analysis can be applied to other types of crash data as well, since most
of the time, crash data have mixed types of features. Further, a comparative study between
the k-prototypes clustering and other types of clustering method can be conducted to
identify the superior clustering method.
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