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Abstract: Despite numerous recent advances in the classroom and in-vehicle driver training and
education over the last quarter-century, traffic accidents remain a leading cause of mortality for
young adults—particularly, those between the ages of 16 and 19. Obviously, despite recent advances
in conventional driver training (e.g., classroom, in-vehicle, Graduated Driver Licensing programs),
this remains a critical public safety and public health concern. As advanced vehicle technologies
continue to evolve, so too does the unintended potential for mechanical, visual, and/or cognitive
driver distraction and adverse safety events on national highways. For these reasons, a physics-based
modeling and high-fidelity simulation have great potential to serve as a critical supplementary com-
ponent of a near-future teen-driver training framework. Here, a case study is presented that examines
the specification, development, and deployment of a “blueprint” for a simulation framework in-
tended to increase driver training safety in North America. A multi-measure assessment of simulated
driver performance was developed and instituted, including quantitative (e.g., simulator-measured),
qualitative (e.g., evaluator-observed), and self-report metrics. Preliminary findings are presented,
along with a summary of novel contributions through the deployment of the training framework, as
well as planned improvements and suggestions for future directions.

Keywords: driving simulation; physics-based modeling; human factors; driver training; driver
education; safety; public health; modeling and simulation (M&S)

1. Introduction

Traffic accidents continue to be a primary safety and public health concern and are
a leading cause of death for young, inexperienced, and newly-licensed drivers (aged
16–19) [1,2]. Per mile driven, young drivers are almost 300% more likely (than drivers in
older age groups) to be involved in a fatal driving accident [2]. Statistics from the same
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source indicate an unfortunate gender effect: the crash fatality rate for young males is
more than 200% higher than that for young females. Furthermore, crash risk has long been
measured to be particularly high just after licensure [3,4]; per mile driven, crash rates are
150% higher for (just-licensed) 16-year-olds than for slightly older drivers who even have a
mere 2–3 years of experience.

Recent scientific evaluations [5] have demonstrated that current driver education
programs (e.g., classroom, in-vehicle, Graduated Driver Licensing programs [6]) do not
necessarily produce safer drivers. While some training programs have been found to be
effective for procedural skill acquisition and others improve driver perception of dangers
and hazards, conventional driver training does not provide teenagers with sufficient hands-
on, seat-time exposure to the varied challenges of driving, which can be visual, manual, and
cognitive [7] in nature. Novice drivers in training need to safely learn essential skills (e.g.,
basic vehicle mechanical operation, steering, turning, and traffic management), without
the complexity of the normal driving environment. Historically, driver licensing in the
United States has served mostly as a formality—if the student does not flagrantly violate
the rules of the road during their brief on-road evaluation, he or she passes the driving
exam [8]. In various countries in Europe (e.g., the Czech Republic, Finland, France, the
Netherlands, and Slovakia), driver training requirements are much more rigorous and
often include a significant component in addition to classroom and in-vehicle training
assessments—through simulator-based training (SBT) [9]. A relevant example from the
literature is the TRAINER project [10], which proposes a framework for SBT (in Europe,
including implementations based in Spain, Belgium, Sweden, and Greece) and offers result
comparisons between training implementation on various classes of simulators and across
simulator fidelities.

In recent times, SBT has been implemented for supplementary teen driver education
and performance assessment [11–15] with numerous key advantages. For example, train-
ing simulators have been implemented to improve driver understanding and detection of
hazards and are useful for enhancing the situational awareness of novice drivers [16,17].
Furthermore, training in the controlled environment of a simulator provides critical ex-
posure to many traffic situations (and some that are rarely encountered while driving a
physical vehicle), trial-and-error (i.e., freedom-to-fail), safety/repeatability, and digital,
real-time metrics of driving performance [18]. Training in a simulator can be extremely
engaging—especially so for young trainees—and provides young learners with critical
additional seat-time to common driving situations in an educational setting that is active
and experiential [19,20]. Likewise, other recent studies [21] have investigated correlations
between simulation performance (e.g., violations, lapses, errors, driving confidence) and
natural tendencies observed when driving a physical vehicle (on-road).

Despite these advantages and advances, SBT also has some noteworthy drawbacks.
A simulator, by definition, is an imitation of reality, and for some trainees, it is difficult to
overcome this perception to provide training that is meaningful. This inherent absence of
both “presence” (i.e., a sense of “being there”, that is natural, immediate, and direct) [22]
and “immersion” (i.e., the objective sensory notion of being in a real-world situation or
setting) [23] in the simulator can result in negative training [24] and acquired skills might
not be appropriately applied when transferred to the “real world”. Accordingly, prior to
implementation, a simulator must be properly verified and validated (i.e., designed and
implemented such that the simulator model serves as an accurate representation of the
“real world”) both (a) to promote positive training for participants and (b) to ensure that
the human behavior data collected are accurate and realistic [25–27].

Another primary concern with many simulator implementations is environment
maladaptation, more commonly referred to as “simulator sickness” [28]. This side effect is
often caused by “postural instability” [29]—a sensory conflict between what is observed and
what is felt when interacting within the artificial environment that commonly manifests
itself through a number of symptoms, including sweating, dizziness, headaches, and
nausea. Fortunately, past studies have demonstrated that simulator sickness is less frequent
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and less severe when experimental duration is modulated, especially so among young
individuals [30]. Finally, simulator environment affordability is a major consideration. The
fidelity of the simulator (e.g., field-of-view, user controls, cabin, motion capabilities, and
various others) should be sufficient to promote positive training while remaining within a
price domain (i.e., acquisition, maintenance, operation, upgrades) that is achievable for a
typical training classroom.

Ultimately, researchers are still trying to determine (and objectively measure) how
simulator exposure compares to actual, real-world driving exposure. Establishing the
efficacy of supplementary simulator exposure in young driver training requires evidence-
based empirical studies; this very notion stands as the primary emphasis of this paper.
Implementing a targeted sequence of SBT exercises and employing a companion holistic
multi-measure assessment, the impact of the training framework was investigated on
various aspects of observed young driver performance. Metrics included: (a) quantitative
measures (e.g., speed and compliance behavior at intersections), as monitored and calcu-
lated by the physics-based vehicle dynamics mathematical model that underlies the driving
simulator engine; (b) evaluator qualitative measures, as a critical “human-in-the-loop”
component to augment numerical assessment; (c) module questionnaires and self-report,
as a means to monitor transfer knowledge (e.g., pre- and post-module and pre- and post-
program); and (d) exit surveys/anecdotal evidence, as a means for teen trainees (and their
parents) to comment on the advantages and disadvantages of the SBT framework.

In Figure 1, a “theory of change” (i.e., a logic model) illustrates both the overall
workflow and the primary novelties of SBT mechanisms that have been developed and
deployed for this work. In Research Methodology, the design and development of the
training environment (including two implemented simulator types) is detailed; the suite
of SBT modules (environments) are described and justified; the experimental cohort is
described, a teenaged cohort who were recruited over a 2+ year timeframe. In Results
and Discussion, preliminary findings are presented by successfully instituting a holistic
performance assessment, the intended outcomes of which could have profound training
benefits. In Broader Impacts of our Methodology and Implementation are discussed the
numerous advantages of using games and modeling and simulation (M&S) in training.
The paper culminates with Conclusions and Future Work. The primary goal is that the
overarching return on investment for this work will be a template for reducing untoward
driving outcomes, which could lead to improved national driver safety in the long term.Safety 2021, 7, x FOR PEER REVIEW 4 of 24 
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2. Research Methodology

As a primary component of the training framework, a simulator training environ-
ment was specified and composed that would allow for presentation of training content
at suitable fidelity (i.e., both physical and psychological) while simultaneously enabling
measurement and observation of human performance alongside a holistic assessment of
participant outcomes. The training environment was designed to allow for much-needed
training “seat time” while enabling experiential reinforcement of basic driving skills and
also enabling a trainee’s freedom to fail. In other words, the environment promoted repeti-
tion and was such that the learner could take risks (i.e., where real-world consequences
were greatly reduced). This allowed failure to be reframed as a necessary component
of learning and made students more resilient in the face of obstacles and challenges
(e.g., [31,32]. This study was approved on 21 October 2015 by the ethics committee of 030
University at Buffalo Internal Review Board with the code 030-431144.

2.1. Training Environment Design

The novel implementation offered two simulator types of varying features and physi-
cal fidelity. The fixed-base simulator is comprised of a racing frame/chair, a high-fidelity
spring-resisted steering wheel (with a 240◦ range of motion), game-grade foot pedals
(gas, brake, and clutch), and a PC-grade sound system. The visual system consists of a
four-wall arrangement (each 6′ high × 8′ wide) that provides drivers with forward, left,
right, and rearward Wide Super eXtended Graphics Array Plus (WSXGA+) -resolution
(1680 × 1050) views arranged at 90◦ (see Figure 2). The motion-based simulator is com-
prised of a 6-Degrees of Freedom (DOF) full-motion electric hexapod platform, a two-seat
sedan passenger cabin, a moderate-fidelity steering wheel (with force-feedback capability
and a 900◦ range of motion), high-fidelity foot control pedals (with spring-resisted gas and
clutch pedals and pressure modulation on the brake pedal), and a 2.1 sound system. The
visual system consists of a 16′ diameter theater arrangement, with a 6′ vertical viewing
capability and which implements 6 Full High definition (FHD)-resolution (1920 × 1080)
projectors to fully envelop the simulator participant (see Figure 3).
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The accompanying simulation software environment was developed in-house (using
C++) so that its design could be tailored to exact training needs. While participating on
the simulator, the driver adjusts the on-board Human Interface Devices (HID) controls
(Stage 1), and these inputs are then delivered to a Windows-based workstation where
a simulation analysis is performed (Stage 2). Physics-based model changes manifest
themselves in required updates to three forms of output rendering: (i) the scene graphics
state (Stage 3a), (ii) the motion platform state (Stage 3b), and (iii) the audio state (Stage 3c)
of the simulation. Notionally, this signal path is illustrated in Figure 4, whose design and
implementation has previously been described elsewhere [33]. Each of these primary I/O
states are briefly described.
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2.1.1. Stage 1: Input—Driver Controls

User input commands are obtained with DirectInput (Microsoft), a subcomponent of
DirectX, which allows the programmer to specify a human-interface device (e.g., steering
wheel, gas pedal, brake pedal). The state of the input device (e.g., rotational position of the
steering wheel, translational position of the pedals) can be polled with minimal latency in
near real-time.

2.1.2. Stage 2: Simulation Analysis

The simulation computer uses the control inputs to perform a numerical analysis
whose outputs are used to render the primary output components of the simulation (i.e.,
visual, haptic, aural). Vehicle dynamics are calculated using the classical Bicycle Model of
the automobile [34,35]. This simplified physics-based model has two primary degrees of
freedom (DOF), which are yaw rate (i.e., rotational velocity) and vehicle sideslip angle (i.e.,
the angle between the direction in which the wheels are pointing versus the direction in
which they are actually traveling). Forward velocity is added to the baseline model as a
third primary DOF for the present implementation. Primary model inputs are: steering
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wheel (rotation) angle and the longitudinal forces of the tires, and primary model outputs
include vehicle velocities, accelerations, and tire forces. We then employ basic numerical
integration (i.e., Euler’s method) to solve the equation outputs that define the current state
of the vehicle (e.g., longitudinal/lateral velocity, yaw and rate, and longitudinal/lateral
position). Updates to the state equations have to occur rapidly, so the step size between
the updated and previous state takes place at a rate of 60 Hz. The artificial vehicles
that populate the virtual driving environment alongside the human-driven vehicle are
independently represented by a physics-based traffic model [36] that attempts to emulate
actual human behavior (i.e., including driving errors and lapses).

2.1.3. Stage 3: Outputs—Visual, Haptic and Audio

Once calculated, vehicle output states are subsequently converted into the six motion
DOFs for haptic cueing: (heave, surge, sway, roll, pitch, yaw). Due to the finite stroke length
of the electrical actuators on the motion platform, this conversion requires limiting, scaling,
and tilt coordination (i.e., a procedure commonly employed that helps to sustain longitudinal
and lateral acceleration cues with the gravity vector through pitch and roll, respectively [37])
by way of the washout filtering [38,39] technique. The updated DOFs are sent to the motion
platform computer via datagram packets (UDP) for the entire simulation. Packet delivery
is accomplished using Win64 Posix multithreads; in this manner, the update rate of the
motion process is independent from that of the graphics process to avoid Central Processing
Unit (CPU) / Graphics Processing Unit (GPU) bottlenecks. Simulation graphics have been
developed using OpenGL, an industry-standard 3D graphics Application Programing
Interface (API). The simulation framework employs OpenAL for sound events that are
commonplace in a ground vehicle scenario: ignition/shutdown, engine tone, and cues for
tire-surface behaviors and hazards.

2.2. Training Modules

The training modules that were designed for this framework allow driving participants
to engage with training content in a progressive manner. In this way, training exposure
begins simple and gradually increases in complexity while additional tasks and driving
challenges are introduced. These simulation-based driving modules were specified and
designed to complement existing driver training methodologies (e.g., in-class and in-
vehicle components, primarily) while each targets a specific skillset (i.e., mechanical, visual,
cognitive, or multiple) widely acknowledged for safe driving. The training modules can be
decomposed into three primary classifications: (a) closed course (CC) “proving ground”
tracks (without traffic); (b) standard residential driving (both with/without accompanying
traffic); and (c) challenge scenarios (always with traffic). These classifications are described
and illustrated next.

2.2.1. Closed Course Driving

The closed-course training environments allow us to evaluate human performance
during specialized maneuvers without traffic. The skid pad [40] training course (Figure 5) is
a conventional automotive proving ground environment that is invaluable to help students
better understand the complex relationship between speed and heading (i.e., steering angle).
The tri-radial speedway (Figure 6) integrates straightaways with curves and necessitates
speed adjustments at the segment transitions (i.e., careful interplay between acceleration,
braking, and turning). The figure-8 test track (Figure 7) allows learners to experience both
clockwise and counterclockwise turns in immediate succession. Note that performance
data were not collected during these closed course scenarios. Regardless, they served as
an invaluable mechanism for providing novice drivers with additional and repeatable
hands-on practice within the simulator among varied geometric conditions. This critical
experiential exposure and “seat time” served as an advantageous supplement to the drives
where driver performance was quantified.
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2.2.2. Residential Driving

The primary SBT environment is based upon a five square mile training area inspired
by an actual residential region located in suburban Western New York State (i.e., Buffalo-
Niagara region) and adjacent to the North campus of the University at Buffalo (where this
research was performed). The residential environment includes actual suburban streets,
including 2- and 4-lane roads and a 1-mile linear segment of the New York State (290)
Thruway. The residential simulation construct also includes road signs, lane markings,
and traffic control devices and allows the trainee to practice basic safe driving (e.g., speed
maintenance, traffic sign and signal management) within a controlled, measurable, and
familiar environment inspired by “real world” locations. Refer to Figure 8, which presents
a notional depiction of the residential training environment, which can be endeavored
either without or with accompanying traffic (as shown).
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2.2.3. Challenging Scenarios

Finally, within the residential driving environment, driving challenges were presented
that entailed additional vigilance and attentiveness on the part of the trainee through
multitasking. To practice these skillsets, which are less common on the roadway (and
therefore, less frequently encountered during in-vehicle training), a series of special hazard
(challenge) scenarios were devised, during which to observe and measure trainee response
and driving performance. These challenge scenarios included the following:

1. A construction zone with roadway cones, narrow lanes, and large vehicles
2. An aggressive driver (tailgater) segment in a narrowed section of roadway
3. Speed modulation segments, including a section with speed bumps (see Figure 9)
4. A complex highway merge with large vehicles and inclement weather
5. An animal crossing within a quiet cul-de-sac (see Figure 10)
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According to previously published statistics [41], young and inexperienced adult
drivers are at elevated risk to be involved in a vehicle accident, underestimate hazardous
situations, and drive more frequently in risky situations than more experienced drivers. Di-
rectly related to these driving deficiencies, the leading causes of fatal crashes among teens
include: (i) speeding, (ii) driving too fast for road conditions, (iii) inexperience, (iv) dis-
tractions, and v) driving while drowsy or impaired. In specification and design efforts
for the training modules (and accompanying evaluation protocols), it remained critical
for us to explicitly address many of these prevailing weaknesses within the supplemental
training framework. Accordingly, thoughtful consideration was given to the layout of
each of the 120 min instructional sessions that comprise the 10 h simulation course. Of the
documented five leading causes of fatal crashes, the training modules explicitly address
the first four: (i) influencing the driver to be mindful of posted speed limits, (ii) making
sure the trainee is monitoring speed in varied driving conditions, (iii) exposing new drivers
to driving situations they have never seen before—and may only rarely encounter, and
(iv) challenge scenarios that cause external distraction and demand multitasking through
cognitive/mechanical/visual workload. A specific driving module to address the fifth
(i.e., impairment) has been designed and incorporated for another research project [42,43]
but was not explicitly included within the current work scope. This training prospect is
discussed further in Future Work.

2.3. Instructional Sessions and Performance Measures

In advance of each instructional session, an acclimation drive (of duration five minutes)
is offered primarily to serve as a warm-up procedure for drivers to become familiar with
the controls and environment of the simulator [44]. Each of the five training sessions
incorporates new elements (e.g., traffic behavior) and training content (e.g., challenge
scenarios) that build upon the previous and scaffold driving knowledge in a progressive
manner. Finally, at the conclusion of the fifth training module, each participant is given
a culminating “final exam” in the form of a virtual road test. This road test serves as
a cumulative mechanism to examine specific training outcomes that were encountered
explicitly within each of the previous five instructional sessions (and the training modules
used for each). Refer to Table 1 for a summary of the instructional sessions, an overview of
the training module(s) that were deployed for that session, and a brief a description of the
primary driving features for each instructional session.

Table 1. Overview of Training Modules for each Instructional Session.

Session Training Module(s) Residential Drive Description/Features

Acclimation
drive Residential

Practice drives for participant acclimation (e.g., the steering
wheel, the paddle shifter signal indicators, and the gas and
brake pedals) and the simulator visual/motion/sound cues.
Note that this drive is encountered at the beginning of each of
the five training sessions.

Session 1 Residential,
closed-course

Course has no traffic and contains three left turns, three right
turns (including one designated as “no right on red”), five
traffic lights, and four stop signs. Course length: 3.2 miles.

Session 2 Residential, closed-course,
challenge

Course has no traffic and contains four left turns, two right
turns (including one designated as “no right on red”), six traffic
lights, a roundabout intersection, and three stop signs.
Challenges (2): construction zone and speed modulation.
Course length: 3.4 miles.

Session 3 Residential, closed-course,
challenge

Course introduces traffic and contains four left turns, two right
turns (including one designated as “no right on red”), eight
traffic lights, and one stop sign. Challenges (2): construction
zone and speed modulation. Course length: 3.2 miles.
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Table 1. Cont.

Session Training Module(s) Residential Drive Description/Features

Session 4 Residential, closed-course,
challenge

Course introduces traffic and contains one left turn, five right
turns (including one designated as “no right on red”), six traffic
lights, and five stop signs. Challenges (3): construction zone,
speed modulation, and animal crossings. Course length:
4.0 miles.

Session 5 Residential, closed-course,
challenge

Course introduces traffic and contains three left turns, four right
turns (including one designated as “no right on red”), six traffic
lights, and three stop signs. Challenges (2): tailgater scenario
and speed modulation. Course length: 3.8 miles.

Virtual
Road Test Residential, challenge

Course introduces traffic and contains two left turns, six right
turns (including one designated as “no right on red”), seven
traffic lights, and five stop signs. Challenges (4): construction
zone, speed modulation, animal crossings, and highway merge.
Course length: 4.7 miles.

Table 2 summarizes the experimental protocol for each of the instructional simula-
tion modules. Eligible participants came for their first visit accompanied by their legal
guardian. At the beginning of this first session, parents and teens provided their informed
consent and assent, respectively, to participate in the study. Each session began with a
number of pre-surveys and self-report questionnaires issued in advance of the simulator
exercises. This was followed by a video briefing detailing driving rules and regulations
pertinent to that session’s specific content and a brief acclimation drive. Teens experienced
the actual simulator exercises in pairs (i.e., one driver and one passenger). There were
brief breaks/transitions placed in between driver/passenger load/unload and to assist
with mitigating simulator sickness. The total duration of each of the five sessions was
approximately two hours.

Table 2. Experimental Protocol for Each Instructional Session.

Activity Duration

Informed consent/assent (first visit only) 10–15 min
Pre-surveys and questionnaires 10–15 min
Training module video briefing 10 min

Acclimation drive 5–10 min
Simulator training modules (as driver) 1 30 min

Breaks/transitions 5–10 min
Simulator training modules (as passenger) 1 30 min

Post-surveys and questionnaires 10 min
Discussion/summary/session de-briefing 5–10 min

Total Module Time: 120 min (approx.)
1 Includes seat-time (and repetition) for the closed-course, residential, and challenge scenarios.

To provide a more holistic understanding of simulation-based training on driving
performance, the holistic performance measure assessment consisted of three primary
subcomponents:

2.3.1. Quantitative Measures

A printed simulator score report collected driver performance data for the entire
duration of each training module for each instructional session. The score report rated per-
formance on basic driving skills including: (a) travel speed on every street, (b) travel speed
at every stop sign, and (c) excursion speed and traffic light state (i.e., red/yellow/green)
while traversing both into and out of every stoplight zone. Penalties were assigned when
drivers were traveling above the speed limit or when they failed to fully stop at controlled
intersections. Cumulatively, these penalties resulted in a final percentage score for each
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category (i.e., travel speed, stop signs, stop lights), which were then combined to create
an aggregated total (0–100) score. Note that the simulator also compiled an (X/Y) trace of
lane position in a separate data file. These data were plotted and any obvious/noteworthy
trends were observed by the trainee post-experiment, but trainee compliance was not
(currently) monitored as a component of the score report cumulative score.

2.3.2. Qualitative Measures

The simulator training evaluator completed an evaluation checklist to subjectively rate
the trainee’s performance (in real-time) on various driving skills (e.g., lane maintenance,
use of turn indicators, and speed fluctuations while turning) on a 4-point Likert scale.
Training evaluators also completed handwritten instructor (HI) comments, later coded
to create scores for the number of positive and negative comments (positive HI; negative
HI) issued per instructional session, per driver. These tabulations likewise resulted in a
difference metric (difference HI), which quantified the difference between the positive and
negative comments issued per instructional session, per driver.

2.3.3. Self-Report Measures

A session-based questionnaire (SBQ) measured pre- and post-session knowledge of
basic driving facts, but specifically for driving and roadway details that were pertinent to
each of the five instructional sessions and the corresponding simulator training module.
The simulator exercises were intended to reinforce driving skills introduced during the
pre-SBQ (and an accompanying video briefing), and this information might serve as first-
time exposure for many novice teen drivers. Subsequently, during the simulator exercise,
drivers directly practiced these skills hands-on such that the session-targeted subject matter
should be better understood once the post-SBQ was endeavored at the conclusion of each
training module.

Likewise, a Motion Sickness Assessment Questionnaire (MSAQ) [45] was employed
to query how each driver felt before and after they drove the simulator to assess if, and
to what degree, simulation had a negative impact on physiological response (e.g., nausea,
dizziness, headache). In the full version of the questionnaire, there were 16 questions
total, each rated on a 10-point (0–9) Likert scale, with each question addressing one of
four possible symptom types (i.e., gastrointestinal; central; peripheral; sopite-related). The
MSAQ resulted in sub-scores for each of these four categories, as well as an “overall”
sickness score (i.e., ranging from 0 to 144). The MSAQ was administered post-experiment,
for modules 1, 3, and 5.

Finally, a participant satisfaction form was issued upon program exit to solicit overall
program rating, comments, and suggestions. Separate forms were given both to the drivers
(students) and to their parents. The student form asked a series of questions (10-point
Likert scale) and also contained three open-ended questions asking students for different
types of feedback on the program. The parent form assessed what parents thought of the
program as a whole and was emailed to parents after their child had completed the entire
10 h program. Open-ended feedback comments (from students as well as parents) were
later tabulated coded to provide trend metrics.

2.4. Experimental Cohort

The study cohort size was N = 132 (66 male, 66 female). For deployment, only
teenagers (ages 14–17, permitted in New York State, but unlicensed) were recruited who
had little or no actual driving experience as a requirement of participation—per our
advanced screening procedures. The intention was to recruit only participants who would
be unbiased by pre-existing knowledge of actual on-road driving. This, would enable us
to promote positive training on the simulator with a “clean slate” of truly novice/green
drivers. Other eligibility criteria were strictly health-related: each candidate participant
could not be susceptible to seizures, be claustrophobic, be afraid of dark environments,
or prone to extreme motion sickness (e.g., car, plane, sea). Primary subject recruitment
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sources included digital e-mailings to all regional high schools within a 60 min drive of
campus (where the study was conducted), printed fliers posted about the campus, word-
of-mouth referrals through families who had already completed the program (as well as
related programs on the driving simulator), and printed advertisements within a popular
community newspaper. The Institutional Review Board (IRB) at the University at Buffalo
reviewed and approved our study protocol in advance of its deployment. Subjects were
minimally compensated for their time (a $50 gift card) after completing all five of their
two-hour SBT modules.

3. Results and Discussion

Previously published guidelines [46] have summarized general requirements for the
successful implementation of a motion simulator intended for driver evaluation. These
requirements include: (a) concerns about measurable driver performance criteria, (b) per-
formance with respect to simulator fidelity, and (c) any demerits associated with a simulator
implementation related to maladaptation and simulator sickness. During deployment
and subsequent collection and analyses of data, these guidelines were attempted compre-
hensively through a variety of data forms. Accordingly, our results are decomposed into
three primary categories of performance measurement: (i) quantitative (i.e., as measured
by the simulator), (ii) qualitative (i.e., as observed by the training expert who monitored
each instructional session), and (iii) surveys and questionnaires (i.e., as self-reported by
driving participants and their parents, as appropriate). As a result, the overall analysis is
representative of a truly multi-measure assessment that enabled a thorough and holistic
evaluation of simulator-based driving performance. Results were tabulated, analyzed, and
reported using a combination of both Microsoft Excel and the R statistical software package.

3.1. Quantitative Measures

Frequency histograms were composed to illustrate score report total scores as collected
and calculated by the computational engine of the driving simulator. These data are
representative of core safe driving performance skills as programmed and monitored
in real-time by the simulator (e.g., travel speed and behavior at intersections). Refer to
Figure 11, which plots the average cohort total score on the x axis for each of the five
training sessions (S1–S5), as well as the virtual road test (VRT) on the y axis. The figure
demonstrates a general overall compliance to safe driving habits within the simulator;
however, it indicates that there may be a ceiling effect beyond the first session. For the
remainder of the sessions, ratings from the score report were biased toward the upper
threshold of the rating scale, which is a direct indicator of expected improvement of
cohort core driving skills (with continued practice/exposure). This trend culminated
with the virtual road test, where observed (mean) cohort scores were the highest when
compared against any of the training modules offered within each of the simulator training
sessions. Embedded within each series are the corresponding standard deviations for these
scores report total scores. As expected, there was a wider standard deviation for the first
session; however, these deviations slowly and steadily reduced as training progressed,
culminating with the smallest standard deviation for the virtual road test. This is a likely
indicator that positive training was maintained and actually improved as the program
progressed, as scores tended to increase more uniformly (i.e., with less variation) for the
entire training cohort.
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Figure 11. Score report totals.

In Figure 12, observed results are compared across simulator fidelities among members
of the cohort. Note that all recruited participants were assigned to a cohort (i.e., fixed-base
or motion-based) for all training sessions. Although it may have been ideal to have all
participants operate both simulator types, enabling a comparison of fidelities within each
participant, the overall cohort size (N = 132) provided a sufficient basis for comparison
of human performance across simulator-fidelities. For the first session, cohort results
were higher on the fixed-base simulator (but with much wider result variance); for the
second session, observed results were nearly equal across simulator types, and for the third,
fourth, and fifth sessions (as well as the virtual road test), observed results were slightly
higher for the motion-based simulator. The general hypothesis for these observations
is that for the first session, the fixed-base simulator was easier to learn and operate for
a novice trainee, and the second session served as an inflection point. However, once
the cohort became suitably acclimated to and comfortable with the companion simulator
training environments, the very presence of motion cues to accompany the simulation
visuals, as well as the greater induced sense of both presence and immersion within the
motion-based simulator display system, provided a higher-quality (i.e., more authentic)
learning environment and therefore served to better promote positive training overall.
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Finally, individual components of the score report were investigated for noteworthy
trends. Refer to Table 3, which presents a summary decomposed by simulator fidelity. In
general, trainees showed stronger compliance to posted speed limits on the fixed-base
simulator. As shown in the second and third columns of the Table, trainees drove almost
twice as fast over the speed limit on the higher-fidelity motion simulator (2.6 vs. 1.5 mph
over the speed limit, on average), resulting in slightly lower speed sub-scores. This result is
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somewhat surprising, as one would think that a higher-fidelity environment (both in terms
of display system and motion capabilities) would result in more authentic driving behaviors
and stronger vigilance to posted speed limits. These trends were actually observed for
the latter two score report sub-scores, where stronger compliance was observed toward
intersection regulation (stop signs and streetlights) on the motion-based simulator relative
to similar observations with the fixed-base simulator (i.e., reflected by the final two columns
of the table).

Table 3. Score Report Metrics by Simulator Type (Entire Cohort).

Simulator Type
Average Speed

over Speed
Limit (mph)

Speed
Sub-Score

(0–100)

Stop Sign
Sub-Score

(0–100)

Street Light
Sub-Score

(0–100)

Fixed-base 1.5 89.5 92.6 92.8
Motion-based 2.6 87.3 96.1 95.1

3.2. Qualitative Measures

Although quantitative measures served as the primary mechanism for trainee per-
formance assessment, training evaluators also performed a more subjective qualitative
assessment (upon pairs of trainees) during each instructional session. In this way, cer-
tain categories of trainee performance could be monitored and measured that would be
more challenging to program a simulator to quantify with any meaningful accuracy. In
so doing, it helped us to maintain an ever-critical “human-in-the-loop” as a critical con-
stituent of the overall human performance assessment. To this end, Figure 13 presents
an example depiction of the qualitative assessment for a single participant, in the form of
an instructor evaluation checklist (IEC). The IEC was performed across three qualitative
performance categories, each rated on a (0–4) Likert scale and observed over the five
primary instructional sessions. The categories represent an assessment of (a) overall lateral
lane stability, (b) vigilance for using turn signals to indicate turns and lane changes, and
(c) maintaining appropriate speed/distance specifically amidst the “challenge” segments
of the training modules. For this particular trainee (sample), overall, qualitative ratings
generally improved across the five training sessions—particularly, compliance to “turn
signal indicators”, which demonstrated steady improvement across all five sessions.
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Sub-Score  
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Stop Sign  
Sub-Score 

(0–100) 
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As a mechanism by which to culminate these qualitative observations across the
entire cohort, project evaluators simultaneously completed handwritten instructor (HI)
comments, later coded to create scores for the number of positive and negative qualita-
tive performance feedback comments issued per trainee, per session. These tabulations
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resulted in a difference metric, per training module. To this end, Figure 14 illustrates the
positive (POS) and negative (NEG) scores, as well as the difference score (DIFF), averaged,
across the entire training cohort and issued per training module for each of the primary
five instructional sessions. The general observed tendency is that the difference metric
is positively correlated with additional simulator exposure, as shown in the plot. As the
program progressed, students continued to progressively demonstrate additional positive
driving habits and, through experiential exposure with the simulation, practiced gradual
performance improvement amidst varied and more complex driving situations. Note that
although the positive/negative evaluation differential increased as intended, the overall
quantity of negative comments issued were observed to steadily increase across the five
training sessions, as illustrated. One likely reason for this observation is the gradual addi-
tion of more challenging driving scenarios as sessions proceeded. Facing a new situation
for the first time creates a new potential for young driver error, and this may have resulted
in additional negative demerits from the human evaluator, even as the student continued to
master core driving skills from previous exposure. Likewise, as training progressed across
training modules and instructional scenarios, the evaluator likely exhibited increased ex-
pectations as students began to master baseline driving skills and perhaps felt an increased
responsibility to steadily reinforce more advanced driving behaviors.
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3.3. Self-Report Measures

As a tertiary mechanism for the holistic driver performance evaluation, quantitative
and qualitative measures were supplemented with a series of self-report metrics. An
overall data comparison found that post-SBQ scores were improved (with significance) as
compared to the pre-SBQ scores, (t(132) = +3.64, p = 5.19× 10−9). Figure 15 plots the results
(pre vs. post) of the session-based questionnaire (SBQ) cohort average across each of the five
instructional sessions. When individual sessions were compared, the post-SBQ scores were
higher (with significance) than pre-SBQ scores for three of the five instructional sessions:
Session 1, t(132) = +8.89, p =3.18 × 10−11; Session 2, t(132) = +5.00, p = 6.02 × 10−5; and
Session 5, t(132) = +7.92, p = 2.24 × 10−7. The lack of observed improvement for the other
two individual sessions (i.e., Sessions 3 and 4) could indicate that there was not sufficient
correlation between the content of the questionnaires and the embedded training content
within the simulator exercises designed explicitly as the focal point for those sessions.
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rate your experience in the training program”, and the second asked, “Overall, rate the 
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analyzes both series. Overall “experience” ratings on the simulator was observed to be 
highly favorable, with approximately 110 of the N = 132 cohort (83%) rating their overall 
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siderably lower, with a weighted cohort average of just 5.7/10. This was likely because not 
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Figure 15. SBQ (pre/post).

The Motion Sickness Assessment Questionnaire (MSAQ) was issued post-simulator
in Sessions 1, 3, and 5. An overall evaluation found that, as expected, simulator sickness
was not identified to be a primary concern for these simulator experiments that were
designed and deployed for this young driving cohort. Figure 16 displays the cohort
mean score (reported as a percentage of the overall MSAQ score: 144) and the number
of participants who reported cumulative scores of greater than 14 (15) of the total MSAQ
scale (also reported as a percentage of the total N = 132 cohort). Standard deviations for
the three sessions (1, 3, and 5) were significantly large only relative to the reported means;
they were 2.56%, 2.55%, and 4.44%, respectively, which is an indicator that there was a
comparatively wide dispersion of results. To this point, note that Figure 16 also displays a
maximum (MAX) MSAQ score across the cohort for each of the three sessions in which this
metric was collected and analyzed. While the extremes are noteworthy outliers, the overall
trends of the data are favorable. The low MSAQ scores across the cohort are attributed
to the youthful age demographic (14–17), who are rarely susceptible to anything more
than “mild” simulator maladaptation. The experimental design (see Table 2) successfully
imparted simulation best-practices and intentionally balanced the 2 h training sessions
with breaks, timely transitions between driver/passenger activities, video training, survey
activities, and perhaps most critically—simulator experiment durations that fell below a
15 min maximum.
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Finally, exit surveys were issued to both the teen trainees and their parents, and these
data further yielded valuable information about the training program. For the teen trainees,
two questions were administered on a 1 to 10 Likert scale. The first asked, “Overall, rate
your experience in the training program”, and the second asked, “Overall, rate the amount
of time that was spent on the driving simulator”. Refer to Figure 17, which co-analyzes both
series. Overall “experience” ratings on the simulator was observed to be highly favorable,
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with approximately 110 of the N = 132 cohort (83%) rating their overall experience as
being an 8/10 or better. In contrast, “time on simulator” ratings were considerably lower,
with a weighted cohort average of just 5.7/10. This was likely because not enough time
spent was spent allowing teens to drive the simulator (performing simulator-exercises), as
opposed to session time spent on other activities (e.g., watching videos, taking surveys,
watching partner drive, experiment debrief). Likewise, teens were afforded the opportunity
to answer open-ended questions related to their training experiences; three questions were
assessed: “What did you learn about safe driving?” (375 total comments received), “What
did you like most about your simulator training program?” (330 total comments received),
and “What did you dislike about the driving simulation training?” (112 total comments
received). The three most common responses (reported as percentages) for each question
are summarized in Figure 18. Most prominently, trainees mentioned learning about hazard
management and the importance of maintaining an appropriate following distance and
speed (relative to conditions). Similarly, trainees reported most liking the realism of the
simulator, the informative nature of the training modules, and the hands-on engagement
of driving a simulator for training. By way of criticism, trainees suggested that the lane
markers and signs were difficult to see; despite acclimation, the steering wheel and pedals
were difficult to adjust to (i.e., a common complaint of all driving simulators); and some
suggested that the graphics were not realistic.
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In a similar manner, parents were issued a series of questions when their teen com-
pleted the training program. Overall ratings were extremely positive, as parents nearly-
unanimously suggested that (a) simulator training should constitute a mandatory first
step in driver training, (b) they would recommend the course to other parents, and (c) the
program successfully instructed their child basic driving skills. Parents were also afforded
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the opportunity to answer open-ended questions related to their own perceptions of their
teen’s training experiences; three questions were assessed (each, on a 3-point Likert scale):
“As a result of their training, did you see your child paying more attention to road signs,
road hazards, and general road compliance?” (i.e., translation of training experiences from
simulator to real-world), “How much do you think your child enjoyed being part of the SBT
program?”, and “Overall, how would you rate this program?” The Likert-style results (re-
ported as response percentages) for each question are summarized (favorably) in Figure 19.
As with their teens, parents were afforded the opportunity to answer open-ended questions
(positive and negative) related to their child’s training experiences (126 total comments
received). For each category, the three most common responses (reported as percentages)
are summarized in Figure 20. Parents opined that the primary benefits were that teens
enjoyed driving the simulator and that the instructors were of high quality; the third
highest frequency response (much less significant) was that teens seemed to have reduced
driving anxiety (while driving) as a benefit of their simulator exposure. However, parents
also noted that they would have liked to have seen more simulator time and increased
graphics realism on the simulator, and many parents also noted the desire to attempt the
simulator themselves. The third highest frequency response (much less significant) was that
parents wished for higher visual realism for the simulator.
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4. Broader Impacts of Our Methodology and Implementation

The outcomes of the current research aimed to demonstrate the effectiveness of physics-
based M&S and its potential to improve roadway safety and public health within North
American young driver training. Such a demonstration could result in a more widespread
deployment of these advanced technologies and augmentation of similar training programs
across the nation. Agencies that might be interested in such technology would include high
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schools, driver training agencies, and law enforcement. The successful implementation
of SBT frameworks could, over time, result in improved driving practices for the teenage
demographic, where a disproportionate number of negative driving outcomes (e.g., crashes,
injuries) continue to occur [1,2]. Ultimately, this could lead to various other benefits to
society, including an increased level of safety on the roadways for all drivers, resulting
in a reduction in accidents, injuries, and loss of life. In turn, this could result in reduced
insurance rates for all drivers, particularly those in the highest-risk pool (i.e., young males).

Likewise, by leveraging the groundwork established in this paper, similar training
programs could be developed for other vehicle types for large equipment civilian vehicle
simulator training, including commercial truck driving. Recent research [47–49] indicates
that skills received from exposure within a large-vehicle simulator (e.g., trucks, aviation)
can directly transfer to skills required to operate an actual truck/aircraft—and are learned
as quickly (and sometimes faster) than is the case with live/physical training. Within
this context, simulators—when employed in addition to (but not as a replacement for)
hands-on training—can be particularly useful for instruction of gear-shifting and linear
and angular maneuvers of increasing complexity. Likewise, in the military, it remains an
ongoing challenge to determine efficient and effective mechanisms for simulator-based
training (SBT). It has been emphasized that what matters most for maximizing SBT ef-
fectiveness is an environment that fosters psychological fidelity (e.g., cognitive skills) by
applying established learning principles (e.g., feedback, measurement, guided practice,
and scenario design) [50,51]. Too often, the evaluation of training outcomes focuses on how
the simulator itself functions, instead of on how humans perform and behave within the
simulator [49,51]. The design and development of a training framework that demonstrates
sufficient physical fidelity, while focusing on the analysis of human factors and objective
metrics for performance within the training environment, remains a point of emphasis for
the current work.

5. Conclusions and Future Work

Traffic accidents remain a primary safety concern and are a leading cause of death for
young, inexperienced, and newly licensed drivers [1–4]. For young driver education, it
therefore remains an utmost public health priority to determine how technology can be
better employed to increase the overall quality and effectiveness of current driver training
methods. Supplemental training afforded by realistic physics-based modeling and hands-
on simulation provides much-needed “seat time”, that is, practice and exposure within an
engaging and authentic setting that promotes experiential learning. Concrete behavioral
and performance feedback can be implemented to enhance and promote positive training,
which could help to reduce negative driving outcomes (e.g., crashes, tickets, property
damage, and fatalities) and thereby improve young driver safety over the long term.

In this paper, a detailed case study was described that examined the specification,
development, and deployment of a “blueprint” for a simulation-centric training framework
intended to increase driver training safety in North America (see Figure 1). Points of focus
in this paper have included an overview of the numerous advantages of expanding the
use of advanced simulation and gaming elements in current and future driver training;
consideration toward simulator fidelity (e.g., including motion capabilities and field-
of-view); and simulator-based driving environments to enhance young driver training
(e.g., including closed-course, residential, and challenge scenarios to accompany baseline
environment acclimation).

A multi-measure (holistic) assessment of simulated driver performance was developed
and demonstrated, including quantitative, qualitative, and self-report rubrics, from which
the following trends were observed:

• Cohort score report total scores exhibited a general upward trend across the entire
program, and these trends were moderately enhanced with the presence of motion
cues (quantitative).



Safety 2021, 7, 24 20 of 24

• Both negative and positive feedback evaluator comments increased as the training
modules proceeded. The overarching hypothesis is that the increase in positive
feedback was counteracted by the driving session evaluator’s tendency for increased
“bias” in the form of growing expectations as the program proceeded (qualitative).

• Post-SBQ scores were higher than pre-SBQ scores (due to module-specific knowledge
gained due to simulator exposure), as expected. Motion sickness (by way of MSAQ)
was found to be insignificant, which can be credited to the experimental design (see
Table 2) and to the young demographics of this specific cohort (self-report).

• Teens rated their experience on the simulator favorably but suggested that more of
the overall session time should have been spent on the simulator itself rather than on
related activities associated with the training program. They recognized the simulator
as an effective way to learn but disliked some of the visual elements and control
aspects of the simulator (self-report).

• Almost all parents agreed that the simulator program should be a first step toward
future driver training. Furthermore, per their own observations of subsequent teen
driving performance, favorable feedback was issued for specific driving skillsets
gained, including improved recognition to road signs and road hazards (self-report).

This paper concludes with numerous suggestions and recommendations that would
enhance future implementations of simulator training to further improve teen driver safety.

5.1. Improved Metrics for Quantifying Simulator Performance

The simulator score report served as a primary measure for quantifying driver perfor-
mance and behavior during the driving simulator exercises. This robustness of this score
report toward comprehensively quantifying simulator performance stands to be improved
from various perspectives. Future implementations would attempt to quantify driver
compliance to lateral lane position, primarily during turn and lane-change maneuvers,
as well as measuring ability to maintain lane-centric behavior during hazard events and
multitasking; would devise enhanced scoring metrics that are specific to each of the three
course environments to monitor overall progress and compliance across the five instruc-
tional sessions; and would incorporate more explicit metrics for each of the specialized
hazard challenges.

5.2. Improvements to Experimental Training Environment

As a primary segment of teen (and parent) surveys, attempts were made to better
understand elements of the current simulator framework that demand improvement in
future implementations. Many teens suggested that signs and lane markings were difficult
to see; although every attempt was made to ensure clarity and visibility of simulation
environment objects, improvements are still required. Many teens suggested that the
simulator (steering/pedals) were difficult to operate; this remains a common complaint
across all driving simulators—particularly so with the feel of the brake pedal [52]. It is
never feasible to make a simulator “feel” like everyone’s own vehicle, both physically
(e.g., the resistive force on the brake pedal) and visually (e.g., the reduced sensation
of longitudinal motion—or vection [53]—while braking within a virtual environment).
Nonetheless, ongoing improvements including additional acclimation and device “tuning”
to each driver should be considered. Finally, various teens (and parents) suggested the
need for improved simulator graphics/realism toward a modern-day “gaming” standard.

5.3. Impairment Training Modules

The current implementation of SBT content was designed explicitly to promote posi-
tive training (i.e., enhancement of knowledge, skills, behaviors [24]) to improve roadway
safety. This was attempted by explicitly addressing the top five (documented) causes for
teen driving accidents and fatalities in New York State [41], with “impairment” being one
of those five. It is well known that teen drivers frequently speak and text-message on
their cell phones while driving [54]. Core simulator exercises are in development that
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compare graphical representations of the teen’s driving to provide concrete performance
and behavioral feedback. Related studies have investigated internal distractions (mind-
wandering) while driving [33,55], which is well-suited to a simulator-based deployment.
Finally, according to data published over the last decade, nearly one-fifth of teenagers
killed in automobile accidents were under the influence (i.e., illicit or prescription drugs,
alcohol), and young drivers are more 17 times more likely to be involved in a fatal accident
when they have a blood alcohol concentration of 0.08% (i.e., the legal limit in New York
State) than when they have not been drinking [56]. Simulator-based exercises have been
designed and installed [42] that enable teen drivers to perform “routine” driving tasks
with/without a simulated state of driver impairment that similarly includes concrete driver
performance feedback.

5.4. Driving Exercises that Promote Reverse Egress

One major deficiency in the present deployment is its current inability to perform a
reverse maneuver within the simulator. Particularly within a driver education context,
this feature could be extremely useful and effective toward improving young driver safety.
For example, reverse maneuvers within a crowded parking area, 2-point turns (e.g., on
a one-way street), 3-point turns (e.g., into a driveway), and the classic parallel-parking
maneuver all require an accurate simulation model for reverse vehicle motion. All of these
maneuvers are encountered during every day driving, and many are requirements on a
standard New York State road test examination [57].

5.5. Driving Exercises for Driver Training on Rural Roads

Previous research [58] has verified that fatality risk is elevated more so on rural roads
than urban roads for all drivers and particularly teen drivers [59]. Per miles traveled,
there have been estimated to be 30–40% more crashes and deaths in rural areas than in
urban areas [59]. Likely causes of these untoward events are attributed to: remote areas
with which young drivers are less familiar; low-lighting conditions during nighttime
driving; increased propensity for elevated speeds on roads that are less traveled [60]; and
as a result of these factors—an elevated likelihood for induced cognitive distraction (e.g.,
mindlessness, task-unrelated thought [33,55]) during the driving task. As such, these
are all critical factors for which to provide exposure—and subsequently examine human
performance behaviors—in future teen driving SBT research.

5.6. Longitudinal Data to Measure Efficacy of SBT

To determine the long-term efficacy of employing simulation for teen drivers on
a broader scale, it would be beneficial to observe the impact of such training exposure
upon lifetime driving statistics. In New York State, the MV-15 report [61] provides vital
information regarding traffic accidents, moving violations, and other negative driving
outcomes of program participants. In future implementations of similar programs, it
would be useful to obtain consent/assent to collect/analyze/compare reports culled from
participants enrolled in simulation-based training programs to similar data culled from
state and national averages. If favorable, such empirical data—presently unavailable in
the literature—could influence future policy for future safety standards related to SBT
courseware.
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