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Abstract: Followership is generally defined as a strategy that evolved to solve social coordination
problems, and particularly those involved in group movement. Followership behavior is particularly
interesting in the context of road-crossing behavior because it involves other principles such as
risk-taking and evaluating the value of social information. This study sought to identify the cognitive
mechanisms underlying decision-making by pedestrians who follow another person across the road
at the green or at the red light in two different countries (France and Japan). We used agent-based
modelling to simulate the road-crossing behaviors of pedestrians. This study showed that modelling
is a reliable means to test different hypotheses and find the processes underlying decision-making
when crossing the road. We found that two processes suffice to simulate pedestrian behaviors:
personal motivation and imitation. Importantly, the study revealed differences between the two
nationalities and between sexes in the decision to follow and cross at the green and at the red light.
Japanese pedestrians showed a greater mimetic behavior at the red light but the process takes into
account both the number of crossing and waiting pedestrians, contrary to French citizens. Finally, the
simulations are revealed to be similar to observations, not only for the departure latencies but also for
the number of crossing pedestrians and the rates of illegal crossings. The conclusion suggests new
solutions for safety in transportation research.
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1. Introduction

“We are discreet sheep; we wait to see how the drove is going, and then go with the drove.” [1]
The fundamentally gregarious nature of human beings leads them to follow simple rules in the

context of collective phenomena such as panic, pedestrian traffic flow and crowd coordination [2–5].
Indeed, who can resist following a person who is running in a specific direction, even without knowing if
it is justifiable? During such collective events, it has often been shown that a number of individuals take
the initiative, then others follow [6,7]. This followership is generally defined as a strategy “that evolved
for solving social coordination problems in ancestral environments, including in particular the problems
of group movement, intragroup peacekeeping and intergroup competition” [8,9]. This followership
behavior is particularly interesting in the context of road-crossing behavior because it involves other
principles such as risk taking [10,11] and evaluating the value of social information [12,13].

Walking in the street is a necessary daily behavior that is generally considered to be safe in the
light of the number of times people cross the road without getting struck by a vehicle. Yet crossing
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the road causes the largest number of pedestrian accidents and the most severe injuries [14]. Indeed,
circumstances such as the urban and social environment can make crossing the road a high-risk behavior.
One of these circumstances is the misuse of social information [12,15]. Indeed, social information, i.e.,
how to trust information gained from people surrounding us, is an important topic in the context
of human collective phenomena and followership [16–19]. In the case of road-crossing behaviors at
signalized crossings, trusting wrong or unreliable information and following someone crossing at the
red light without checking the light color by ourselves (i.e., personal information) leads to an increased
risk of accidents and injuries [20]. This probability of following depends on many factors such as
gender or spatial proximity [12] and is governed by an amplification process also called information
cascade or mimetic process [12,15,21,22]. An information cascade [21,23] occurs at signalized crossings
when pedestrians observe the actions of others and then do likewise, despite possible contradictions
with their personal information. The mimetic process is quite similar, except that in this case the
probability of crossing increases with the number of pedestrians that have already started crossing
according to what we call a mimetic coefficient [22]: the higher the number of pedestrians that have
already started crossing, the more likely it is that the remaining individuals will follow them, even if
the former took the wrong decision (i.e., they crossed at the red light). However, some studies also
suggest that behaviors and reactions vary according to the socio-demographic traits of individuals.
For example, men show more high-risk behaviors than women, who display more compliance and
conformity [24–26]. In the same way, the rate of rule-breaking differs according to the country in
which the pedestrian study is done, and this is not due to a difference in the risk of car-pedestrian
accidents but to social conventions [27] and cultural differences between societies that are conformist
or individualistic [28–30].

In this study, we wanted to highlight the cognitive mechanisms underlying decision-making in
pedestrians who follow another person who is crossing at the green or red light. Although many
studies have attempted to understand which factors influence the number of rule-breaking incidents at
road-crossings, very few have focused on the real decision-making processes of pedestrians facing
the situation of following other pedestrians at a signalized crossing and how the decision to cross is
affected by changes in the number of pedestrians that have started crossing [31,32]. We compared
the behavior according to the country (France and Japan), but also differentiated between crossings
according to the gender of individuals. Mathematical equations and survival analyses were used to
better understand the cognitive mechanisms underlying the decision-making process [22,33]. However,
as these types of analyses may only provide a range of values to explain behaviors rather than a precise
figure of the considered parameter, we also used agent-based models to simulate decision-making
processes and followership behaviors [34–36]. The use of agent-based models allows to recreate all
the variables observed at pedestrian crossings, test them thousands of times and then compare the
simulated results with those observed. This kind of analysis is not possible using traditional statistical
approaches [36,37].

Different studies [4,7,12,15] assumed that persons crossing the road after one or several pedestrians
had done likewise show an amplification process or a mimetic behavior. This means that the higher
the number of pedestrians crossing the road, the higher the probability is that others will follow
them. We tested this mimetism hypothesis against the null hypothesis of independence, meaning
that the probability of crossing the road is not governed by an amplification process but solely by
each pedestrian’s intrinsic probability of crossing. This suggests that at least two processes underlying
pedestrian decisions: their own motivation, or intrinsic probability, and the likelihood that they will be
influenced by others, i.e., the mimetic process [22,38]. These processes might, however, vary according
to individuals and their socio-demographic traits, which leads us to make several assumptions. First,
the intrinsic probability of crossing and the mimetic process should both be lower at the red light
compared to the green light because a minority, if not a majority of pedestrians respect the rules
and consider risks [39–41]. As far as the country or cultural effect are concerned, French pedestrians
are expected to show a higher intrinsic probability to cross at the red light but no difference at the
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green light, as French people are known to be more individualistic and less conformist than Japanese
people [11,15]. The mimetic process should be different between French and Japanese pedestrians,
and mimetism in French citizens is expected to be stronger mimetic process at the red light but
lower at the green light compared to their Japanese counterparts. However, as the Japanese are more
conformist and are aware of group pressure [28–30], they are expected to consider not only the number
of pedestrians that are already crossing, but also the number of pedestrians remaining on the sidewalk,
whilst French pedestrians are expected to only take the number of crossing pedestrians into account.
This process, which takes both the number of moving and of waiting individuals into account, is a
“following the majority” process [23,42] that has also been observed in sheep during decisions to move
together [43,44]. Men are shown to take more risks [11,25] and be less concerned by group pressure
and should, therefore, show higher intrinsic probability than women to cross the road at the red light
for instance. Similarly, men are expected to follow the pedestrians who have already started crossing,
and are not expected to consider the number of waiting pedestrians, whilst women are more likely to
check the behaviors of resting pedestrians as they are more sensitive to group pressure [24,26].

2. Materials and Methods

2.1. Study Sites

We observed pedestrian behaviors at three sites in Strasbourg, France and at four sites in Nagoya,
Japan. Details of each site are given in Table 1. Pictures of each site are available in [15]. These sites
all permitted the observation of collective road crossings involving at least 10 pedestrians at a time.
The speed of vehicles on each site was limited to 50 kmh−1. There was no difference in pedestrian
crossing speed between the sites (permutation test for independent samples: maxT = 2.22, p = 0.168).
At some sites, vehicles were allowed to turn left or right despite the green light for pedestrians, but the
drivers were aware that crossing pedestrians had priority.

Moreover, turning vehicles travel much slower than vehicles that are heading straight on. However,
the driver of an approaching vehicle may be less careful if pedestrians cross at the red light, as he/she
has the right of way. The risk to pedestrians is, therefore, much higher when crossing at the red light.
There was no button for pedestrians to trigger the green light at any of the sites studied.

Table 1. Information about the studied sites in France and in Japan. Road-crossing speed was estimated
by scoring the crossing speed of 20 random pedestrians for each site.

Information Type France-Strasbourg

Sites Train Station Pont des Corbeaux Place Broglie
Coordinates 48.584474, 7.736135 48.579509, 7.750745 48.584559, 7.748628

Lanes 2 * 1 2 * 2 2 * 1
Mean pedestrian flow

per h 667 612 850
Mean road-crossing

speed (m.s−1) 0.96 ± 0.05 1.11 ± 0.29 1.01 ± 0.16

Data collection dates 2–7 July 2014 1–25 October 2014
15 February–9

March 2015

Information Type Japan-Nagoya

Sites Train Station Maruei Excelco Osu-Kannon

Coordinates
35.170824,
136.884328

35.168638,
136.905740

35.166891,
136.907284

35.159316,
136.901697

Lanes 2 * 3 1 * 1 2 * 1 2 * 1
Mean pedestrian flow

per h 480 645 869 814
Mean road-crossing

speed (m.s−1) 1.10 ± 0.22 1.15 ± 0.21 0.98 ± 0.21 1.07 ± 0.18
Data collection dates 13 June–5 July 2011 27 January–5 February 2015
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2.2. Data Scoring

Data were scored over a six-day period for each site, for 1 h per day and per site. We observed
during working days, hours and weeks to ensure that data excluded movements generated by tourism,
festivals, etc. This scoring duration is sufficiently ample to provide a large dataset [12,32,45]. Video
cameras were set up in order to score the light color and were placed in locations ensuring that crossing
pedestrians were visible at all times. Behavioral sampling was used to score the crossing of pedestrians
in one direction only, i.e., that recorded by the camera. Pedestrians were not informed about the
purpose of the study. As both cities are touristic, pedestrians are accustomed to seeing tourists taking
pictures or videos. We did not observe any difference in the way pedestrians behaved when they saw
the camera. We did not take any other equipment such as counters or pocket PC in order to avoid
influencing pedestrian behavior. When observation of road-crossing behavior was hampered by a
visual obstacle (i.e., a car or a truck in front of the video camera), we removed this behavior and the
behaviors occurring immediately before and after it from the analyses. We also removed data in which
cyclists were among the pedestrians or where tourists were present. Tourists were easily differentiated
from citizens, as they were in large groups accompanied by a guide, were dressed differently from
citizens and carried specific equipment (guidebook, map, camera, etc.).

2.3. Research Ethics

Our methodological approach solely involved anonymous observations and anonymous data
scores. Our protocol followed the ethical guidelines of our institutions (Institut Pluridisciplinaire
Hubert Curien, Strasbourg, France and Primate Research Institute, Kyoto University, Japan) and we
received ethical approval from these institutions to carry out our study. All data were anonymous, and
individuals were given sequential numerical identities according to the time of the road crossing and
the arrival/departure order of crossing. Pedestrians had the possibility to be informed about the study
by an information medium in their language (Japanese or French). They were also provided with an
email address and phone number to contact our institution at a later date if desired. Persons who
refused to participate in the study were removed from the data (i.e., we deleted the crossing concerned).

2.4. Data Analysis

This study focuses solely on following pedestrians (at the green and the red light) and not the first
pedestrians to go, which have been described in a first paper, “Part 1” [46]. This approach was chosen
because the two types of decisions (departing first and following) are underpinned by very different
processes [9,47,48]. The complete six-hour data set was analyzed for each site. We scored the behaviors
of following pedestrians when at least two pedestrians crossed the road simultaneously (i.e., when the
time between the two departures was lower than the mean road-crossing time indicated for each site).

All indicated times are in hundredths of a second. We decided to limit our analysis to the crossing
behaviors of the first 10 pedestrians at the green or at the red light, mainly due to the difficulty of
analyzing the time and order of crossing when more than 10 pedestrians were crossing the road
collectively. Similarly, we only analyzed data for pedestrians who were present at the crossing when
the light color changes, or who either decreased their walking speed or stopped as they approached
the crossing, as we wanted to assess how specific factors such as the light color, waiting time, and
number of pedestrians influenced their decisions to cross the road.

We scored road crossings for 2569 followers, of which 1838 crossed at the green light and 731 at
the red one. 902 crossings of followers were scored in France and 1667 in Japan.

For each following pedestrian, we scored the following variables (see [15] for a visual explanation
of the different scored variables):

— The light color when crossing (red or green).
— The departure time, ∆Tj, i.e., the period between the previous light color change and the moment

the pedestrian j starts crossing the road. This variable is positive for pedestrians crossing after
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the light (for pedestrians) has turned red but negative for pedestrians crossing before the light
turns red.

— The departure latency ∆Tj,j−1, i.e., the time elapsed between the departure of pedestrian j and
previous pedestrian j−1.

— The departure order of pedestrians, where the first pedestrian to leave the kerb is ranked as 1, the
second as 2, and so on. Here, we then focused on pedestrians of ranks 2 to n, n being the number
of following pedestrians in a crossing event, with a maximum threshold set at n = 10.

— The gender (male or female).
— The age, estimated at 10-year intervals from 0–9, 10–19, . . . , to 80–89. However, given the number

of data and the analyses we carried out, it was not possible to analyze the effect of age (per
interval) on the decision-making processes. Indeed, the number of pedestrians below 20 and
above 60 years old was not sufficient to calculate mean departure latencies per pedestrian crossing
rank (less than about 3 data per age category per rank).

— The country (France or Japan).
— The waiting time, i.e., the time between the moment a pedestrian stops at the light and the

moment he/she starts crossing the road.

2.5. Mathematical Analyses

Survival analysis [33,49] was used to study the distributions of departure latencies for all followers.
Survival analysis indicates how the ratio of observations decreases from 1 (all observations/data)
to 0 (none) according to a response variable. First, curve estimation tests identified which type of
function was followed by these distributions, namely linear (meaning that the probability of crossing
is time dependent), exponential (the probability of crossing is constant over time) or sigmoid (the
probability of crossing depends on a time threshold that is directly correlated to the response variable)
(see [11,22,38]).

When trying to identify the process underlying following behaviors in pedestrians, we had
two hypotheses, namely the independence hypothesis and the mimetism hypothesis [21,22,50].
Explanations of these two different hypotheses are given just below, but they can only be considered
once we have evaluated whether the intrinsic possibility of crossing for each pedestrian is constant per
time unit. This intrinsic motivation is given by studying the distribution of departure latencies for the
first pedestrian who crosses. As this distribution corresponded to an exponential distribution (see
Supplementary Materials and Table 2), the departure probability of a first pedestrian to cross ψ01 is the
log gradient of this exponential distribution, that is, the inverse function of the mean departure latency
∆T1 for the first departing individual [38,50,51]:

ψ01 =
∑n

i=1
λi, (1)

where ψ01 is the probability of seeing a first pedestrian crossing the road. We based this probability on
the departure latencies for a pedestrian crossing at the green light, but for pedestrians crossing at the
red light, we based this probability on waiting time.

n is the numbers of waiting individuals, here n = N being the maximum number of pedestrians
we analyzed for each crossing, meaning 10.

λi is the probability of individual i being the first person to cross. Here, we analyzed this
probability according to the gender and the country (Table 2).

The probability λi of the individual i to be the first to cross is, therefore:

λi =
ψ01

n
=
ψ01

10
. (2)
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and,

ψ01 =
1

∆T1
. (3)

In a mimetic process where the departure probability is proportional to the number of pedestrians
already moving j, the probability ψj per unit time that one of the n waiting agents became the jth
following pedestrian is:

ψ j = (λ+ C( j− 1))n, (4)

where C is the mimetic coefficient per individual. Here, we analyzed this probability depending on the
gender and the country (results are given in Table 2).

The departure latency ∆Tj,j−1 of the follower j was:

∆T j, j−1 =
1

(λ+ C( j− 1))(n− ( j− 1))
(5)

or

1
∆T j, j−1

= ψ j, j−1 = (λ+ C( j− 1))(n− ( j− 1)) = (λ−C)(n + 1) + j(2C + Cn− λ) −Cj2. (6)

This is a parabolic law z + wj + yj2 where,

z = (λ−C)(n + 1),w = (2C + Cn− λ),y = C.

Fitting the distribution of departure probability per pedestrian departure rank with a parabolic
curve allows us to calculate a range of values for the mimetic coefficient C (See Supplementary Materials
for calculation details and “Results” for the statistical values of parabolic curve estimation tests).

Table 2. Values of departure probability for the first pedestrian to leave the kerb ψ01, intrinsic departure
probability of following pedestrians λ, mimetic coefficient C and crossing rule according to the light
color, country and gender. D indicates the dataset (number of observed pedestrians) for each category.
Range of calculated C is given by resolving by parabolic Equation (6). The best mimetic coefficient C is
the one obtained after implementing the range of calculated C in the model and confronting simulated
and observed data. The crossing rule is considered to be that the probability to join depends on the
number of already crossing pedestrians (Equation (4)), or is calculated as the number of crossing
pedestrians divided by the number of waiting ones (Equation (7)). Values are small because the time
step we used is the hundredth of second. To obtain an idea in seconds, multiply by 100.

Light
Color Country Gender D ψ 01

Range of
Calculated C Best C Crossing Rule

Green France Man 98 0.013 0.0001–0.0026 0.0006 Crossing
Green France Woman 130 0.013 0.0005–0.0031 0.0012 Crossing
Green Japan Man 638 0.016 0.0006–0.0026 0.0016 Crossing
Green Japan Woman 972 0.017 0.0004–0.0031 0.00135 Crossing
Red France Man 290 0.0008 0.00047–0.0006 0.0005 Crossing
Red France Woman 384 0.0006 0.00083–0.0002 0.0008 Crossing
Red Japan Man 35 0.0003 0.0056–0.011 0.005 Crossing/Waiting
Red Japan Woman 22 0.0003 0.0021–0.0032 0.005 Crossing/Waiting

2.6. Modelling

A modelling approach using multi-agent based models was used to determine whether pedestrians
cross according to a mimetic process (mimetism hypothesis) or independently of external influence
(independence hypothesis), and to ensure the precise determining of the mimetic coefficient for each
gender and country according to the range of values provided by the survival analyses.
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We implemented the distribution of the number of waiting pedestrians N in the model. There is
no difference in this distribution between the Japanese and French sites (Mann–Whitney test = W =

764,990, p = 0.464, MFrance = 12.87 ± 6.14, MJapan = 12.38 ± 4.59).
At the start of a simulation, all agents (N) were at the kerb on the same side of the road (we consider

only one side) and had to move to the opposite sidewalk. We implemented the departure probability
λi of each agent, according to his or her gender and his or her country (see Table 2). Pedestrians of the
same gender and from the same country all have the same probabilities. The departure probability of
the first departing individual, the only individual whose decision to move would not be influenced
by the other group members, was identical for the two versions of the model tested here, i.e., the
independence hypothesis and the mimetic process hypothesis. We assumed in the model that all
agents are aware of the state (waiting or crossing) of all other agents at any given time.

i. Independence hypothesis

The first hypothesis assumed that individuals were independent: the departure probability of a
pedestrian was not influenced by the departure of other pedestrians. As a consequence, the individual
departure probability remained constant, whatever the rank of the crossing pedestrian.

Under this hypothesis, the probability that one of the n waiting agents (e.g. individual i) would
became a crossing pedestrian j per unit time was λi. According to Equations (1) and (2), the departure
latency of the crossing pedestrian j was the inverse function of the sum of the λi of n waiting agents:

∆T j, j−1 =
1∑N

i=1 λi
. (7)

In our case, the probabilities were identical, with λ1 = . . . = λN = λ for pedestrians of same country
and same gender.

ii. Mimetic process hypothesis

The second hypothesis specified that pedestrians would be influenced by seeing others crossing,
thanks to a mimetic process. To test this hypothesis, we added a mimetic coefficient C to the above
version of the model (independence hypothesis). The probability per unit time that one of the n waiting
agents would become the crossing pedestrian j under the anonymous mimetic hypothesis was obtained
from Equation (4) and its departure latency obtained from Equation (5). The range of different mimetic
coefficients found in Table 2 was tested. In this version of the model and according to Equation (4),
waiting pedestrians had the same probability of crossing but would now be differentiated according to
their gender and their country. In Equation (4), the probability that an individual will cross is only
influenced by the number of already crossing individuals j. This is the most parsimonious hypothesis,
which also has the lowest number of parameters [21,44,52]. However, when the number of individuals
already moving is not enough to explain the probability of departures, it is necessary to take into
account both the number of moving individuals j (here, the pedestrians that have already started
crossing) and the number of individuals that are not moving n (here, the waiting pedestrians) [44].
This has been applied in data analysis for collective movements of sheep [43].

In this last case, the probability to see a pedestrian crossing the road is, therefore:

ψ j =

(
λ+ C

(
j− 1

n

))
n = (λn + C( j− 1)). (8)

If the first rule (Equation (4)) did not fit with our observed data, we tested the second rule
(Equation (7)).

The different versions of the model, corresponding to each hypothesis, were implemented in
Netlogo 6.0.6 [36,53]. The models we developed are modified versions of an existing model from [38]
and is adapted to Netlogo 6.0.6. Models can be found in the Supplementary Materials.
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The model is stochastic: a number between 0 and 1 was randomly attributed to each waiting
pedestrian at each time step (a hundredth of second). If this number was lower than the theoretical
departure probability of each agent, the pedestrian would start to cross; if this number was higher than
the theoretical departure probability, the agent did not move and continued to wait. The country, the
gender, the pedestrian departure rank and the departure latency of each crossing pedestrian agent
were scored for each simulated crossing event. To be consistent with the experimental situation, we
stopped a simulation after a specific time threshold when no agent followed the departure of the first
or last crossing pedestrian. This threshold depends not only on the light color but also on the country.
When crossing at the green light, the time threshold is defined as the time the light remains green; 1 min
45 s is the maximum green light time between the sites and 23 s the minimum time. Knowing that the
maximum departure time of a following pedestrian was 9.76 s, this threshold is more than sufficient to
avoid committing any errors. At the red light, French and Japanese pedestrians showed two different
behaviors (see Part 1, [46]). Indeed, when crossing illegally, French pedestrians crossed throughout the
duration of the red light (about 80 s) whilst the Japanese only crossed when the pedestrian light was
close to changing from red to green (about 4 s). We then set these thresholds for French (80 s) and
Japanese (4 s) pedestrians, respectively. We stopped the simulation when all the N agents had crossed
the road or when the time threshold had been reached, but considered a maximum of 10 pedestrians
for each crossing event in order to compare simulations with our observed data. We set the number of
simulations to 1000 for each hypothesis and for each set of tested parameters (Light color * Country *
gender * hypotheses, with the range of mimetic coefficients values for the mimetism hypothesis), or a
total of 70,000 simulations.

2.7. Statistical Analyses

In order to know whether departure time survival distributions follow exponential law (see
Supplementary Materials) and the distributions of departure latencies according to pedestrian
crossing rank follow parabolic law, linear regression was used to compare theoretical data to
observed data with adjusted R2. The best fitting distribution were chosen according to F-statistics.
The Kolmogorov–Smirnov test was used to compare the distribution of simulated data to observed data.
This test was revealed to be the best means to compare two distributions. In a Kolmogorov–Smirnov
test, the higher the p-value, the lower the D-statistics, and the better the fitting. Analyses were
performed in R 3.3.2, with α set at 0.05.

3. Results

3.1. Analyses of Departure Latencies According to Pedestrian Departure Rank

The survival curves for departure latencies of following pedestrians at the green light (y = 0.7736 *
exp−0.029x, R2 = 0.98, F = 88,800, p < 0.00001) and waiting time at the red light both fit with exponential
distributions (y = 1.0606 * exp−0.0005x, R2 = 0.97, F = 23,540, p < 0.00001). The probability that a
pedestrian will follow another at the green light is 0.029, a value that is about 22 and 17.5 times higher
than the probability to be the first to leave the kerb in France and Japan, respectively (see Table 3).
The probability that a pedestrian will follow another at the red light is 0.0005, i.e., about 7 and 16 times
higher than the probability to be the first to leave the kerb in France and Japan, respectively. Several
initial conclusions can be drawn from this result. First, the substantially higher probability indicates
a mimetic process. Second, this mimetic process seems to differ according to the light color and the
country: French citizens show less mimetism at the red light compared to the green light, but more
cases of first pedestrians crossing at the red light in France compared to Japan. However, the same
mimetic process is observed for Japanese pedestrians crossing at the red light and the green light, with
much fewer pedestrians crossing first at the red light.

We then analyzed whether the departure latencies according to the pedestrian departure rank
followed a parabolic curve, which indicates that a mimetic process underlies the decision to cross.
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Results are given in Table 3. Whilst mimetic process is seen to govern the behavior of Japanese
pedestrians, this mimetism does not seem to be as consistent in the behavior of French pedestrians.

Table 3. Statistical values of parabolic curve estimation test with the departure latencies according to
the pedestrian departure rank, for each light color, gender and country.

Country Gender Green Light Red Light

df F p df F p
France Man 7 2.79 0.139 7 15.37 0.006
France Woman 7 4.01 0.08 7 1.448 0.268
Japan Man 7 42.02 0.0003 7 5.93 0.026
Japan Woman 7 40.1 0.0004 4 7.81 0.039

3.2. Comparison between Observed Crossing and Simulated Crossing

The modelling of crossing behaviors reveals whether an individual bases their crossing decision
purely on their own motivation (independence hypothesis) or if this decision solely relies on mimetic
behaviors (mimetic process hypothesis).

Crossings at the green light: only the number of pedestrians that were already crossing was used,
and this was sufficient to explain the distribution of observed departure latencies (Table 3). Results are
illustrated in Figure 1. No confirmation of the independence hypothesis was found for either country or
gender, and results from simulations were consistently different from observational data (p ≤ 0.00001,
D = 1). Values of mimetic coefficients for French men ranged from 0.0005 to 0.001 (p ≥ 0.126, D ≤ 0.556)
and did not provide different distributions of simulated departure latencies compared to observed
data with a best mimetic coefficient of 0.0006 (p = 0.352, D = 0.444, Figure 1a). Concerning French
women, distributions of simulated departure latencies with mimetic coefficients ranging from 0.0009 to
0.0015 were not statistically different from the observed data (p ≥ 0.126, D ≤ 0.556) with a best mimetic
coefficient of 0.00012 (p = 0.730, D = 0.333, Figure 1b). Simulations for Japanese men showed similar
distributions of departure latencies to observational data, with mimetic coefficients going from 0.0015
to 0.0019 (p ≥ 0.126, D ≤ 0.556) with a best value of 0.0016 (p = 0.989, D = 0.222, Figure 1c). Finally,
simulations of crossings for Japanese women are not different from observed data, with mimetic
coefficients ranging from 0.0012 to 0.0015 (p ≥ 0.126, D ≤ 0.556) and a best mimetic coefficient of 0.00135
(p = 0.989, D = 0.222, Figure 1d).
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Figure 1. Distribution of mean departure latencies (hundredth of second) at the green light according
to pedestrian crossing rank for observed data (blue), simulated data of the independence hypothesis
(grey) and simulated data for the best mimetic coefficient (orange). (a) For French men; (b) for French
women; (c) for Japanese men; and (d) for Japanese women.

Crossings at the red light: although the number of pedestrians already crossing was sufficient
to explain the departure latencies of French sites, the departure probability had to be modelled as
dependent on the number of already crossing pedestrians

the number of waiting pedestrians in order to fit the simulations to observation data in
Japanese sites (Table 3). While all the waiting agents crossed in the green-light model, some simulations
for the red-light model were different, with the number of crossing agents sometimes stopping before
the threshold of 10 was reached. This result was important to explain the data. The independence
hypothesis was not confirmed, either because the distribution of simulated departure latencies was
different from the observed data (p ≤ 0.00001, D = 1 for French pedestrians), or because the simulations
only reached one follower in Japanese pedestrians, which is far from the result we obtained with
observations (nine followers for Japanese men and seven followers for Japanese women). For French
men, departure latencies of mimetic coefficients [0.0006; 0.0005] were not statistically different from
observed departure latencies (p ≥ 0.126, D ≤ 0.556; 0.0006 being the best mimetic coefficient: p = 0.352,
D = 0.444, Figure 2a). Concerning French women, distributions of simulated departure latencies with
mimetic coefficients going from 0.0006 to 0.00085 are not statistically different from observed data
(p ≥ 0.126, D ≤ 0.556), with a best mimetic coefficient of 0.00085 (p = 0.730, D = 0.333, Figure 2b).
As previously noted, the number of pedestrians already crossing was not enough as a single process in
our model to explain the departure latencies of Japanese pedestrians (p < 0.028, D > 0.722). However,
the distributions of departure latencies in simulations that include the number of pedestrians already
crossing and the number of waiting pedestrians (Table 3) are not different from the observed departure
latencies (p ≥ 0.108, D ≤ 0.667), with 0.005 as the best mimetic coefficient for Japanese men (p = 0.860,
D = 0.264, Figure 2c) and 0.0035 for Japanese women (p = 0.872, D = 0.285, Figure 2d).
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Figure 2. Distribution of mean departure latencies hundredth of second) at the red light according
to pedestrian crossing rank for observed data (blue), simulated data of the independence hypothesis
(grey) and simulated data for the best mimetic coefficient (orange, and solely involves pedestrians that
are already crossing for Japanese sites). Finally, yellow curves indicate the ratio of crossing/waiting
pedestrians for the Japanese sites. (a) For French men; (b) for French women; (c) for Japanese men; and
(d) for Japanese women. For (c) and (d) the independence hypothesis curve is only represented by a
dot at the pedestrian crossing rank 2. We never observed a rank 3 for the independent hypothesis in
Japanese pedestrians.

Finally, for the rate of illegal crossings in simulations, the mimetism hypothesis—taking the
number of crossing pedestrians into account for French sites and the number of crossing and waiting
pedestrians into account for the Japanese sites—is the only hypothesis that provides similar results to
observed rule breaking (Table 4). The simulated rate is the same as for the observed rate in all groups
except French women, where we have 12% less rule breaking in observation data.

Table 4. Rate of illegal crossings for observations and simulations. C means model with only
crossing pedestrian as rule, C/W means number of crossing pedestrians divided by number of waiting
pedestrians rule.

Hypotheses France Japan

men women men women
Observed 0.46 0.38 0.02 0.02

Independence hyp. 0.24 0.19 0.0006 0.001
Mimetic hyp. (C) 0.50 0.50 0.12 0.04

Mimetic hyp. (C/W) NA NA 0.02 0.02
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4. Discussion

This study showed that modelling is useful to test different hypotheses and find the processes
underlying decision-making when pedestrians cross the road. Even if modelling remains an abstraction
of reality, it identified exactly which parameters are important to fit the simulations to observations,
and revealed in this study the differences between the Japanese and the French and between women
and men in their decision to follow and cross at the green and red lights. Finally, the model highlighted
not only similar departure latencies but also a similar number of crossing pedestrians and a similar
rate of illegal crossings between simulated and observed data.

In order to fit the simulated departure latencies to the observed departure latencies, we had to
include different parameters in the model, certain of which varied according to the gender and the
country. It is important to make the agent-based model reflect the site variables as closely as possible
to be sure that simulation results are comparable to empirical observation data [36,54,55]. This avoids
false positives or false negatives that can occur though incorrect model parameters. This matters
particularly when studying such risky, and even lethal, behaviors such as crossing illegally. First,
the number of waiting pedestrians was implemented. The distribution was identical for French and
Japanese sites, confirming that our sites were comparable (as Table 1 shows), and that the number
of waiting pedestrians was a necessary variable in the model to fit the simulated number of crossing
pedestrians to the observed data. We had to model the threshold time rules of crossing that we observed
according to the light color but also according to the country. This threshold time necessity in the model
confirms that decision making differs according to the light color but also according to the country,
with no crossing at the red light for Japanese pedestrians until the light for vehicles turns orange (see
Part 1, [46]). This effect of traffic light sequences has already been described in different studies [20,56].
Finally, we had to implement the intrinsic probability to cross and the mimetic coefficient to differentiate
between the independence hypothesis and the mimetic process hypothesis, respectively.

The intrinsic probability, meaning our own motivation without being influenced by others, was
revealed to differ according to the parameters we studied. First, the intrinsic probability is higher at
the green light than at the red light, which is both understandable and reassuring. This shows that
the probability of deciding to cross based solely on our personal information is lower at the red light
compared to the green light. As we found in a previous study ([15,46]), French pedestrians cross at the
red light more often than Japanese pedestrians. The current study finds that the intrinsic probability to
cross at the red light is higher at French sites and conversely, the intrinsic probability to cross at the
green light is higher at Japanese sites. However, this difference is not just related to the rate of illegal
crossings, but is also explained by departure times. Japanese pedestrians start crossing sooner than their
French counterparts at the green light, probably because they are more attentive to the light change,
meaning that they trust their personal information more than they trust social information [12,15].
This may also because Nagoya is a more time-pressured city than Strasbourg. In stark contrast, the
French cross more and much faster at the red light. Intrinsic probability is, therefore, representative of
individual risk-taking levels [10,30,32]. We found a slight difference between French men and women
crossing at the red light: here, women seem to have a lower probability of crossing based solely on
their personal information at the red light, which confirms previous studies [11,26,57]. However,
this intrinsic probability alone was not enough to explain the following behaviors of pedestrians,
meaning that a mimetic or amplification process underlies most of the crossing decisions made by
following pedestrians.

The implementation of a mimetic process in this model makes it possible to fit simulated data to
empirical data and to explain them: the higher the number of individuals crossing, whatever the light
color, the higher the probability is that other individuals will cross. This copying behavior, referred to
as “sheep” or “herd” behavior, is well known in human beings in domains such as financial markets,
fashion, purchasing or crowd behavior [5,58–62]. This process seems to be deeply rooted in human
behavior due to their gregariousness and sociality, and can be observed in many other social animal
species [63–65]. Mimetism is lower for French pedestrians crossing at the red light, but they only
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take the number of crossing pedestrians into consideration when making their decision. By contrast,
Japanese pedestrians show greater levels of mimetism at the red light, but they take both the number of
pedestrians already crossing and the number of waiting pedestrians into consideration when making
their decision to cross. These results confirm the more individualistic nature of French society and
the more collectivist and conformist behavior in Japan [11,66,67]. Indeed, the different processes
we observed in this study show that the Japanese consider the behavior of other pedestrians: the
Japanese tendency to take the behavior of others into account could be explained by their fear of being
criticized (social credibility), which is greater than the fear of being fined (risk exposure) [10,24]. Taking
into account the number of crossing and waiting pedestrians is a “following the majority” rule that
illustrates how humans adapt their individual behavior to that of others. Indeed, this rule has been
well described in animal species [44,63,64] including strongly gregarious species such as sheep [43].
The lower mimetic coefficients suggest that men are more individualistic than women, but this is only
confirmed in France, whilst Japanese men and women behave in the same way.

5. Conclusions

This study highlighted that only two human variables, namely intrinsic probability and in
particular mimetism, were sufficient and adequate to explain the departure latencies of pedestrians but
also the rate of rule breaking. Matching values for each gender and each country led to a significant
fitting between simulated and observed data. This leads us to conclude that when crossing the road,
at least at signalized crossings, human beings behave like sheep, and that a high rate of accidents
with cars might be due to this herding behavior and the misuse of social information. It would be
interesting first to assess whether accidents happen more in pedestrian groups or with alone/isolated
individuals. In a second point, we need to identify whether these following pedestrians are aware
of the risk or not: do they follow thinking that the signal is green or do they follow knowing that
the light is red? More research is necessary on these behaviors. With the part 1 [46], we identified
two types of pedestrians crossing illegally: the first ones to step off the kerb and those following
(this current study). Part 1 [55] gave solutions to avoid intentional illegal crossings, but we need also
to prevent pedestrians followings their conspecifics but not being aware of the red light and, as a
consequence, of the risks. A sound signal produced when pedestrians cross at the red light could be a
solution to stop the first pedestrian from crossing but also to warn other pedestrians that are ready
to follow that this is not the right time. The signal could be only a sound but China experimented
with some water spray at illegal crossings [68]. These signs need to be tested in order to assess their
efficiency but also to determine whether they do not lead to unexpected risky behaviors (i.e., surprise
and stop in the middle of the road). To conclude, these studies about the decision-making processes of
pedestrians during road-crossing are useful tools to conceive new safety and public education solutions
in transport research.
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