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Abstract: Pedestrians are ideal subjects for the study of decision-making, due to the inter-individual
variation in risk taking. Many studies have attempted to understand which environmental factors
influence the number of times pedestrians broke the rules at road-crossings, very few focused on the
decision-making process of pedestrians according to the different conditions of these variables, that is
to say their perception and interpretation of the information they receive. We used survival analyses
and modeling to highlight the decision-making process of pedestrians crossing the road at signalized
crossings in France and in Japan. For the first pedestrians to step off the kerb, we showed that the
probability to cross the road follows three different processes: one at the red signal, one just before
the pedestrian signal turns green, and one after the signal has turned green. Globally, the decision of
the first pedestrian to cross, whether he or she does so at the green or at the red signal, is influenced
by their country of residence. We identify the use of cognitive processes such as risk sensitivity and
temporal discounting, and propose new concepts based on the results of this study to decrease the
incidence of rule-breaking by pedestrians.

Keywords: collective behaviors; cognition; culture; gender; risk taking

1. Introduction

Human beings have to make numerous decisions every day throughout their lifetime. Most of
these decisions are relatively easy: what to eat for breakfast, what to wear, what itinerary they will use
to go to school or to work. Whether or not they should marry or have a child are bigger choices to
make. Finally, some individuals can change the lives of millions of people with their decisions to vote
laws or go to war. Many studies have attempted to understand how decisions are taken and if they
are optimal from an evolutionary perspective [1,2]. Decisions usually follow something comparable
to an optimal test called SPRT (sequential probability ratio test) and require a sufficient difference
of evidence or information between two alternatives in order to choose the most profitable or the
less risky of the two options [3,4]. However, without going so far as to claim that these everyday life
decisions are suboptimal [5,6] or irrational [7–9], human decisions might be biased and influenced by
personal, social, and/or environmental variables.

Pedestrians are ideal subjects when studying decision making. Pedestrians need to perceive and
integrate a great deal of information compared to other situations they encounter. They have to identify
spatial cues about where to go, avoid other pedestrians as they walk in the street [10,11], and cross
the roads, which can sometimes be a high-risk behavior [12,13]. Like in other behaviors, pedestrian
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behavior—and particularly road crossing—displays great variance, which is dependent on many
factors [12,14–19]. Some pedestrians will take more risks than others when crossing the road, either by
crossing at the red signal, or by decreasing the gap acceptance with a car [20,21]. Indeed, a higher rate
of risky behaviors has been observed in males or young individuals, particularly adolescents [19,22].
Older persons have sometimes been reported to take more risks than others [23], but this is due to a loss
of perceptive and cognitive abilities rather than intentional risk taking [13]. Some people also prefer
to base their decision on their personal information instead of trusting the social information [24,25].
This might be particularly advantageous in the case of road crossing, i.e., choosing to not follow
pedestrians crossing at the red signal without checking how far away the next car is [26,27]. The use of
social information and the probability of rule breaking are strongly correlated with the culture and
the country of pedestrians, with each country having its own principles of conformism and social
norms [28,29]. Previous studies have shown that the number of illegal crossings is largely dependent
on the country where pedestrians live, and its culture [27,30,31]. How a country is developed might be
important on how pedestrians cross the road (looking for vehicles for instance, [32,33]) but the culture
is also important so far on how people behave. Indeed, citizens of adjacent developed countries may
have different pedestrian attitudes due to their culture [34,35]. The majority of these studies made
correlational analyses but did not explore the possible presence of assessment mechanisms (cognitive
or psychological) underlying the decision-making processes [3,4].

Indeed, whilst many studies tried to understand which factors influence the incidence of rule
breaking at road crossings, very few focused on the decision-making process of pedestrians facing
the different conditions of these variables, that is to say how their perception and interpretation of
the information they receive [36]. Pelé et al. [27] already did an integrative study, taking into account
the country, gender, age, etc. on the time to cross. However, this study was only correlative and did
not allow to exactly understand the mechanisms underlying decision-making, which mathematical
modeling on each factor can do. This study aimed to highlight the decision-making process of
pedestrians crossing the road at a signalized crossing. For both signal states (red and green), we
decided to separate analyses between the first pedestrian to go and other individuals following him/her,
and focused the first part of our study on the first pedestrian to step off the kerb. Indeed, the decisions
underlying the departure of a first individual and those of the followers are different, and the departure
of the first pedestrians strongly influences the decisions of other individuals [37,38]. The first pedestrian
to step off the kerb is also the only one to exclusively follow his/her own personal information, without
being influenced by other pedestrians, which could be considered a high-risk behavior.

This study used mathematical modeling combined to survival analysis to understand
decision-making processes. Survival analysis is a statistical tool used to predict when one or more
events will occur, such as death in biological organisms and failure in mechanical systems [39–41].
These analyses are used and sufficient to explain sophisticated collective decision-making [42,43]. In
the case of pedestrians crossing the road, survival analysis allows us to understand how the probability
that pedestrians will cross is influenced by time according to the imminence of the pedestrian signal
changing, whether from red to green or vice versa. It also allows us to calculate the probability of a
pedestrian to cross in various conditions [44]. The decrease of the curve provides information about
the process underlying the decision, with a sigmoid indicating a threshold similar to that of a diffusion
model, whilst an exponential decrease shows that the probability is constant per time unit [2,27,45].
Survival analysis can also be used to test other factors such as the gender or citizenship of pedestrians,
the number of traffic lanes or the number of waiting pedestrians.

In this study, these factors are analyzed in order to identify time thresholds to cross the road
and pinpoint optimal decision processes involved in pedestrian road-crossing. However, thresholds
should differ according to the perceived risk [46]: for instance, it should be lower in men than in
women. Similarly, we expected thresholds to increase with the number of lanes, as the perceived risk is
higher in this situation. As described above, culture affects the risk perception and the social influence.
Therefore, the effect of culture on pedestrian road-crossing behavior was studied in sites in France
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(Strasbourg) and in Japan (Nagoya). We expected to see a difference between the two countries, with
the threshold for Japanese pedestrians occurring closer to the time the signal turned green. This is not
due to higher perceived risk, but is rather explained by their known conformism to rules, contrary to
pedestrians in Western countries [47].

2. Materials and Methods

2.1. Study Sites

We observed pedestrian behaviors at three sites in Strasbourg, France and at four sites in Nagoya,
Japan. Details about each site are given in Table 1. Pictures of the different sites are available in a
previous study [27]. These sites all permitted the observation of collective road crossings involving at
least 10 pedestrians at a time. The speed of vehicles on each site was limited to 50 km.h−1. There was
no difference in pedestrian crossing speed between all sites (permutation test for independent samples:
maxT = 2.22, p = 0.168). Cars and pedestrians signals worked in the same way for both countries. At all
sites, pedestrians always had the priority when the signal turned green even if, at some sites, vehicles
were allowed to turn left or right despite the green signal for pedestrians, but the drivers were aware
that crossing pedestrians had priority. This difference did not affect pedestrian behaviors (see Table 1).

Moreover, turning vehicles travel much slower than vehicles that are driving straight ahead.
However, the driver of an approaching vehicle may be less careful if pedestrians cross at the red signal,
as the driver has the right to pass. The risk to pedestrians is therefore much higher when crossing at
the red signal. There was no button for pedestrians to trigger the green pedestrian signal at any of the
sites studied.

Table 1. Information about the studied sites in France and in Japan. Road-crossing speed was estimated
by scoring the crossing speed of 20 random pedestrians for each site.

France-Strasbourg

Sites Train Station Pont des Corbeaux Place Broglie
Coordinates 48.584474, 7.736135 48.579509, 7.750745 48.584559, 7.748628
Lanes 2 * 1 2 * 2 2 * 1
Mean pedestrian
flow per hour 667 612 850

Mean road crossing
speed (m.s−1) 0.96 ± 0.05 1.11 ± 0.29 1.01 ± 0.16

Dates of scoring 2–7 July 2014 1–25 October 2014 15 February–9
March 2015

Japan-Nagoya

Sites Train Station Maruei Excelco Osu-Kannon

Coordinates 35.170824,
136.884328

35.168638,
136.905740

35.166891,
136.907284

35.159316,
136.901697

Lanes 2 * 3 1 * 1 2 * 1 2 * 1
Mean pedestrian
flow per hour 480 645 869 814

Mean road crossing
speed (m.s−1) 1.10 ± 0.22 1.15 ± 0.21 0.98 ± 0.21 1.07 ± 0.18

Dates of scoring 13 June–5 July 2011 27 January–5 February 2015

2.2. Data Scoring

Data were scored over a 6-day period for each site, for 1 h per day per site. We observed during
working days, hours, and weeks to ensure that data excluded movements generated by tourism,
festivals, etc. This scoring duration is sufficient to provide a large dataset [2,21,26]. Video cameras
were set up in order to score the signal state (red or green) and were placed in locations ensuring the
visibility of crossing pedestrians at all times. Behavioral sampling was used to score the crossing of
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pedestrians in one direction only, i.e., that recorded by the camera. Pedestrians were not informed
about the purpose of the study. As both cities are touristic, pedestrians are accustomed to seeing
tourists taking pictures or videos. We did not observe any difference in the way pedestrians behaved
when they saw the camera. We purposely did not take any other equipment such as counters or pocket
PCs in order to avoid influencing pedestrian behavior. When the observation of road-crossing behavior
was hampered by a visual obstacle (i.e., a car or a truck in front of the video camera), this behavior and
the behaviors occurring immediately before and after it were removed from the data set, as were any
data recorded when cyclists or tourists were among the pedestrians. Tourists were easily differentiated
from local citizens, as they were dressed differently from citizens, often carried specific equipment
(guidebook, map, camera, etc.), and/or were in large groups accompanied by a guide. These conditions
were double-checked as videos were analyzed by two observers simultaneously.

2.3. Research Ethics

Our methodological approach solely involved anonymous observations and anonymous data
scores. Study protocol followed the ethical guidelines of our research institutions (IPHC, Strasbourg,
France and PRI, Kyoto University, Japan) and ethical approval was obtained from these institutions
to carry out the study. All data were anonymous, and individuals were given sequential numerical
identities according to the time of the road crossing and the arrival/departure order of crossing.
Pedestrians had the possibility to obtain information about the study via a fact sheet in their language
(Japanese or French) we gave them when they could come to ask questions. They were also provided
with an email address and phone number to contact our institution at a later date if desired. This
happened twice and three times in Japan and France respectively, indicating the non-disturbance of
our study on pedestrian behavior. Persons who refused to participate in the study were removed from
the data (i.e., we deleted the crossing concerned). However, this never happened.

2.4. Data Analysis

This part one of the study focused solely on the first pedestrian to step off the kerb (at the red
or green signal) and not on following pedestrians (see Part 2. Do pedestrians show cultural herding
behavior? Pelé et al. submitted), because the processes underlying the two decisions (departing first
and following) are quite different [48–50]. However, we also selected cases where the first pedestrian
to step off the kerb is in the presence of other pedestrians, in order to understand the impact of this
variable on decision-making processes. All 6 h of data were analyzed for each site. We scored the
behaviors of the first pedestrians to step off the kerb when at least two pedestrians crossed the road at
the same time (i.e., when the time difference between the departures of the two pedestrians was lower
than the mean road-crossing time).

We scored road crossings for 429 first pedestrians, 244 of whom crossed at the green signal and
185 of whom crossed at the red signal.

For each first pedestrian to step off the kerb, we scored different variables for which an effect was
showed or suggested in previous studies (see the introduction for references). We scored the following
variables (see [27] for a visual explanation of the different scored variables).

a. Quantitative variables:

- The departure period, i.e., the period between the previous signal state change and the
moment the pedestrian starts crossing the road. This quantitative variable is positive for
pedestrians crossing at the green signal (after the signal state change) but negative for
pedestrians crossing at the red signal (before the signal state change) [44,51]. Survival
analyses were done on this variable used as a dependent one.

- The total number of waiting pedestrians (quantitative variable; [52,53]).
- The waiting time, i.e., the time between the moment a pedestrian stops at the light and

the moment he/she starts crossing the road (quantitative variable; [54]).
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- The number of road lanes (quantitative variable; [20,21]).

b. Qualitative variables:

- The signal state/light color when crossing (qualitative variable: red or green; [30,55]).
- The gender of pedestrians (qualitative variable: male or female [17]).
- The age of individuals, estimated at 10-year intervals from 0–9, 10–19, . . . , to 70–89,

based on physical characteristics. However, the number of data and the analyses we
carried out did not permit the analysis of age effect (per interval) on the decision-making
processes (considered as quantitative variable; [15,22]). Indeed, we observed less than 10
pedestrians for age categories lower than 20 years old and more than 60 years old.

- The country (qualitative variable: France or Japan; [27,53]).

We also scored the last car time, which is the time elapsed between the passage of the last car
on the pelican crossings and the moment when each pedestrian starts to cross. However, as we did
not found a significant correlation between the last car time and the departure period (R2 = 0.0006 for
all crossings and R2 = 0.0003 for red light crossings, p > 0.95), we did not include this factor in our
next analyses. The number of waiting pedestrians is linked with the waiting time (linear regression,
R2 = 0.14, p < 0.0001, F = 33).

2.5. Statistical Analyses

Survival analysis [40,41] was used to study the distributions of departure periods for the first
pedestrian to step off the kerb. Survival analysis is used to understand how the ratio of observations
decreases from 1 (all observations/data) to 0 (none) according to a response variable. First, curve
estimation tests were carried out to analyze which type of function these distributions followed, namely
linear, exponential, or sigmoid [13,45,56].

Sigmoid curves (Equations (1) and (2)) are generally used to understand decision-making
processes [45]. Other curves used for these studies are the linear curve (Equation (3), meaning that
probability of crossing depends directly on time, regardless of factors such as the distance to the next car
or the number of waiting pedestrians), and the exponential curve (Equation (4), where the probability
of crossing is time-constant; see [13]). Sigmoid curves are indicated with two parameters, S and q. q is
a sensitivity coefficient. In essence, a higher q value results in a faster transition between resting and
departing and therefore also results in higher discrimination or a decreasing in the noise level [45,57,58].
S is a threshold. The higher it is, the longer it will take to reach a decision. In the case of road crossing,
the threshold S would be more representative of the risk taken by individuals, whilst q would be more
dependent on cognitive aspects (namely perception and interpretation of information, decreasing of the
noise level) and individual traits [13]. Indeed, a higher q shows a faster transition between two states
(here the decision-making of crossing) due to better performance. This faster transition is observed
by a higher steepness of the sigmoid curve slope, whilst a higher threshold makes the curve shifting
on the right, towards higher values (here seconds). Therefore the threshold shifts to higher values in
order to gain more information about the decision and to decrease the uncertainty. In several studies,
this performance is linked to higher cognitive capacity and neuronal activity (or group coordination
for collective decisions) is reflected/formulated by a sigmoidal function [43,59–62]. If the distribution
of the departure times corresponds to an exponential distribution, the departure probability of the first
pedestrian to step off the kerb is the log gradient b of the corresponding exponential distribution, i.e.,
the inverse of the mean departure time (1/∆t) if ∆t is the mean departure time.

y =
1

1 + eq x
S

, (1)



Safety 2019, 5, 79 6 of 17

or
y =

1

1 + e
1
q ∗

x
S

, (2)

y = ax + b, (3)

y = a ∗ e∗bx, (4)

where y is survival and x is the departure time or the studied variable.
We also simulated the crossings of pedestrians at the red signal under the hypotheses that the

probability to arrive at the kerb and the probability to cross at the red signal is constant. These
simulations were stochastic (realized using Fortran) allowed us to compare our observed data to these
theoretical data. The survival curve NC(T) following these simulations was:

NC(T) = e−kT(1−
T
F
), (5)

where F is the time of the red signal; k is the probability to cross at the red signal; and T is the
waiting time.

We tested two k values (k = 0.0005, k = 0.05). Results of these simulations are shown in Figure 1.

Figure 1. Survival analysis of departure time at the red light for the observed data (grey). Yellow points
indicate theoretical survival following a sigmoid law (non constant probability of departures). Orange
and blue points indicate theoretical survival following constant probability of departure (blue: k = 0.05,
high probability to cross at the red light; orange: k = 0.0005, low probability to cross at the red light).

Linear regression was used to analyze the distribution of observed data by comparing it to
the distribution of theoretical data with adjusted R2. In this way, we used sensitivity analyses,
meaning that we simulated different datasets with different values of the parameters. The simulated
distributions were compared to the observed distributions and the fitting distributions (linear, sigmoid,
and exponential) as well as the best parameters were chosen according to F-statistics. Differences
found in the equational parameters between the countries and between the genders were tested using
a Wilcoxon sign rank test. Levene’s tests were carried out on transformed data (log(Survival/b) for
exponential and Ln((1/Survival) − 1) for sigmoid curves to compare departure times according to
the number of lanes and the country. The same approach was applied to compare the waiting times
according to country and gender. We followed the parsimony rule: when simple models explained the
patterns we observed, we did not increase the complexity of these ones. Increasing the complexity
when it is not needed might conduct to false positives and uninterpretable results [63–65]. Analyses
were performed in R 3.3.2 (R Development Core Team, Vienna, Austria), with α set at 0.05. Sequential
Bonferroni correction was used [66,67] for multiple variables analyses. However, given the p-value of
our tests, this did not change their significance.
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3. Results

When all data has been analyzed (red and green signals), the distribution of the departure time on
Figure 1 is far from perfect as a sigmoid curve, despite being significant (R2 = 0.63, df = 427, p < 0.0001,
F = 3069, q = 0.3, and S = 73). Among other possibilities, such an imperfect fitting might be caused by
the fact that at least two different rules underlie a decision to step off the kerb for the first pedestrians.
In order to check this assumption, we then decided to carry out separate analyses of instances where
pedestrians departed first at the red signal, and those where pedestrians that departed first at the
green signal.

3.1. Analyses of Departure Times at the Red Signal

Analyses of departure times at the red signal showed a reliable estimation of observed data
using a sigmoid law (Equation (2), R2 = 0.87, df = 173, p < 0.0001, F = 1146, q = 10, S = −100). Times
of departure follow an asymptote, with a plateau decreasing faster and faster as time approaches 0
(i.e., when the signal turns green). If the probability of departures would be constant per time unit, the
survival would be either linear (orange points, k = 0.0005, small probability to cross at the red signal)
or exponential-like (blue points, k = 0.05, high probability to cross at the red signal). Therefore our
results show that the probability to cross at the red signal is not constant but is almost null when the
pedestrian signal goes red and then increases when getting closer and closer to the green pedestrian
signal. Indeed, the plateau we observed from the observed data seems to show a kind of refractory
phase to depart after the pedestrian signal goes red. This might also be explained by the fact that
the time between two cars (gap acceptance) is too low to decide to cross as we showed in a previous
study [13]. However, we did not find such an effect in this study (due to high variance of the last car
times) and Figure 2 shows different drops in the two asymptotic curves (grey and yellow), suggesting
two different processes. Indeed, whilst the two curves are correlated, this correlation is lower and
lower getting close from 0 s (signal turning green). Using sensitivity analysis, the curve from observed
data has a breaking point at −4 s before turning green, indicating a multi-sigmoid; we consequently
used this departure time as a marker to divide our analysis of road crossings at the red signal.

Figure 2. (a) Survival analysis of departure time (s) for the total dataset, i.e., at the red light (negative
values) and at the green light (positive value) for the observed data (grey) and for the theoretical data
(yellow); (b) Survival values of theoretical data according to survival values of observed data. The thin
black line represents the correlation we should observe between the two survivals if the rule underlying
the departure of a pedestrian follows only one rule (here a sigmoid curve, Equation (1)). For Figure 2a,
0 indicates the time at which the light turns green.
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Analyses of departure times at the red time before −4 s turning green showed a reliable estimation
of observed data using a sigmoid law (Equation (2), R2 = 0.98, df = 88, p < 0.0001, F = 5208, q = 3,
S = −300, Figure 3a,b). Times of departure follow an asymptote, with a plateau that decreases faster
and faster with the x axis as we approach the −4 s marker. Analyses of departure times at the red time
just before turning green ([−4 s; 0 s] showed a reliable estimation of observed data using a sigmoid law
(Equation (2), R2 = 0.99, df = 93, p < 0.0001, F = 11040, q = 5, S = −180, Figure 3c,d).

Figure 3. Survival analysis of departure time(s) at the red light for the observed data (grey) and for
the theoretical data (yellow) (a) before −4 s and (c) between −4 and 0 s. Survival curves of theoretical
data compared to survival of observed data; (b) before −4 s and (d) between −4 and 0 s. The thin black
line represents the correlation we should observe between the two survivals if the rule underlying the
departure of a pedestrian follows only one rule (here, a sigmoid curve, Equation (1)). For Figure 3a,c, 0
indicates the time at which the light turns green.

3.2. Analyses of Departure Times at the Green Signal

The time between the signal turning green and the departure of the first pedestrian (departure
time) follows a sigmoid curve (R2 = 0.98, df = 242, p < 0.0001, F = 15670, Equation (1), S = 73, q = 2.5,
Figure 4). No further analysis was required at this stage to understand time before departure at the
green signal.

Figure 4. (a) Survival analysis of departure time (as log. scale(s)) at the green light for the observed
data (grey) and for the theoretical data (yellow); (b) Survival values of theoretical data compared to
survival values of observed data. The thin black line represents the correlation we should observe
between the two survival values if the rule underlying the departure of a pedestrian follows only one
rule (here, a sigmoid curve, Equation (1)). For Figure 4a, 0 (1; as log scale) indicates the time at which
the light turns green.
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3.3. Effect of Country and Gender on the Time of Departure of the First Pedestrian

Here, we used the same procedure as in the previous analyses to evaluate the best parameters of
the sigmoid curve explaining the distribution (survival) of the departure time of pedestrians in four
categories: man from France, woman from France, man from Japan, and woman from Japan (whatever
their age).

The threshold and sensitivity coefficients for each of these four categories are indicated in Table 2.
We could not determine the threshold and the sensitivity coefficient for departure times at the red signal
in male and female Japanese pedestrians, as only two values were obtained per category, representing
1.47% of total crossings for Japanese men and 0.04% for Japanese women. This was already a result in
itself, as the percentage of crossings at the red signal for French men and women were 43.01% and
54.94%, respectively. Japanese pedestrians, whatever the sex, had a threshold closer to 0, i.e., the
time at which the signal turns green (sign rank test, v = 21, p = 0.03)—a stark difference with French
pedestrians. This was not the case with the sensitivity coefficient (sign rank test, v = 4, p = 0.85). There
was no difference between men and women, whatever the country, for the threshold (Sign rank test, v
= 5, p = 0.422) or the sensitivity (sign rank test, v = 1, p = 0.197).

Table 2. Values of threshold S and sensitivity q from the sigmoid curves fitting with the observed data
for each category (country-gender) as well as statistical values. All p-values are <0.00001.

France-Man France-Woman Japan-Man Japan-Woman

Red light (up
to 4 s)

Threshold S −8 s −5.7 s
Non-applicable due to small
dataset (two points per condition)

Sensitivity q 2.86 5.56
R2 0.98 0.98
F 1882 2242

Light still red,
but change

approaching
(between 4 and

0 s)

Threshold S −2.3 s −1 s −0.6 s −0.6 s
Sensitivity q 2.5 2.2 2 2
R2 0.99 0.97 0.98 0.98
F 3196 571 1656 734

Green light

Threshold S 0.8 s 0.9 s 0.7 s 0.7 s
Sensitivity q 2.5 3 3 3.5
R2 0.99 0.99 0.98 0.99
F 1727 1319 6902 14,890

3.4. Effect of the Number of Lanes

We then tried to understand the effect of the number of lanes on the probability that a pedestrian
would cross. No rule breaking was observed at the site with six lanes in Japan. This was already a
result, showing that the number of lanes impacts the probability of crossing at the red signal. Survival
curves for crossing at the green signal were sigmoid (2 lanes: R2 = 0.98, df = 2133, p < 0.0001, F = 18614;
4 lanes: R2 = 0.99, df = 106, p < 0.0001, F = 10010), as found in the first part of results with the same
sensitivity (q = 3.5). However, the threshold was higher (S = 0.9 s) for crossings on roads with four
lanes than those with two lanes (S = 0.67 s). Survival curves were exponential for crossings at the
red signal (two lanes: R2 = 0.98, df = 114, p < 0.0001, F = 5765; 4 lanes: R2 = 0.98, df = 65, p < 0.0001,
F = 3468), indicating that the probability of crossing was constant per time unit. The exponents of
these curves made it possible to calculate the average of the departure times at which individuals
crossed the road (see Material and Methods), namely −16.66 s (1/∆t = 0.0006) for two lanes and −2.85 s
(1/∆t = 0.0035) for four lanes. When we considered crossings at the red signal, the number of lanes and
the country both affected the probability that a pedestrian would cross (Table 3). Japanese pedestrians
cross closer to the signal change compared to their French counterparts (Levene’s test, df = 1, 176,
F = 15.291, p = 0.0001), and the presence of four lanes on roads decreases the probability to cross at any
time (Levene’s test, df = 1, 176, F = 4.59, p = 0.033).
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Table 3. Equation and statistical values of survival curves for departure time according to the country
and the number of lanes. The six lanes condition in Japan does not appear here as no illegal crossings
were observed. All p-values are <0.00001.

Country Number of
Lanes Equation (y = a * e−bx)

Log Gradient
−(1/b) R2 F

France 2 y = 0.954 * e−0.0006x −1666.67 0.99 8032
Japan 2 y = 0.9 * e−0.009x −1000 0.82 67
France 4 y = 1.0012 * e−0.003x −333.33 0.99 3128
Japan 4 y = 1.340 * e−0.007x −142.86 0.90 269

3.5. Effect of the Number of Waiting Pedestrians

When attempting to understand how pedestrians decide to cross according to the number of
waiting pedestrians, we found that survival curves at both the red and the green signal follow sigmoid
curves (Green signal: R2 = 0.99, df = 242, p < 0.0001, F = 32490, S = 11, q = 5; Red signal: R2 = 0.99,
df = 183, p < 0.0001, F = 30070, S = 11, q = 3.5; Figure 5a). However, with the exception of a sensitivity
coefficient, which seemed to be lower at the red signal, the two curves were quite similar (Levene’s
test: df = 1425, F = 0.0034, p = 0.953). This might be explained by the possibility of similar processes
underlying the decision to step off the kerb. These may be linked to the number of waiting pedestrians,
or to the number of observations decreasing according to the number of pedestrians waiting for the
green and the red signal. The latter situation would result in a lower probability of numerous waiting
pedestrians, which is quite understandable. To check this hypothesis, another analysis was carried
out to measure the ratio (number of observations at the green light-number of observations at the red
light)/(total number of observations) for each number of waiting pedestrians during road crossings
at the red signal and at the green signal (Figure 5b). The best curve explaining the distribution of
data was a cubic curve (R2 = 0.22), meaning that we observed a higher rate when there were fewer
people waiting. However, the regression analysis was not significant. Only the first part of the graph
(red square going from 1 to 11 waiting pedestrians) shows a good fit between observed data and the
theoretical curve (R2 = 0.97), whilst the remaining numbers of waiting pedestrians displayed huge
variations in the ratio of observations.

Figure 5. (a) Survival analysis of the number of waiting pedestrians at the time of crossing at the green
light (grey) and the red light (yellow); (b) Ratio of observations for crossings according to the number
of waiting pedestrians. -1 indicates that all crossings were made at the red light. 1 indicates that all
crossings were made at the green light. 0 means that half of the observations were made at the green
light (and, of course, half at the red light). A red square indicates data that can only be significantly
explained (p < 0.05).
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3.6. Effect of Waiting Time

Waiting time, meaning the time between the arrival of a pedestrian at the kerb and his or her
departure, followed an exponential curve (green signal: R2 = 0.94, df = 222, p < 0.0001, F = 3670; red
signal: R2 = 0.99, df = 179, p < 0.0001, F = 15,710). Pedestrians starting at the green and the ones starting
at the red signal did not have different waiting times (Levene’s test: df = 1403, F = 0.0021, p = 0.942).
This means that some pedestrians crossing at the red signal also waited for a long time before deciding
crossing at the red signal. When considering crossings at the red signal alone (at the green signal,
the time was influenced by the signal change), the survival curve also followed an exponential law
regardless of country and gender (Table 4). Levene’s tests did not reveal any significant difference
between genders (Levene’s test: df = 2175, F = 0.047, p = 0.953) and countries (Levene’s test: df = 1176,
F = 0.293, p = 0.589).

Table 4. Equation and statistical values of survival curves for waiting time according to the country
and the gender of crossing pedestrians. All p-values are <0.00001.

Country Gender Equation (y = a * e−bx)
Log Gradient

(1/b) R2 F

France Man y = 0.852 * e−0.0008x 1250 0.98 3663
Japan Man y = 1.143 * e−0.0003x 3333.3 0.96 620
France Woman y = 0.942 * e−0.0006x 1666.7 0.99 5556
Japan Woman y = 1.048 * e−0.0003x 3333.3 0.94 220

4. Discussion

In this study, we tried to understand the decision-making processes underlying road crossing
behaviors at a signalized crossing. Survival analyses not only show whether variables (signal state,
gender, country, number of waiting pedestrians, and number of lanes) impact the way pedestrians
cross, but also how pedestrians integrate this information in their decision to cross. We remind that we
focused in this study on the first pedestrians cross (and not the following ones) as we thought the two
decision-making mechanisms and the variables influencing it were clearly different.

The results show that the probability for the first pedestrians to cross the road followed three
different processes: one at the red signal up to four seconds before the signal turns green, one between
four and 0 seconds, before the signal turns green, and one after the signal has turned green. These three
processes are easy to explain. The first process corresponds to pedestrians who do not pay attention to
the signal state and have little fear of risk-taking (or at least are more inclined to this attitude than
pedestrians following the two other processes). The probability to cross should also increase with
the time the pedestrian signal goes red as the time between two cars (or the gap acceptance) also
increases. Indeed, when the cars signal turns green, the distance between cars is very low but this
distance increases with time usually, influencing positively the gap acceptance and so the probability
to cross at the red light. Whilst previous studies show that the gap acceptance is indeed important in
the decision to cross [27], we did not find such an effect here. The second (i.e., intermediary) process
is due to the cars signal going from green to orange or red whilst the pedestrian signal is still red.
The last process (crossing at the green signal) corresponds to people who pay attention to the signal
state and do not take risks. The intermediary process we found might be explained by pedestrians
who cross the road just before the signal turns green. The curve analysis of the first process (before
−4 s) simply shows an incidence of rule-breaking that increases as the green signal change approaches,
or inversely, an incidence of rule-breaking that becomes rarer and rarer as the green signal change
approaches. The distributions of the number of rule-breaking we observed in our study according to
these three processes looks like the one found in Guo et al. [51], with few individuals crossing at the
first 50% of the red light period and the higher rate being after 80% of this red light period.

There are two possible explanations for the first process (crossing before −4 s). The first reason
is that early departure times (−70 or −60 s before the green signal) are rare because the flow of cars
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at this time is dense due to the green signal for cars. As the time to the next pedestrian green signal
decreases, the flow of cars diminishes but the number of pedestrians waiting at the kerb increases [55].
The second possible explanation of this process is the probability of seeing a pedestrian departing as
a consequence of the increasing number of pedestrians waiting to cross. The increasing number of
pedestrians increases the probability of seeing one pedestrian crossing. However, the waiting time of
pedestrians also increases their probability to cross. Studies have shown that the longer people wait,
the higher the probability is that they will cross at the red signal [54,68]. We observed an effect of
country on this rule breaking, with very few pedestrians in Japan crossing at the red signal when it
is not close to changing, which is reminiscent of previous studies on the effect of culture on decision
making [13,27]. The current results confirm this study with no difference in the distribution of waiting
times at the red and the green signal, meaning that pedestrians do not seem to plan crossing at the red
signal: they arrive and wait, but will cross illegally if the waiting time is too long.

Our study identified a second/intermediary process, which is quite different to the processes of
crossing at the red signal and crossing at the green signal. Indeed, pedestrians crossing just before the
signal turns green checked if any car was arriving, or crossed because the signal for cars had turned
red a few seconds before the pedestrian signal turned green. This step-by-step signal change is present
in most countries, if not all, in order to decrease the risks of accidents between cars and pedestrians,
mainly because pedestrians need time to cross the road, especially in the case of old or disabled
persons [69]. The survival curve of this process is closer to a linear law than to an asymptote. Usually,
linearity in survival analysis indicates that the probability we measured is time dependent [13,70].
In our case, this might be due to pedestrians seeing the risk decreasing with time (Step 1: amber signal
for cars, step 2: red signal for cars, and step 3: green signal for pedestrians) and the decision changes
over time. This process is similar to temporal discounting, which has already been described in human
beings in different situations [2,71]. As for a reward value in behavioral economics, in our study the risk
perception seemed to decrease with time; this process may lead to risky and unhealthy choices [13,72].

The last process, i.e., crossing at the green signal, perfectly follows a sigmoid curve. Finding
a sigmoid curve here and not an exponential law means that some type of cognitive processes,
presumably for decision-making, underlie the choice of departure time [2,3]. In this kind of process and
according to the diffusion model [3], individuals need to obtain enough information to take an optimal
decision. This shows a speed-accuracy trade-off, and involves a threshold for which an alternative
(in this case, crossing or continuing to wait) is chosen. The threshold, set here at 0.73 seconds, shows
the necessary time to obtain sufficient information between the signal going green and the time of
departure. As this study solely concerns the time the first pedestrian steps off the kerb before any others
follow him, the origin of the perceived information is not social but is rather personal/private [26,27].
As we showed in a previous study, this decision time is different from what is usually named the gap
acceptance behavior, which is the time a pedestrian evaluates between his/her crossing and the arrival
of the next car, i.e., the time of no risk to cross [13]. For instance, two pedestrians may have the same
gap acceptance behavior (evaluating a time of six seconds or 40 m between the crossing and the next
car) but have different decision times because they do not have the same information or the same
perception capacities (as with cognitive decline in elderlies, [73,74]).

Globally, the decision making for a first pedestrian to cross, whether they do so at the green or
at the red signal, is influenced by the country of pedestrians but not by their gender. This does not
mean that there is no effect of gender on the probability to cross the road at the red or the green signal,
but simply indicates that the index measured in this study did not reflect this effect. Indeed, we have
already showed an effect of gender and country on risk-taking in a previous publication [13,27]. In
Pelé et al. [27], men crossed at the red signal in 40.6% of cases, whilst women only did so in 25.7% of
cases. The same difference was found in the present study but only in France and for the first process
(before −4 s), since men and women in Japan showed an identical proportion of rule-breaking (about
2.2%). However, the number of data in each condition—i.e., crossing at the red or green signal—is not
taken into account in our survival analysis and our curve estimation. These analyses did however



Safety 2019, 5, 79 13 of 17

reveal that the threshold for crossing the road, whatever the signal state and the sensitivity, is not
influenced significantly by the gender but is affected by the country variable. This might mean that
fewer women cross at the red signal than men but when they do so they do it in the same way as
men. The risk-taking is at two different levels here. Concerning the effect of the country, this factor
affects not only the proportion of pedestrians crossing at the red signal (attitudes towards compliance
with rules and regulations [13,27]), but also the way they cross the road and their decision-making
process (risk-taking and information use). Although there is a lower number of Japanese pedestrians
crossing at the red signal because of cultural conformity, they have a lower threshold when they do
so—meaning that the time they start to cross is closer to the moment the signal turns green. However,
the same shorter threshold was observed for Japanese pedestrians when crossing at the green signal.
In this condition, this means that either they are more concerned about watching the pedestrian signal
(private or personal information, see [27] for a discussion about this topic), or their motivation is
higher than that of French pedestrians as they wait to cross at the green signal. Indeed, waiting time
influences the probability to cross at the red signal but also the probability to cross faster and first at
the green signal [27]. We did not observe any difference for the sensitivity coefficient for gender or
country, possibly because this process is more dependent on cognitive abilities that are not affected by
the gender and/or the culture of the individual.

We also checked the influence of two other parameters on the probability to cross: the number of
lanes and the number of pedestrians waiting at the time of crossing. Pedestrians tended to cross illegally
less when the road had four lanes compared to two lanes. We did not observe any rule-breaking
for the site with six lanes. The effect of the number of lanes was amplified for Japanese pedestrians,
whose probability to cross closer to the time of the signal change was higher than that of French
pedestrians. We also found a global effect of the number of pedestrians on the probability of crossing
at the red signal, with the number of pedestrians crossing at the red signal decreasing as the number
of waiting pedestrians increased. Whilst this effect was quite clear until about 11 pedestrians were
present, a huge variation was then observed for numbers of pedestrians ranging from 11 to 40. This
may be explained by two hypotheses. The first hypothesis is that, due to a decreasing number of
observations per number of waiting pedestrians when the latter increase, we might have observed
contrasted results (for one observation, the ratio is either −1 or 1), leading to this wide variation. The
second hypothesis is that even if the probability of crossing at the red signal per individual decreases
with the number of pedestrians, the probability of observing one pedestrian crossing at the red signal
increases with the number of pedestrians. The variation we observed was also a limitation of our study
carried on collective crossings as some first pedestrians to cross may care about the number of waiting
pedestrians whilst someone may not care at all. This hypothesis could also lead to wide variation
when the number of waiting pedestrians increases. The fact that we studied the first pedestrians to
cross but in the context of collective crossings (and not only when these pedestrians are alone to cross)
may conduct to some limitations in our study, because these first pedestrians to cross does not rely
purely on their personal information (we could not control for some social information they perceived).
This limitation may also lead to some confounding factors—such as between the gender and the use
of social information—making the results more difficult to interpret. Last but not the least, variation
may also be favored by the closeness to the kerb, the queue line exercising a social pressure on first
pedestrians crossing. A previous study [27] showed that pedestrians closest to the kerb are indeed the
first to cross.

5. Conclusions

This study highlighted the social and environmental variables affecting the decision-making
process in road crossing behaviors and for the first pedestrian to cross. Some components of the
decision-making process, mainly risk sensitivity and temporal discounting, have already been identified
for other behaviors [16,46,71,75]. Whatever the behaviors, these components are affected by both the
country and the gender of the individual [17–19,22,76]. It is evident that these components cannot
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be controlled, except by better prevention and education about risk taking. However, these results
show that certain other factors influence the probability of crossing at the red signal, and it is possible
to manipulate these factors to decrease risk taking and thus prevent accidents. Pedestrians do not
like to wait for too long at the red signal, and this increases their probability of crossing illegally.
The duration of the pedestrian red signal is important for road safety, and has to be limited [54,68].
Crossing behavior is also influenced by the number of pedestrians waiting to cross. This “audience
effect” [14,77] is known to have a strong social influence on human beings. It makes them comply and
conform to the people surrounding them [28,52,53], and is strong in Japan [47]. Bateson and colleagues
examined the effect of an image of a pair of eyes on contributions to an honesty box used to collect
money for drinks in a coffee room [78]. People paid nearly three times as much for their drinks when
eyes were displayed compared to when other control images were displayed. We suggest the use of an
image just above the pedestrian signal showing the eyes of someone and indicating the risks of crossing
at the red signal. According to the study by Bateson et al. (2006), this should decrease the probability
of red signal crossing. The way pedestrians and traffic signals change also affected the probability
that pedestrians would cross. The sequence of indications given by a traffic signal varied considerably
between countries. The Austrian sequence of green–flashing green–amber–red–amber/red (green) can,
to our knowledge, only be found in Austria, Slovenia, Israel, Jordan, and Cuba. Spain employs a
green/amber indication instead of the flashing green, and a number of countries have abandoned the
use of the amber/red combination (France, Italy, Belgium, and Japan). Köll and colleagues showed
that the flashing green increases the number of early stops for cars and should reduce the number of
accidents [79]. However, according to our results, it could lead to increased numbers of pedestrians
crossing at the red signal. Countdowns for cars and pedestrians that are both visible to pedestrians
could be a solution to decrease the number of illegal crossings and consequently reduce the number of
accidents [80,81]. We then proposed future experimental researches on these three concepts: the use of
eyes image above the pedestrian signal and countdowns as well as flashing green signals for both cars
and signals to prevent illegal crossings.
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