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Abstract: With the introduction of Industry 4.0, occupational health and safety finds itself confronted
with new types of hazards. Many Industry 4.0 innovations involve increased machine intelligence.
These properties make socio-technical work in Industry 4.0 applications inherently more complex.
At the same time, system failure can become more opaque to its users. This paper reviews and
assesses safety analysis methods as the breakdown of interaction coupling in socio-technical systems
on the one hand, and the degree of failure tractability on the other hand; the latter being used as a
proxy for complexity. Previous literature confirms that traditional health and safety risk assessment
methods are unable or are ‘ill-equipped’ to deal with these system properties. This paper studies the
need to introduce new paradigms and safety methods related to complexity thinking with theories
borrowed from the study of complex adaptive systems, all to assess the arena of abruptly changing
hazards introduced by Industry 4.0. At the same time, this review makes clear that there is no
one-solution-fits-all method. Occupational health and safety (OHS) covers many different hazard
types and will need a combination of old, new and yet-to-be-developed safety assessment methods.

Keywords: industry 4.0; occupational safety; complexity thinking; systems thinking; safety-II; safety
analysis methods; resilience engineering; risk assessment

1. Introduction

The understanding of work systems in industrial safety has fundamentally changed with the
introduction of Industry 4.0. This type of industry (so named after the fourth industrial revolution)
is the successor of the three previous industrial revolutions. The first industrial revolution in the
18th century commenced with mechanization, the second introduced the use of electricity and the third
revolution adapted digitalization [1]. The fourth industrial revolution is mainly about interconnection
via the internet of things (IoT) [2], advances in smart use of digitized information and technology,
responsive devices in so-called ‘smart factories’ and industrial automation via autonomous algorithms
and artificial intelligence (AI) [3]. Industry 4.0 not only entails new technologies, but also transforms
traditional work systems into highly interconnected networks of people, technology and business units.
It is also marked by increasing competitive pressure to implement mass customization solutions [4].

Although the academic world is still debating a uniform definition for Industry 4.0 [5,6], it can
be observed that Industry 4.0 innovations currently are mainly introduced in the manufacturing
industry [2]. Other areas include logistics and processing industries, including agri-food and
construction [7,8]. Such industries apply risk analysis methods, many of which were developed
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more than half a century ago. Examples are governing industrial safety analysis methods [9] such as
root cause analysis (RCA), developed before World War II [10]; failure mode and effects analysis
(FMEA), developed in 1949; and hazard and operability study (HAZOP), developed in the 1960s [11].
Such methods were designed with a certain type of risk in relation to the relatively stable conditions of
the past. Meanwhile, contemporary work systems have become more complex and are characterized
by new emerging risks (NER) [12,13]. One critique that applies to traditional safety analysis methods is
that they are only able to analyze linear cause–effects, and that they cannot solve complex or emergent
system behavior [10,14–16].

New emerging risks originate from “new processes, new technologies, new types of workplace,
or social or organizational change”, but also because “new scientific knowledge allows a long-standing
issue to be identified as a risk” [12] (p. 7). One example of this is the threat to occupational health
from new materials that require novel safety analysis methods [17]. The European agency for safety
and health at work warns in its expert forecast on emerging physical risks [18] of the increase and
the inappropriate design of complex human–machine interaction. The report calls for adapting a
methodology for identifying errors in the design of human–machine interactions, the use of proper
feedback design and the adequacy of information provided to the user via training materials [18].
In relation to NER [19] ‘complexity of human–machine interfaces’ is mentioned as a specific ergonomic
challenge. The expert forecast on NER from the EU Agency for Safety and Health at work [18] identifies
that complexity of new technologies with their resulting transformation of work processes, and poor
design of human–machine interfaces, lead to increased mental and emotional strain on workers. Others
have described that although automation in many circumstances yields better system performance,
it also comes at the cost of producing more problematic performance when things fail in comparison
with non-automated systems [20]. This is referred to as the lumberjack effect, an analogy to trees in
the forest and how “the higher they are, the farther they fall” [20] (p. 477). This was already true in
earlier industrial revolutions where one study showed that assembly line automation in the Norwegian
furniture industry reduced the cutting of fingers, but maintenance and handling of disruptions resulted
in more severe injuries, such as the amputation of arms [21].

This paper takes complexity challenges such as interconnectivity, autonomous systems, automation
in joint human–agent activity and a shift in supervisory control as essential traits in Industry 4.0
(see Section 2). Increased machine autonomy, the use of collaborative robots and wide-scale
interconnectivity between software, hardware and artefacts both within and across business units
urges the safety community to reflect on new challenges for occupational health and safety (OHS)
in Industry 4.0. They cause a shift in the nature of safety-critical sociotechnical systems and expose
“theoretical and methodological flaws in contemporary accident analysis methods” [22] (p. 164) and
causation models. The safety of the interconnectivity challenge is not solved by simply adding more
reliability to interfaces, but transforms conventional work practices, adds complexity and can reduce
transparency of underlying processes.

This study will introduce safety analysis principles that emerged under the paradigms and
concepts of (i) systems thinking, which takes a holistic perspective to systems as a whole; (ii) resilience
engineering (RE), as the response to external and internal stressors and their recoveries from breakdowns
and; (iii) Safety-II thinking, which marks a shift from learning from failure to learning from the full
performance variability of a system. Ultimately these concepts are all related to complexity thinking
with its focus on emerging behavior from complex dynamic interactions. These concepts will be
explained in detail in Sections 3.2.1–3.2.4.

Badri [13] made a comprehensive literature review of the status of OHS in Industry 4.0 and came to
the conclusion that only a small number of publications on the subject exist. The review also concluded
that research on technical advances in Industry 4.0 rarely cited the integration of OHS, and observed
that OHS initiatives and technological developments of different manufacturers in Industry 4.0 are
fragmented. These aspects urge researchers, field experts and industrialists to collaboratively ensure a
safe transition to this new paradigm [13]. In addition to the challenge of adapting technical and safety
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standards [5,13], “future OHS integration initiatives must combine at the outset virtual task analysis,
dynamic evaluation of occupational risks, cognitive analysis of workload, and skills management
tools” [13] (p. 409). These observations were a motivation for this paper, whereby we will present
opportunities for Industry 4.0 borrowed from the safety analysis of complex adaptive socio-technical
systems that ultimately led to the scope and formulation of our research question: “Can complexity
thinking contribute to progress in occupational safety in Industry 4.0?” This paper will highlight some
of the limitations of current OHS safety analysis methods for an Industry 4.0 environment, and present
some of the strengths of complexity-thinking safety analysis methods with which we strive to expand
the assessment method assortment for industrial safety management. Such methods will be introduced
to the reader. It will be examined whether these complexity-thinking methods match the challenges
specific to Industry 4.0. This extends the work from former studies that have examined a similar
shift in relation to accident investigation methods [14], or studies that cover in more detail a tendency
towards systems and complexity thinking in safety management in general [10,16,21–25]; this is in
answer to the changing nature of industrial risk [11,13,21].

The remainder of the paper is organized as follows: Section 2 describes the methodology for
this study; Section 3 describes the results, starting with an analysis of traditional safety methods, an
exploration of contemporary safety paradigms and their principles and applicable methods from
outside Industry 4.0, as well as how they answer exposed challenges and shortcomings; Section 4
discusses and draws conclusions from these results.

2. Materials and Methods

The research was performed by a desktop exercise that analyzes existing and novel safety
methods and how these methods answer the challenges of NER in Industry 4.0. Figure 1 depicts
how ‘The Answerability to Industry 4.0 Problem Space’ (green) results from the convergence of the
examination of ‘Answerability Safety Methods’ (blue), on the one hand and exploration of the ‘Risks in
Industry 4.0′ (yellow) on the other hand.
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The analysis under ‘Answerability Safety Methods’, focuses on a literature study about safety
analysis methods from traditional safety methods and developments in contemporary safety science
related to complexity thinking. First of all, a list of traditional safety methods in relation to occupational
safety was gathered on the basis of the safety analysis methods contained in two sources: (i) Safety
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Analysis, Principles and Practice in Occupational Safety from Harms-Ringdahl [9], with a comprehensive
review of methods and; (ii) ISO 31010—Risk Management—Risk Assessment Techniques [26]. We checked
additional safety analysis method compilations from Lees (1980) [27], Johnson (1980) [28], ILO
(1988) [29] and Bahr (1997) [30]. These compilations were suggested by Khanzode et al. [31] to be
the main references together with the Harms-Ringdahl publication. ISO 31010 was an additional
contribution not mentioned by Khanzode et al. ISO 45001, with title, Occupational Health and Safety
Management Systems [32], was additionally consulted and, although it is very relevant for OHS, could
be considered to act on a meta level of measuring and mitigating safety. It displays the requirements
and methods to manage safety systems on a safety-management level, but does not list safety analysis
methods of the work-system level like ISO 31010. Notwithstanding its relevance as an integrated OHS
management approach, it was considered to be outside the scope of collecting and reviewing safety
analysis methods.

The references from Harms-Ringdahl and ISO 31010 selected in this study are the most recent
sources from our literature search. In combination, they produce the broadest collection of methods,
whereas the remaining sources mainly resulted in a duplication of methods, when management and
intervention techniques were excluded. Management and intervention techniques were the main focus
in the ILO [29] and Bahr [30] references. The focus of this study is on causation and understanding risks,
not on understanding intervention, injury models or severity of consequences, for which additional
info can be found in Khanzode et al. [31]. Overlap of methods between the two selected sources was
resolved and a single list of methods was produced. Whereas ISO 31010 is the principal document
to consult for many safety managers in an OHS environment, we began with Harms-Ringdahl’s
academic book as the primary source as this author provided a collection of well-defined selection
criteria, which were based on the following principles: (i) support for a systematic approach; (ii) ease of
understanding and application; (iii) possibility of being able to apply analysis even when information
is incomplete; and (iv) taking into consideration that the analysis can be performed with a reasonable
amount of effort [9]. This produced a primary set of 10 methods, as pre-selected by Harms-Ringdahl.
Thereafter, we classified remaining safety analysis methods according to their paradigms. For each
paradigm that was not yet covered by the primary set of 10 methods according to the selection criteria
of Harms-Ringdahl, we retained one method to complement the list. Where supplementary reasons
justified the further inclusion of methods, although previously covered by a method from the same
paradigm, we provided additional rationale for inclusion. This process resulted in the collection of
methods from Table 1 (presented in Section 3.1). In this table, each method was further assigned with
(i) a short description; (ii) its underlying paradigm; (iii) its unit of analysis; and (iv) its capabilities to
analyze couplings and complexity interactions (the latter expressed as tractability).

In a subsequent step, the literature was examined for progress in safety science about how
complexity-thinking-related paradigms exposed shortcomings in many traditional safety thinking
methods from Table 1. We used literature gathered from previous research projects advocating the use
of these new concepts and paradigms. We additionally examined the scientific databases Scopus and
Web of Science for literature that challenged such concepts, to produce an objective narrative literature
review. Although very few challenges to the complexity-thinking concepts were found, we were able
to complement our existing set of papers in favor of the approaches we identified during our search of
these databases. The results can be found in Section 3 in the form of descriptions of systems thinking,
complexity thinking, Safety-II and resilience engineering along with an explanation of how these
schools of thought responded with new theoretical underpinnings and concepts. Subsequently, the
literature was analyzed for complexity-thinking-related safety methods that could overcome some of
these shortcomings. The results can be found in Table 2 (presented in Section 3.2.6), which follows the
same template as Table 1 for the traditional safety methods. Although the sources from the traditional
methods in Table 1 used an assortment of methods, models, frameworks and tools, we restricted
ourselves to the collection of methods only when identifying complexity-inspired safety analysis
methods as candidates for assessing Industry 4.0 challenges. Methods are accompanied by structured
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instructions for systematic hazard identification and/or risk assessment, whereas frameworks and
models lack a logical and structured approach to achieve validation and verification of their outcomes.

The last columns from Table 1 and Table 2 were used to produce a matrix with four quadrants
to position the safety analysis methods in terms of the earlier-derived dimensions of coupling and
tractability. This matrix is an adaption of a framework introduced by Perrow (1984) and further
adapted by Hollnagel et al. (2008). The framework is described in Section 3.1 as part of the explanations
on complexity thinking. The results from Tables 1 and 2 and the resulting Table 3 (presented in
Section 3.2.6 emerged from expert judgement from a panel that consisted of the lead author and an
external mechanical and aerospace engineering researcher, with expertise on the analysis of complex
socio-technical systems, mainly in terms of risk and safety management, and resilience engineering.
The expert judgement was supported with references to the literature. Where needed, differences in
opinions were resolved by providing additional rationale from multiple literature sources. The results
were verified by the co-authors, being mechanical engineering and industrial management researchers
with experience in safety science and previous Industry 4.0 involvement.

The yellow-colored ‘Risks in Industry 4.0′ (the second segment in the methodology, as depicted in
Figure 1) focuses on NER in Industry 4.0. The starting point is a collection of what Badri et al. [13]
summarize in their introduction as a set of non-negligible assets in Industry 4.0: “Real-time
communication, big data, man-machine cooperation, remote sensing, monitoring and control,
autonomous equipment and interconnectivity” [13] (p. 403). From this list of new Industry 4.0
challenges, we restricted our scope to human operator-related issues in a socio-technical context and we
consequently excluded ‘real-time communication’ and ‘big data’. Although these challenges are—in
our opinion—equally important, we believe that their primary technological nature, notwithstanding
their socio-technical influence, deserves an independent analysis in separate research. Given that
the effects from real-time communication in previous safety fields produced substantially less search
returns in scientific databases, the research effort is comparatively large, and we restricted ourselves
to the topics previously described. The subject is also primarily inversely related to safety. It is the
‘lack’ of real-time communication that poses a threat to the use of new technologies in Industry 4.0.
In relation to Industry 4.0, the fragmentation of big data methodologies lay between process and
maintenance departments and the need for prognosis instead of detection and diagnosis are mentioned
as future challenges [33], but are outside our scope.

We restricted our scope to accident causation in terms of hazard identification and risk assessment,
and did not take injury models into account; this deserves an analysis of its own and forms a different
discipline. Thereafter, we translated the four remaining principles from the Badri et al. [13] introduction
into four key challenges: interconnectivity, machine autonomy, automation in joint human–agent
activity and a shift in supervisory control, the latter being derived from remote sensing, monitoring
and control. These principles are also reoccurring design principles and technological features in the
Industry 4.0 literature (e.g., [1,5]), whereby in Herman et al. [5] a shift in supervisory control is mainly
represented as the aspect of decentralized decision making. Subsequently, we matched theoretical
concerns from previous safety literature to these four key challenges. We consulted a cognitive systems
engineer researcher for the identification of relevant papers regarding theoretical safety concerns.
This related to our four overarching principles, to involve an additional relevance check for our
literature search, and the process resulted in a set of four papers that produced a breakdown of the four
main principles as the result of an exploratory process and without claim that we have identified an
exhaustive breakdown (nor can such a process cover all scientific opinions). The results can be found
in Table 4 and are further explained in Section 3.3. The capabilities of the methods in Tables 1 and 2 in
relation to the safety challenges from Table 4 (presented in Section 3.3) will be explored as an answer
to the research question: “Can complexity thinking contribute to progress in occupational safety in
Industry 4.0?”.
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3. Results

The results confirm the line of thought set out in the methodology, starting from the analysis of
traditional safety methods as used in OHS, the advances in theoretical developments of safety science
and how these developments meet the challenges of Industry 4.0.

3.1. Safety Analysis Methods

Table 1 displays a set of traditional occupational safety methods taken from the two authoritative
sources [9,26], from which Harms-Ringdahl’s set of 10 primary methods forms the core of the table.

Table 1. Safety analysis methods (concept, paradigm and basis for structuring).

Method Concept [9–26] Paradigm Basis for
Structuring Coupling/Tractability

Energy Analysis [9] Identifies energies that can harm
human beings.

Energy barrier
thinking

Volumes that
jointly cover

the entire object

Loose
coupling—tractable

Hazard and Operability
Studies (HAZOP) [9–26]

Identifies deviations from intended
design of equipment, based on the
use of predetermined guide words.

It is generally carried out by a
multi-disciplinary team during a set

of meetings.

Linear causality
Deviation of
operational
parameters

Tight
coupling—tractable

Failure Mode and Effect
Analysis (FMEA) [9–26]

Identifies failures of components
and their effects on the system.

Linear causality and
decompositional

analysis

Reliability from
components or

modules

Tight
coupling—tractable

Fault Tree Analysis [9–26]

Causal factors are deductively
identified, organized in a logical

manner and represented pictorially
in a tree diagram that depicts causal

factors and their logical
relationships to the top event.

Energy barrier
thinking, linear
causality and

decompositional
analysis

Fault
propagation

resulting from
initial event

Loose
coupling—tractable

Event (Effect) Tree
Analysis [9–26]

Analyzes alternative consequences
of a specified hazardous event.

Energy barrier
thinking, single cause

philosophy and
decompositional

analysis

Fault
propagation

back to initial
event

Loose
coupling—tractable

Action Error Method [9]
Identifies departures from specified

job procedures that can lead to
hazards.

Taylorism Phases of work
of operator

Loose
coupling—tractable

Job Safety Analysis [9] Identifies hazards in job procedures.

Rationalist,
prescriptive and

top-down belief in
procedures and

Taylorism

Elements in an
individual job

task

Loose
coupling—tractable

Deviation Analysis [9]
Identifies deviations from the

planned and normal production
processes.

Rationalist,
prescriptive and

top-down belief in
procedures and

Taylorism

Activities (e.g.,
activity flow or
job procedure)

Loose
coupling—tractable

Safety Function Analysis [9]

A structured description of a
system’s safety functions, including

an evaluation of their adequacies
and weaknesses.

Energy barrier
thinking

Defenses or
safety functions

of the system

Loose
coupling—tractable

Change Analysis [9]
Establishes the causes of problems

through comparisons with
problem-free situations.

Failure without
acknowledging context
sensitivity or emergent

behavior

Discrepancy
between as-is

and
as-should-be

situation

Loose
coupling—tractable

Root Cause Analysis
(RCA) [26]

Attempts to identify the roots or
original causes instead of dealing
only with immediately obvious

symptoms.

Single cause
philosophy, linear

causality and
decompositional

analysis

Initiating
failure causes

and effects

Loose
coupling—tractable
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Table 1. Cont.

Method Concept [9–26] Paradigm Basis for
Structuring Coupling/Tractability

Human Reliability
Assessment (HRA) [9–26]

Identification and prediction of
human errors in relation to strictly

predefined tasks.

Human reliability
assessment and

Taylorism
Human error Loose

coupling—tractable

Deterministic Probabilistic
Risk Assessment (e.g., Risk

Indices -FN Curves
(the cumulative frequency ‘F’
of people affected ‘N’) [26]

Deterministic probabilistic risk
assessment (PRA) produces a

semi-quantitative measurement of
risks based on frequency and

severity scales.

(Semi-)quantitative
causality credo

Ordinal or
cumulative
frequency

and/or severity
of harmful

events

Loose
coupling—tractable

Databases (e.g., Reaction
Matrix—Consequence

Analysis) [26]

Analysis of consequences of
chemical risks like fire, explosions,

the release of toxic gases or the
determination of toxic effects or

combinations of chemicals.

Database
Chemical and

physical
reactions

Loose
coupling—tractable

Cognitive Task Analysis [26]
An analysis method that addresses

the underlying mental processes
that give rise to errors.

Task analysis as the
key to understanding
system mismatches

Tasks Loose
coupling—tractable

Bayesian Networks [26]

A method that use a graphical
model to represent a set of variables
and their probabilistic relationships.
The network is comprised of nodes

that represent a random variable
and arrows that link parent nodes to

a child nodes.

Epidemiological
causation model

Events (and
their related
degrees of

belief)

Tight
coupling—tractable

Layer Protection Analysis
(LOPA) [26]

LOPA is a semi-quantitative method
for estimating the risks associated
with undesired events or scenarios

and the presence of sufficient
measures to control them.

A cause–consequence pair is
selected, and the preventive layers

of protection are identified.

Epidemiological
causation model and

energy barrier thinking

Multiple
defenses

Tight
coupling—tractable

Bowtie Analysis [26]

A simple, diagrammatic way of
describing and analyzing the

pathways of a risk from causes to
consequences. The focus of the

bowtie is on the barriers between
the causes and the risk, and the

risks and consequences.

Epidemiological
causation model and

energy barrier thinking

Multiple causes
and defenses

Tight
coupling—tractable

[9] Harms-Ringdahl, L.—Safety Analysis, Principles and Practice in Occupational Safety; [26] ISO31010—Risk Management-Risk
Assessment Techniques.

The authors from this study recognized from their research involvement in OHS activities that
these 10 methods are indeed among the most commonly used OHS methods, and many of them are
additionally mentioned in ISO 31010. In Step 2 we labeled the remaining methods in line with the
columns of Table 1 and gathered a total of 47 methods. To complement the initial set, we looked for
methods from which the paradigm was not yet covered by another method. Before performing this
task, we narrowed down the selection by disqualifying methods that lacked analytical structuring,
and which we regarded as only have benefit as supporting tools for stand-alone methods. Examples
of such disqualified tools, although mentioned by ISO 31010 as risk assessment techniques, include
brainstorming, semi-structured interviews, the Delphi technique and multi-criteria decision analysis.
However, some of these tools can lend powerful support from subject matter experts or stakeholder
input for data-gathering techniques in hazard identification and risk assessment. They usually require
an underlying causation model to structure the types of hazards or risks a researcher or safety manager
is interested in. The analytic hierarchy process (AHP) is an example of a multi-criteria decision
analysis with a strong analytical structuring that can be used as a hierarchy decision model for
assessing the priority of OHS goals [34,35] (see also Section 4.2 for the use of AHP in combination with
complexity-thinking methods). Consequentialist approaches that do not provide a comprehensive risk
analysis with an objective basis for structuring hazards or risks like cost–benefit analysis or business
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impact analysis were removed. We also deleted a method that assessed safety culture and was not
recognized as a primary means to achieve hazard reduction [36–38], but which belonged to a different
categorical status of risk reduction by management technique.

3.1.1. Critical Analysis of Traditional Safety Methods

A brief explanation of the concepts of the methods can be found in Table 1. For a more extensive
explanation, we refer to [9,26]. Table 1 reveals that the basis for structuring for a given method (the unit
of analysis) varies considerably. The methods from Table 1 range from structuring the analysis by
(i) failure propagation of events (fault tree analysis, event tree analysis, root cause analysis, Bowtie
analysis); (ii) the defenses that protect against such failure propagations (safety barrier diagram, layer
of protection analysis [LOPA]); (iii) deviations (HAZOP, what-if analysis, deviation analysis); or (iv)
effects from component failure (FMEA) as the basic structuring unit. The assortment of units of analysis
varies so greatly that any comparison between the methods becomes obsolete. This is an important
reason why we have decided to follow the term ‘safety analysis methods’ throughout this paper for its
general meaning. Safety analysis methods are shaped by a multi-step process consisting of (i) hazard
identification; (ii) risk assessment by evaluation or prioritization, and subsequently (iii) mitigation
and management of risks. In occupational safety, an additional step would be to produce injury
mechanism models [31]. However, the shift in risks in Industry 4.0 is mainly a systems ergonomics
challenge, an issue of organizing and distributing information and coordination. We hypothesize that
similar physical forces will produce similar types of injuries, no different than before the introduction
of Industry 4.0. Collaborative robots bring one exception, something that would indeed require new
injury mechanism models because of the close interaction between workers and robots. We considered
injury models to fall outside the scope of this paper.

From studying Table 1, one can learn that some safety analysis methods focus solely on hazard
identification (energy analysis, primary hazard analysis, HAZOP) whereas others solely focus on risk
assessment (risk indices, FN curves [whereby F stands for cumulative frequency and N for the number
of people affected]), or a combination thereof (FMEA). Yet other methods only concentrate on the alleged
sources for hazards, such as not following job instructions and procedures (job safety analysis, deviation
analysis) or cognitive mismatches between operators and tasks, including the use of interfaces and
system interactions (cognitive task analysis). The four challenges of interconnectivity, machine autonomy,
automation in joint human–agent activity and a shift in supervisory control are all socio-technical-related
issues. Most if not all traditional safety analysis methods need a combination of different methods
to cover technical and human performance-related hazards and risks. There is a legitimate risk that
analyzing such issues in isolation from each other says little or nothing about their integration on a
higher-order level of human–machine interaction. Bowtie analysis would be an exception as it can
cover a broad range of technical, human and systems-related issues. In Bowtie analysis, adverse events
are depicted as central nodes. Such adverse events can be triggered by multiple contributing threats
in combination, whereas none of these events in isolation would be sufficient to trigger the adverse
outcome. Even the consequences could be multiple, with different effects on different parts of the
socio-technical system. A framework on the ‘joint integration’ of technical and human performance safety
issues via a combination of multiple methods is largely absent in ISO 31010—Risk Management—Risk
Assessment Techniques, a leading reference for industrial safety managers. ISO31010 gives the user
general guidance by tabling strength and weakness overviews with a general explanation for each
method; however, it expects the user to self-assess which method or methods to use. Pasman et al. [39]
propose a structured six-step approach, each with several methods tied to individual steps of the process:
(i) hazard identification; (ii) quantification of consequence; (iii) quantification of probability of events;
(iv) quantified risk; (v) risk reduction; and (vi) risk assessment. This multi-phased structured approach
merges to some extent the non-commensurability of the units of analysis among the different methods.
It can be hypothesized that such structured approaches in the academic literature will not always be
consulted by safety managers in the field, where choice of method is influenced not only by several
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factors such as skills, experience capacity and capability of the risk assessment team, budget and resource
availabilities [26], but also by industry and individual preferences. Pasman et al. [39] have provided
some criteria for sound scientific risk assessment, yet warn that retrospective understanding of failure is
much easier to achieve than prospective understanding of risks and hazards. In retrospect, “the cognitive
illusion of ‘What-You-See-Is-All-There-Is’ (WYSIATI) gives rise to believing a one-sided explanation of an
event, a confirmation bias, or the related anchoring effect and the availability bias” [15] (p. 81), whereas
the ‘What-You-Look-For-Is-What-You-Find’ (WYLFIWYF) principle [40] means that the causes found
during an analysis reflect the assumptions of the model used. One assumption that is valid for many
occupational safety methods is that they are based on linear causal models and are therefore only able to
account for linear cause–effects [10,14–16]. As such, these methods fail to explain non-linear or emergent
system behaviors [14], something that is intertwined with the analysis of our Industry 4.0 challenges as
introduced in Sections 1 and 2. Linear thinking is “a process that follows a chain of causal reasoning
from a premise to a single outcome. In contrast, systems thinking regards an outcome as emerging from
a complex network of causal interactions, and, therefore, not the result of a single factor” [23] (p. 939).
Industry 4.0 is characterized by interconnectedness and autonomous algorithms. In such dynamic and
highly coupled systems “[a]symmetry or non-linearity means that an infinitesimal change in starting
conditions can lead to huge differences later on” [23] (p. 942) that arise from unusual combinations of
conditions rather than from linear propagation of cause–effect chains [11].

3.1.2. An Historical Introduction to Traditional Causation Models

Several authors have described the historical evolution of accident and incident investigation
methods and causation models [10,15], which started with linear models like Heinrich’s Domino
Model from 1931 [41], followed by Gibson’s and Haddon’s model of energy barriers [21] in the
1960s. Both causation models use “a closed system safety mindset with mechanistic metaphors to
describe the conditions, barriers and linear chains of an accident process” [21] (p. 951). The Domino
Model views accidents as event chains in a five-stage linear model, depicted as a line of dominoes.
In order for the last two dominoes—the accident and resulting injury—to fall, Heinrich believed it
was important for management to remove any of the first three dominoes, those being: (i) social
factors (e.g., inheritance, environment); (ii) faults of people (e.g., violent temper, ignorance of safe
practice); and (iii) the actual unsafe acts [40]. The analogy was that if any of these dominoes were
to be removed, this would prevent the accident and injury dominoes from falling. Although the
negative effects of an over-extensive linear extrapolation of protection measures have been highlighted
by theories of error [42], most occupational safety causation methods are still based on the Domino
Model and energy-barrier models [21] (see Section 3.2.4 for energy-barrier thinking in more complex
environments). This is indeed confirmed by the findings in Table 1, whereby the many labels in the
paradigm column are either based on linear causality, energy-barrier thinking or a combination thereof.
Methods based on a single cause philosophy like root cause analysis or fault tree analysis depict a linear
and deterministic cause–effect relation between consecutive events [43], and are therefore essentially
another example of linear causality models.

3.1.3. Reflections on Quantitative Methods and Techniques

A last category is formed by quantitative methods which, although they have a common
denominator, do not necessarily belong to a collective ontological paradigm. Despite their lack
of an internal causation model, these methods provide helpful solutions that differ from those of
previously discussed methods. We have therefore admitted quantitative methods and provided some
supplementary reflections. Sneak circuit analysis and Markov analysis are engineering methods,
although there are some rare occasions where Markov analysis has been used to predict human–machine
interaction or socio-technical-related problems [44]. Their use in socio-technical systems and application
in workplace safety has been, however, limited to simple systems, and their predictive utility remains
limited to micro-level ergonomics [45]. Nonetheless, they should not be dismissed, as they remain
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important building blocks in understanding the micro-level system design of a larger chain of
socio-technical challenges. Other probabilistic methods like Monte Carlo simulation and Bayesian
networks assign probability to risks derived from a previous step of hazard identification. Monte
Carlo simulations introduce a set of pragmatic solutions to model the total effect of uncertainty
and can consequently handle a degree of intractability in its assessment. The accident causation
representation in Bayesian networks is causal [46] and hence tractable, and the degree of unknown
conditions inherently affects the quality of the model. On the other hand, by using conditional
probability tables, more complex relationships can be modeled than with logical operators [46], and
the application of Bayesian networks is not restricted to binary factors only. It can therefore be used to
examine tight couplings. Bayesian networks have been used in the past to quantify the probability of
human performance, in general to assess human error. Monte Carlo simulation has even been used to
assign probabilities of dependencies [47,48] and their effects in conjunction with complexity-thinking
methods. Although they can also be used to analyze tractable, loosely coupled failures, we will
position Bayesian networks and Monte Carlo simulation in relation to their maximum analytical
capacities along the quadrants of Table 3. It should be considered that in probabilistic risk assessment
(PRA), the analyst is the one that discovers the risk scenarios, not the methodology [49]. PRA’s
predictive power is therefore limited. The history of application of PRA in NASA is a good example
of the challenges related to its use. Early PRA models on the Apollo program, for example, were
based on largely overestimated failure probabilities, which resulted in unrealistically low chances of
mission success, whereas in the space shuttle era NASA seriously underestimated the rocket booster
failure that caused the Challenger crash [50]. After the Challenger crash, NASA moved to adopt
PRA from the nuclear industry [51], and succeeded in achieving quite accurate predictions during
the last decades of the space shuttle program [49]. Currently, the combination of qualitative and
quantitative methods is promising if applied to the proper scope of analysis. Aviation and space
missions, for example, rely heavily on combinations of qualitative methods like FMEA, which is
supported by quantitative approaches [52]. The future adoption of fuzzy logic into safety analysis,
as a generalized theory to manage uncertainty ([53], or turn uncertainty in probability, is a remaining
challenge for future research).

Highly deterministic probabilistic methods such as risk indices or FN curves (whereby F stands for
frequency and N for the number of people affected) with binary logic and cause–effect constructs are not
able to find anything else than tractable, loosely coupled issues, and often risk a simplification of the risk
spectrum. Care should be taken when using quantitative probabilities and historical statistical data [54]
that hide the uncertainty of risk assessment behind a veil of mathematical certainty. For the reasons
explained above, classic probabilistic methods are not adapted to identify “risk scenarios in case of
highly complex, dynamic, hybrid systems of hardware, software, and human components” [49] (p. 8),
which are exactly the Industry 4.0 challenges identified in this paper. “Digital systems may be at
intermediate fault modes before reaching a final failure state that will be revealed to human operators
in the humane machine interface” [55] (p. 25), and lead to unplanned, unfamiliar, invisible and
incomprehensible unexpected sequences of failures. It should be recognized that other more nuanced
methods, that also use risk indices, exist and are meanwhile applied in the process and petrochemical
industry; these nuanced methods were not referred to among our consulted sources, as explained in
Section 2, materials and methods. Some examples that sometimes lead to richer interpretations of
safety are: (i) the inherent safety index [56], which assesses the principles of inherent safety, being
minimization, moderation, substitution and simplification; the (ii) safety weighted hazard index,
which assesses a process unit of an industry by simultaneously evaluating hazards and hazard control
measures [57]; or (iii) fuzzy indices that account for uncertainties in hazard and risk calculations [56].

3.2. Complexity-Thinking-Related Safety Paradigms and Concepts

This section is divided into several subsections that introduce the reader to paradigms, principles
and concepts that either have complexity thinking as a central premise or are closely related to it.
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3.2.1. From Linear Decomposition to Non-Linear Systems Causality

Complexity thinking marks a changing perspective on causality, moving from sequential models
to systemic models [11], which is a change from linear thinking to non-linear thinking and from an
individual to a holistic perspective. In the complexity-thinking paradigm, “failure is the result of
the adaptations necessary to cope with the complexity of the real world, rather than a breakdown or
malfunction” [58] (p. 167). Systems thinking is often applied inseparably from complexity thinking.
Both schools of thought highlight different but intertwined aspects in socio-technical systems. Systems
thinking marks the changing perspective from decomposition by analytical reduction to the analysis
and design of the whole, as distinct from the components. It provides a means for studying emergent
system safety properties [59]. This overcomes feedback loop problems, non-linear interactions between
components and the fact that interactions among the sub-systems cannot always be considered separate
from the behavior of the sub-systems themselves [59]. Note that these paraphrases, which we borrowed
from Leveson in regards to systems thinking, are strongly related to complexity thinking, because the
holistic approach of seeing the system as a purposeful whole and not as a collection of parts has an
immediate effect on the complex interactions within this system. Several of the traditional methods
from Table 1, like FMEA, fault and event tree analysis and root cause analysis have paradigms that are
based on the decomposition of events and systems and differ from the systems-thinking perspective.

Several extracts from the 1980s start to cover different aspects of systems-thinking and
complexity-thinking theories. Turner (1978) [60] was the first to write about fallible constructs
in previous eras of safety thinking, followed by Perrow (1984) [61] with a critical and sometimes
pessimistic view on developments of out-of-control technology, and Rasmussen who started a tradition
of self-organized emergent systems (1980s and onwards) [62]. All of these authors still have a strong
influence on contemporary safety science. Perrow wrote his book Normal Accidents in 1984 as a reaction
to the fallibility of nuclear power plants after the Three Mile Island incident. Nuclear power plants
were initially assessed to be ultra-reliable, but failed on a socio-technical level anyway.

3.2.2. Complexity Expressed as a Combination of Tight Couplings and Non-Linear Tractability

Although our scope is completely different, Perrow’s thoughts are still used today to deconstruct
socio-technical systems with different degrees of complexity and coupling [14,16,63–65]. Complexity
is expressed in terms of linear versus complex interactions and coupling discriminates against the
possibility of either loosely or tightly coupled systems. Tight couplings mean that tasks or events are
tightly connected or dependent [61]. A consequence of tightly coupled systems is that “there is no
slack or buffer or give between two items” [61] (p. 90), and they are more difficult to control due to
system-wide failure propagation [11]. Loose coupling means that tasks or events are independent and
the failure of one component does not affect the failure of another component, nor does it cause the
breakdown of the whole system.

Perrow presented a diagram, based on his breakdown of complexity and coupling, resulting in four
quadrants. (See Figure 2 for a more recent revision [14] by Erik Hollnagel of Perrow’s original diagram.)

Different areas of industrial and commercial activities are positioned within one of these quadrants
as a result of the combination of coupling and complexity characteristics. Perrow positioned
manufacturing and assembly lines in the third quadrant, being defined as loosely coupled and
resulting in linear interactions. Nuclear power plants (NPPs) can be found in the most critical, upper
right position, and were the immediate motivation for Perrow’s book. With the introduction of
Industry 4.0 characteristics both couplings and complexity increased substantially in many industrial
processes. Hollnagel stated in 2008 that shifts towards more coupling and complexity for certain
industries, and hence changes in quadrant positioning, are to be expected [14]. The technologies of
Industry 4.0 act as a turbocharger for the further tightening of couplings. Factories have become
“‘smart,’ i.e., they are highly efficient in resource, and they adapt very quickly to meet management
goals and current industrial scenarios” [4] (p. 408). Physical systems are becoming integrated in
networks: “the information technology part of Industry 4.0 consists of cyber-physical systems (CPS),
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cloud computing, and the internet of things (IoT)” [4] (p. 408), the latter being defined by Xu et al. [66]
as machine–machine interactions without human intervention [4]. Whereas the traditional risks of
robots in confined and protected spaces were relatively easy to identify and control, “more flexible
and mobile cobots (a hybrid of the words ‘collaborative’ and ‘robots’ that refers to robotic devices that
manipulate objects in collaboration with a human operator [67]) performing all sorts of tasks in close
interaction with workers represent a much broader range of much less predictable risks” [13] (p. 408).
Increased human–machine interaction “does not mean simply more human–machine control interfaces,
but new ways of sharing tasks in order to complete complex operations more rapidly” [13] (p. 407).
Although Industry 4.0-incentivized decentralization can meet the growing needs of highly customized
products [4], it also adds non-linear interactions to work systems.
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3.2.3. Shift from Safety-I to Safety-II

The shift from simple to complex systems has recently been complemented by a shift from Safety-I
to Safety-II thinking. Safety-I defines safety as a condition where the number of adverse outcomes
(accidents/incidents/near misses) is as low as possible [58]. In order to improve safety, one ‘needs’
adverse outcomes to facilitate the learning process. This has been a well-proven strategy since the
beginning of safety management. In particular, for ‘safe’ industries such as aviation, the approach is
limited because of an absence of incidents and a subsequent absence of learning opportunities; this is
called the paradox of safety [42]. Even in less-safe industries, failures represent just a small fraction
of normal performance in which things often go right. Consequently, learning from failures only
creates limited learning potential, nor does workplace safety simply equal the absence of work-related
injury [45]. Therefore, Safety-II focuses on a system’s ability to succeed under varying conditions,
so that the number of intended and acceptable outcomes is as high as possible. Because safety in
this paradigm is a system’s ability, an organization and its operators cannot be safe or unsafe, but
need to constantly navigate success under limited resources, goal conflicts and trade-off decisions.
From this follows the principle of ‘approximate adjustments’ [68], which is the assumption that people
continuously adjust what they do so that their actions match their conditions. This is in fact the
theoretical reason why things more often go right rather than go wrong. The scope of analysis under
Safety-II is therefore normal performance variability from everyday work, which has a very different
etiology than attributing binary outcomes of safety, as found in Safety-I [58]. Instead, outcomes emerge
from human performance variability, which is the source of successes as well as failures. This is called
the principle of ‘equivalence’ [68]. While some adverse outcomes can be attributed to failures and



Safety 2019, 5, 65 13 of 33

malfunctions, others are best understood as the result of coupled performance variability. Therefore,
Safety-II is not intended to replace Safety-I, but extends Safety-I [58,69].

3.2.4. Causation Model Concepts and Their Relation to Coupling and Tractability

In 2008, Hollnagel revisited Perrow’s framework to meet the demands of increasingly complex
socio-technical systems in relation to accident investigation methods. Hollnagel warns that whereas
Perrow’s notion of coupling is relatively straightforward, the notion of complexity must be used with
care, since there is a difference between the complexity of an actual system and the complexity of its
representation. Instead, Hollnagel proposes to replace complexity with tractability, meaning “how easy
it is to manage or control the system” [14] (p. 7). “A system, or a process, is tractable if the principles
of functioning are known, if descriptions are simple and with few details, and most importantly if the
system does not change while it is being described. Conversely, a system or a process is intractable if
the principles of functioning are only partly known or even unknown, if descriptions are elaborate with
many details, and if the system may change before the description is completed” [14] (p. 7). Hollnagel
extended Perrow’s framework by positioning accident investigation methods into the quadrants of
coupling and tractability, based on the ontology of the underlying causation model. See Figure 3 below.
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Although Figure 3 depicts accident investigation methods, Hollnagel attributed the reasons for
categorizing their coupling and tractability capabilities to the underlying causation models. Prospective
safety analysis methods have the same causation models and we thus created a similar matrix with the
methods from Table 1 (and the complexity methods that will be explained in a later section, see Table 2
in Section 3.2.6) by matching the underlying causation models to their prospective counterparts in
safety analysis methods. These causation models can be retrieved from the paradigm label that is
assigned for each method from Table 1.

In relation to the paradigms ‘energy barrier thinking’, ‘linear causality’, ‘single cause philosophy’ and
‘human reliability assessment’ (HRA) from Table 1, Hollnagel et al. defend that the following categories of
methods affect the analysis of loosely coupled and tractable systems [14] (p. 11): “(i) methods that focus
on the identification of failed barriers, (ii) methods that focus on human error, (iii) methods that focus on
root causes in isolation, and (iv) methods that focus on root causes in combination”. In accident analysis
methods this includes accident evolution and barrier (AEB) analysis, a specific human error method
(HERA), a multiple root cause analysis method (J-HSEP) and root cause analysis (RCA). In prospective
safety analysis, this coincides with most of the method paradigms, because the majority is based on root
cause analysis, human error assessment and energy-barrier thinking (see Table 1 for the labels and Table 4
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for the resulting matrix). Although several traditional methods are not suited to analyze intractability
issues, some of them are adapted to handle some types of tight couplings. FMEA is especially designed
to analyze the reverberations from cascading failures, and HAZOP assesses the effects from deviating
parameters on the net result of process safety. Although LOPA and Bowtie analysis are methods based
on energy-barrier thinking, they take into account the couplings between several components and their
layers of defense. Why Hollnagel assesses human error assessment methods to quadrant 1 deserves
some additional justification in the section below.

3.2.5. Causation Models and the Human Contribution

Although there was a shift in focus from the failure of technical systems since the first causation
models from the middle of the 20th century towards human–machine or socio-technical failures by
the end of the 20th century, this largely resulted in a search for human failure as an oversimplified
conception of human error [70]. The small impact of human reliability approaches on many industries
is attributed to a failure to consider the challenges of systems development [71]. Human reliability
assessment (HRA) has additionally received an increased critique for displaying benchmarking
problems between methods with great variations in outcomes, poor methodological support, poor
support for error prediction and analyst subjectivity [71,72]. In HRA, human cognition is assessed the
same way that technical failure is assessed, by decomposition of systems and by assigning probabilities
to sequential cause–effect events. Organizational, political, economic and environmental factors that
influence human cognition are outside the consideration of HRA methods [46], and the contextual
validity of such methods is generally low [71]. Human performance is always context-sensitive [70],
which makes it either easily intractable or tightly coupled, or possibly both.

This has to some extent been recognized through the additional consideration of latent failures
in accident investigations since the late 1980s. The Swiss cheese model has been instrumental in
recognizing failures as the outcome of a “combination of active failures and latent conditions, rather than
as the result of isolated events at the sharp end” [73] (p. 16), and hence as a counteraction to the
oversimplified conception of human error. In this and other epidemiological models, dormant failures
from design, maintenance and management can converge to a catastrophic event by combining
active operational failures under specific system conditions [55]. Although in epidemiological models
context-sensitive information becomes relevant for understanding human error, it also remains difficult
to reach consensus on the contextual sources of latent failures [71]. Epidemiological models are also
called complex linear models [74]. They are both graphically and conceptually an update of the Domino
Model. The term ‘complex’ refers to the fact that multiple active and latent conditions must occur in
combination for an accident to happen; the word ‘linear’ refers to the fact that the Swiss Cheese Model
still depicts a successive sequence of events and does not yet explain emergent systems behavior. These
two terms could explain why Hollnagel has attributed the Swiss Cheese model to the first quadrant,
as it is able to reflect tight coupling interaction (complexity of interactions) while remaining a method
to solve tractable failures (linearity of causes and defenses). This is why the ‘epidemiological causation’
paradigm has been categorized as being capable of analyzing tightly coupled, tractable issues.

Note that although the Swiss cheese model is used as a framework both for accident investigation
and as a safety communication model, it lacks the appropriate form for making predictions [73], and
further lacks the properties to be considered as an actual method. However, due to its recognizable
representation, it remains a clear example of an epidemiological causation model that finds its
counterparts in Table 1’s LOPA and Bowtie safety analysis methods. They can both be regarded
as complex linear methods. Note that both are not just models, but methods, since they are more
than just graphical representations and come with a structured series of steps to follow. Although
Bowtie is sometimes described as simply being a combination of fault tree and event tree analysis [15],
the methods’ vocabularies makes use of threats that can be both latent and actual threats, and are
comparable to the Swiss cheese representation. Pasman [15] writes that by applying indicators, statistics,
Bayesian network, and expertly selected weight factors, both human and organizational factors for
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failure probability scenarios can be determined by the representation of Bowties. The integration of
human and organizational factors is a clear reference to epidemiological models with their tightly
coupled capabilities. Nevertheless, as all these conditions are assumed to be foreseeable as the
combination of events, they are assessed as tractable.

One remaining paradigm that has not yet been explained is a “rationalist, prescriptive and
top-down belief in procedures” [75], which is only one interpretation of two possible procedural
paradigms. In the first procedural paradigm, “rules are seen as static, comprehensive limits of freedom
of choice, imposed on operators at the sharp end and violations are seen as negative behavior to
be suppressed” [75] (p. 207). “The second procedural paradigm says that procedures are socially
constructed, locally situated and bottom-up; it is rooted in sociology and work ecology. It envisions
procedures as emerging from work experience and recognises that they are essentially incomplete
and require translation and adaptation to any specific situation” [76] (p. 165). Methods such as the
action error method, which identifies departures from specified job procedures, or deviation analysis,
which distinguishes deviations from the planned and normal production process, reveal a belief in
maintaining stable conditions of work by adhering to a fixed process or static set of procedures, hence
a belief in the tractability of systems. This belief is rooted in ‘Taylorism’ [76], another paradigm that is
strongly associated with the first procedural paradigm. Taylorism assumes that work prescriptions
and task breakdowns can be efficiently controlled by supervisors and middle-management as the best
way to assure operator reliability [75,77]. Taylorism pre-supposes linearity between procedures and
hazards, and therefore assumes strict tractability. In Tayloristic methods, just as in the first procedural
paradigm, tight-coupling is not assessed, but at best avoided by predictable and reliable performance.

3.2.6. The Identification of Complexity-Thinking Methods

In “complex nonlinear interactions, failures do not arise from the relationship of component
failure modes and their causes, but ‘emerge’ from the relationships between these components during
operational situations” [55] (p. 26). The evolving Industry 4.0 concerns, as discussed in this paper, need
a safety analysis method that is capable of analyzing tightly coupled and intractable work system issues;
in other words, a method situated in the second quadrant. In line with Hollnagel [14], we agreed to
apply the notion of tractability instead of complexity in the diagram. We refrained, however, from
positioning our objects of investigation on a sliding scale within the quadrants. Perrow [61] described
the likelihood for a bias of his choices. We therefore think it is difficult to defend how one method is
relatively positioned in terms of being more or less tractable or tightly coupled in comparison to other
methods within a quadrant on a sliding scale, and therefore decided to use a table instead. The following
steps therefore consist of identifying methods that are capable of examining the dynamics of complex
interactions in a systems theory-based approach. Figure 3, from the study from Hollnagel et al. [14],
provides a first opportunity for identifying prospective safety analysis models and methods, since
the accident investigation model System-Theoretic Accident Model and Processes’ (STAMP) and the
Functional Resonance Analysis Method (FRAM) that can be retrieved from the complexity quadrant
(tightly coupled and intractable) are both prospective as retrospective models and methods. STAMP is
the denominator for the common accident causation model from (i) the prospective hazard analysis
technique, called systems theoretic process analysis (STPA), and (ii) the accident and incident analysis
technique, called Causal Analysis based on STAMP (CAST). STAMP as a model thereby forms the basis
for both a retrospective and prospective method. In between quadrant 1 and 2, one can additionally
find the Cognitive Reliability and Analysis Method (CREAM), which can be applied both retro- and
prospectively, but this method, although considered by many as rather successful and still in use, has
been abandoned by the inventor Hollnagel [15] for several reasons. In Hollnagel’s own words [78]:
“first, because it focuses on how actions can fail, rather than on the variability of performance”; secondly,
“because it focuses on one part or ‘component’ of the system only, namely the human(s)”. Another
reason is that CREAM was misinterpreted to accept the concept of human error. FRAM, a method that
originated from the same creator, has currently replaced several shortcomings of CREAM [78]. Several
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publications in search of systemic and complexity-thinking-inspired accident causation methods have
confirmed FRAM and STAMP as the most cited and most suitable methods [21,24,79]. Underwood
et al. [80] produced a review of systemic accident analysis methods and concluded that STAMP,
FRAM and Accimap were the most used systemic accident analysis methods. Accimap has no
prospective counterpart, but Rasmussen’s hierarchical risk model on which Accimap is based, has
also been integrated in some prospective systemic complexity-thinking methods like STAMP, as
well as a particular use of FRAM with an abstraction/agency extension [81]. The integration of the
hierarchical socio-technical deconstruction in STAMP and the above-mentioned extended FRAM
display an unmistakable link to systems thinking. Some authors mentioned Event Analysis of Systemic
Teamwork (EAST) [24,82] as an additional, although less-cited method that meets the requirements for
an analysis method that is able to assess tightly coupled and intractable systems. Visualization tools
that did not meet criteria to be counted as full methods, such as the ones described by de Vries [83],
were excluded, but will be discussed as interesting approaches in Section 3.3.1. It is beyond the
scope of this paper to fully explain the methods, but they are fully examined in the original sources:
STAMP [16,84], FRAM [68] and EAST [82,85]. A short description of each can be found below.

Event Analysis of Systemic Teamwork (EAST)

EAST uses a three-step approach of data collection, data analysis and network representation.
Input data can be derived from several sources including interviews, questionnaires, observational
data, communication transcripts, critical decision method probes or combinations thereof [82,85,86].
After this, task, information/communication and social networks are analyzed in isolation and in
combination with the help of network metrics. Each network is analyzed with its own particular
existing method. Subsequently, an aggregation of two or three networks is analyzed for additional
resultant and emergent interactions. The first studies with EAST used hierarchical task analysis, critical
decision methods, coordination demand analysis, communications usage diagrams and operation
sequence diagrams, whereas later versions developed network information directly from the raw
data [82]. In a last step, the outcomes from the network metrics are supported by various integrated
graphical representations.

System-Theoretic Accident Model and Processes (STAMP)

STAMP is based on how safety constraints and process models interact in hierarchical safety
control structures. Together, these three essential concepts produce a diagram where the safety control
structures are organized hierarchically. All these levels are believed to have influences on each other
in the form of reciprocal communication channels, beginning with the societal level, followed by the
levels of organization factors, company management, operational management and, finally, the actual
operating process structures. Within these levels, one finds process models where a controller controls
a process through control actions and receives responses through feedback or measurement outputs.
Finally, every controller has an internal control model that directs these feedback and control loops [16].
Failures occur when the process model used by the controller does not match the process as a result of
incorrect or unsafe control commands, an absence of required control actions, wrong timing of control
actions or the control being stopped too soon or applied too long [16]. The results are safety control
structures that determine potentially hazardous control actions [79] on the micro, meso or macro level.
Data gathering can have all sorts of inputs and is not prescribed by the method.

Functional Resonance Analysis Method (FRAM)

A FRAM analysis follows a four-step approach performance [68]: (i) modeling the system;
(ii) identifying the inevitable variability of work-as-done (see Section 3.2.8); (iii) aggregating the variability;
and (iv) managing the variability. Each action performed by an agent (individual, group, equipment,
artefact or organization) [81] within a work system is described by a function depicted by a hexagon.
Each corner of the hexagon represents the six fundamental aspects (i.e., input, output, time, control,
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precondition and resource). These aspects can be linked to the aspects of other functions and produce a
systematic network representation of functional interactions. The potential for variability between these
functions is assessed by endogenous, exogenous and/or upstream–downstream coupling. The variability
of the aspects can also be described by various phenotypes such as timing, precision, speed, force, and
so on. The variability of the model and its emergent behavior, called functional resonance, is assessed
by analysis of the upstream–downstream interactions. To manage variability, positive resonance will
be amplified, while negative resonance must be dampened. This is achieved by inserting barriers,
rearranging the order of functions, assigning roles to other agents, creating redundancies or reorganizing
the work system according to a better understanding of its functional resonance.

Table 2, displayed below, is the counterpart of Table 1, this time for complexity-thinking-inspired
methods; it displays the same structure and labels as Table 1. Table 2 is immediately followed by
Table 3, which now merges the coupling and tractability capabilities from methods contained in both
Tables 1 and 2.

Table 2. Complexity-thinking-inspired safety analysis methods (concept, paradigm and basis for
structuring).

Method Concept Paradigm Basis for Structuring Coupling/Tractability

STAMP
[16,21,24,79,80,83,84]

Creation of a model of the functional
control structure for the system in

question by identifying the
system-level hazards, safety
constraints and functional

requirements.

Feedback
control system

Most basic element in
the model is a constraint,

whereas basic
structuring is the

feedback control system

Tight
coupling—intractable

FRAM
[21,24,68,79,80,83]

Systemic analysis of complex process
dependencies, based on the idea of
resonance arising from the inherent

variability of everyday performance.

Functional
resonance

Dependencies among
functions or tasks

Tight
coupling—intractable

Event Analysis of
Systemic Teamwork

(EAST) [24,82,85]

A means of modeling distributed
cognition in systems via three

network models (i.e., task, social and
information) and their combination.

Propositional
network

Task, social and
information network

connections

Tight
coupling—intractable

Table 3. Coupling and Tractability of the safety analysis methods matrix.

Tractable Intractable

Tightly coupled

Bayesian Networks
Layer Protection Analysis (LOPA)

Bowtie Analysis
Hazard and Operability Studies (HAZOP)
Failure Mode Effect and Analysis (FMEA)

EAST
FRAM
STAMP

Sneak Circuit Analysis
Monte Carlo Simulation 1

Loosely coupled Energy Analysis
Fault Tree Analysis

Event (Effect) Tree Analysis
Action Error Method
Job Safety Analysis
Deviation Analysis

Safety Function Analysis
Change Analysis

Root Cause Analysis
Human Reliability Assessment

Deterministic Probabilistic Risk Assessment
(e.g., FN curves—Risk Indices)

Databases
(e.g., Reaction Matrix—Consequence Analysis)

Cognitive Task Analysis
Audits

1 when used in conjunction with complexity inspired methods (e.g., Patriarca et al. (2017) use a Monte Carlo evolution of
the Functional Resonance Analysis Method (FRAM) to assess performance variability in complex systems).
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Note that quadrant 4 in Figure 3 and Table 3 are empty for historical reasons [14]. The development
of accident causation went from loosely coupled, tractable systems at the beginning of industrialization,
to more tightly coupled systems, which automatically reduced tractability. Research has found that
increasing coupling also increases operational complexity [63]. The development of investigation
methods simply matched the development of the accidents.

3.2.7. Resilience Engineering

Resilience Engineering (RE) proposes yet another view on safety that is in line with the
intractability credo due to emergent system behavior. RE is closely related to Safety-II thinking,
but it merged from another school of thought. Its many definitions and interpretations were reviewed
by Patriarca et al. [87], with one frequently used definition being “the ability of the system to adjust its
functioning prior to, during, or following changes and disturbances, so that it can sustain required
performance under expected and unexpected conditions” (Robson, as cited in [87]) (p. 87). RE thinking
includes a non-binary view on safety outcomes, including (i) buffering capacity, the degree to which
a system can respond to disruptions before it breaks down; (ii) brittleness, the system’s ability
to restructure in response to external pressures; (iii) margin, how closely the system is operating
relative to its safety or performance boundaries; and (iv) tolerance, how systems behave near
these boundaries [88]. Feedback loops and controls in STAMP can represent more than just binary
states, including buffers, margins and tolerances from which the brittleness of the system emerges.
The functional representations from FRAM have a similar non-binary goal of representing performance
variability, and the total of functional resonances makes up the brittleness of the system. EAST
applies network metrics (e.g., in social systems) to semi-quantitively assess the ‘centrality’, ‘closeness’,
‘betweenness’ and ‘eccentricity’ of actor relationships [82], which can be translated into buffers,
margins and redundant tolerances and their resulting behavior. Such non-binary, non-deterministic
interpretations of safety-display capabilities seek to manage the challenges of intractability. Tight
couplings can be assessed by the functional aspects of FRAM as well as the above-mentioned
social network metrics, supplemented by reception and emissions between agents in EAST. STAMP
represents the relationships at the different socio-technical levels to show reverberations and information
transactions throughout all levels of the work system. Both Safety-II and RE show that non-deterministic
definitions of safety need suitable methods to assess safety not caused by a coincidence of independent
failures but instead by “a systematic migration of organizational behavior to the boundaries of safe
behavior” [16] (p. 52), including how such boundary conditions are challenged and change and over
systems’ life cycles, or how adaptive shortfalls occur and can be counteracted by increasing resilience.
Even the way systems fail is part of resilience assessment. Systems can either gracefully degrade or
show brittleness, the property of displaying sudden dramatic failure “when events push the system up
to and beyond its boundaries for handling changing disturbances and variations” [89] (p. 5). Note that
RE uses a completely different definition of risk than the one implied by many traditional safety
analysis methods that define risk as the combination of the likelihood of occurrence and the severity
of injury, being also the definition which ISO 45001 [32] proposes for an occupational health and
safety risk. The analysis of traditional methods stops at the failure, whereas our complexity-thinking
methods are capable of analyzing systems reactions to stressors before, during and after failure events.
The understanding of safety in RE is radically different and belongs to another paradigm.

The traditional methods from Table 1 are not appropriate to assess such intractable, non-deterministic
degrees of safety. However, probabilistic sneak circuit analysis, a hardware–software reliability method,
forms a mentionable exception. It displays “latent hardware, software or integrated conditions that may
cause an unwanted event to occur or may inhibit a desired event and is not caused by component failure.
These conditions are characterised by their random nature and ability to escape detection during the most
rigorous of standardised system tests” [26] (p. 70). Note that this definition matches both RE’s search
for margins and brittleness, as Safety-II thinking’s focus is on performance variability; as advocated in
Safety-II and RE, it avoids unwanted events and promotes desired events. Sneak circuit analysis is a
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typical example of a method that only assesses one small link in a chain of methods, and jointly assesses
human-centered coordination and its effects in a socio-technical work system.

3.2.8. Work-as-Imagined versus Work-as-Done

With the introduction of RE and Safety-II thinking, there has been an increased interest for
work-as-done (WAD) analysis. WAD is defined as what actually happens in work systems. “It is
messy and completely context dependent. That context is described by the interplay between all the
components of a complex, non-linear system” [90] (p. 408) that consists of a wide variety of interactions
between operators, equipment, procedures, processes and working environments. Work-as imagined
(WAI) on the other hand is defined as how we or others imagine work should be performed [76].
This includes managers and regulators, who often design procedures without being involved in the
actual processes. WAD analysis has become crucial in relation to Safety-II to accurately describe
work systems without the usual distortion brought by normative bias. As previously explained,
we disqualified semi-structured interviews, Delphi technique and multi-criteria decision analysis
from Table 1 for merely being tools and not classified as methods. Note, however, that they are
appropriate tools in conjunction with any method to gather representative WAD information. In FRAM,
the principle of approximate adjustments inherently includes the requirement for a WAD analysis,
as otherwise it will not be possible to make an accurate analysis of how people manage the challenges
and trade-offs in everyday work. Sometimes FRAM models from a WAD and a WAI perspective of the
same work system can be compared [91,92] to better align procedures with the challenges of the actual
work [93]. In STAMP, the analysis can be performed even in the design phase of a system, before a
system is operational and when WAD is not yet present. Even if EAST does not make WAD analysis
explicit in its methodology, it assesses task and communications networks from operational work
systems, which again are derived from running systems.

3.2.9. Complexity-Thinking Critique from the Narrative Literature Review

To conclude, and in line with a narrative literature review [94], we also looked for literature that
was critical to complexity thinking, systems thinking, resilience engineering, Safety-II or work-as-done
analysis. We have not found any literature that tried to disassemble these concepts and paradigms,
but only found marginal remarks. Hovden et al. [21] remind us that one should not forget that many
hazards and risks in OHS remain the effect of loosely coupled and tractable failures, and that linear
traditional methods also remain essential instruments for the analysis of particular hazards and risks.
Smith et al. responded to an editorial article that advocated Safety-II approaches in healthcare, stating
that neither Safety-I nor Safety-II will develop its full potential when professionals lack the skills and
training they need in order to perform their duties in relation to the modern-day patient safety agenda.
The authors have expressed reservations towards whether a mere shift from Safety-I to Safety-II will
be sufficient [95]. Such a critique in healthcare could easily be translated to manufacturing. Likewise,
Salmon et al. [24] observe that a continuously increasing presence of emergence, resilience, performance
variability, distributed cognition and complexity in modern catastrophes stretches the capabilities of
our analysis methods, including the systems ergonomics and complexity-thinking methods described
in this paper.

3.3. Breakdown of Challenges

This section represents the yellow analysis segment of Figure 1, with a further consideration of
the Industry 4.0 risks. Table 4 represents a further conceptual breakdown from our initial set of four
important Industry 4.0 challenges: interconnectivity, autonomy, automation in joint human–agent
activity and a shift in supervisory control. All of these challenges are human-centered socio-technical
issues in line with the scope of our study.
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Table 4. Breakdown of challenges.

Concept Breakdown of Challenges Label

Interconnectivity 1 Oversimplifications in the face of the complexities of
joint systems

Joint cognitive system as a system
of distributed cognition with

emergent behavior

Oversimplification of functional allocation problems Human–machine opposition
fallacy

Disintegrative units of analysis that separate humans,
machines and interfaces Separation fallacy

Oversimplification of different degrees of substitution
between people and automation given different
levels of autonomy and authority of machines

Substitution myth

Autonomy 2 Transform practice and coordination across human
and machine roles Envisioned word problem

Create new kinds of cognitive work for humans,
often at the wrong times; every automation advance

will be exploited to require operational efficiency
The law of stretched systems

Create more threads to track; makes it harder for
people to remain aware of and integrate all of the

activities and changes around them
Coordination costs

New knowledge and skill demands are imposed on
humans and humans might no longer have a

sufficient context to make decisions, because they
have been left out of the loop

Transformation of knowledge and
expertise

Coordinate/synchronize joint activity; make machine
a team player. Team play with people and other

agents is critical to success
Principles of interdependence

Resulting explosion of features, options and modes
creates new demands, types of errors and paths

toward failure
Transparency of complex systems

Machines, humans and macrocognitive work
systems are fallible; errors are therefore systemic;

new problems are associated with human–machine
coordination breakdowns; machines now obscure

information necessary for human decision making.

Principles of complexity

Automation in Joint
Human–Agent Activity 3

To be a team player, an intelligent agent must fulfill
an agreement (often tacit) to facilitate coordination,
work toward shared goals and prevent breakdowns

in team coordination

Shared knowledge, goals and
intentions that are committed to

goal alignment

To be an effective team player, intelligent agents must
be able to adequately model the other participants’
intentions and actions vis-à-vis the joint activity’s

state and evolution

Adequate (shared) models

Human–agent team members must be
mutually predictable Predictability;

Agents must be directable directability

Agents must be able to
make pertinent aspects of their status and intentions

obvious to their teammates
Revealing status and intentions

Agents must be able to observe and interpret
pertinent signals of status and intentions Interpretation of signals

Agents must be able to engage in goal negotiation Goal negotiation

Support technologies for planning and autonomy
must enable a collaborative approach Collaboration

All team members must help control the costs of
coordinated activity (note: the authors mean cost as

in effort, not financial cost)
Coordination cost control
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Table 4. Cont.

Concept Breakdown of Challenges Label

Shift in Supervisory
Control 4 Supervisor must have real as well as titular authority

Elimination of
responsibility—authority

double binds

Supervisor must be able to redirect a lower-order
machine cognitive system when the machine’s

problem solving breaks down

Operator has the authority to
abort the operation; strategies for
management of system boundaries

Need for a common or shared representation of the
state of the world and of the state of the

problem-solving process
Adequate (shared) models

1 Hollnagel and Woods (2006) [65]; 2 Bradshaw, Hoffman, Johnson and Woods (2013) [91]; 3 Klein, Woods, Bradshaw and
Feltovich (2004) [94]; 4 Woods and Roth (1988) [90].

Actions of humans, machines and systems that jointly take part in socio-technical systems might
be separated in time and space—something that is certainly true for Industry 4.0, where actions and
cognition can be spread not only across actors, but even across business units. Therefore, approaches
to assess individual risks will be limited and there is a need for systems-thinking approaches from
which the theoretical underpinnings can be found (discussed in Section 3.2).

3.3.1. Interconnectivity

In relation to the challenges in safety-critical socio-technical systems in Industry 4.0, autonomous
thinking and increased interconnectivity introduce the principle of distributed cognition as an
omnipresent element in manufacturing and assembly environments, with an additional degree of
complexity for human–machine cooperation. “Distributed cognition is the shared awareness of goals,
plans, and details that no single individual grasps” [96] (p. 726), but which are distributed across the
human and technical actors of the socio-technical system to jointly achieve a single goal. For collaborative
robots (a typical example of a technology introduced by Industry 4.0), distributed cognition is even
supplemented by the distribution of tasks. Hollnagel et al. have described analytical deceptions
where systems are based on an “allocation of tasks between people and machines, which assumes
decomposability of work into independent parts or tasks” [97] (p. 143). Oversimplification of functional
allocation problems result in ‘human–machine oppositions’, which become subsequently translated
into equivalent oppositions in safety analysis methods. This is defined as the ‘separation fallacy’ [97],
where disintegrative units of analysis separate humans, machines and interfaces. “Ultimately the focus
must be the design and the performance of the human–machine problem-solving ensemble—how to
‘couple’ human intelligence and machine power in a single integrated system that maximises overall
performance” [98] (p. 422). Such an integrated approach can be found in joint cognitive systems (JCS)
methods where the human–machine problem-solving ensemble becomes the unit of analysis of the
investigation. Systemic models like STAMP, FRAM and EAST avoid the fallacy of human–machine
opposition and are able to assess the joint system as the unit of analysis. STAMP ultimately assesses
how the aggregation of many control structures result in the joint system behavior. FRAM uses
a purely functional approach whereby each node represents a function regardless of whether its
origin is anthropogenic or technological [68,91], and thereby avoids the use of mental constructs
to assign cognitive labels in human-error-centered methods that are prone to oversimplification.
Adriaensen et al. [91] used a JCS approach in FRAM to analyze aircraft cockpit systems and artefacts
as agents on their own in order to understand the propagation of tasks between humans, systems
and artefacts in an aviation scenario. EAST, STAMP and FRAM have replaced the notion of human
error through a focus on the identification of human–task mismatches. EAST uses task, social and
communication/information network models, not only in isolation but also by their joint effects [82],
to display system behavior. “Cognition is therefore achieved through coordination between system
units” [86] (p. 26), and ownership of information resides at the system level, not the individual level.
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Such systemic models that are able to assess risk in distributed systems do not belong to the inventory
of OHS environments [16,21]. Because of their fragmented units of analysis, traditional methods
are prone to what some authors call ‘the substitution myth’ [99–101], where an oversimplification
of different degrees of substitution between people and automation are allocated different levels of
autonomy and authority as a static misconception of a dynamic reality. de Vries et al. [83] have
dedicated a paper to the visualization of JCS and socio-technical systems models in prospective safety
assessment and design. Besides STAMP, FRAM and activity theory (a simpler and earlier variant of
EAST), de Vries et al. have listed a set of additional tools to overcome the different unit-of-analysis
fallacies in Table 4.

3.3.2. Autonomy and Automation in Joint Human–Agent Activity

The challenges of autonomy and automation in joint human–agent activity are merged in a
single section. ‘Adequate shared models and knowledge’ (See Table 4) [102] between human and
machines are defined in STAMP by the analytical requirement of the internal control model of the
controller, regardless of whether this controller is human or technological, to direct feedback and
control loops [16]. These loops are defined in Table 4 as ‘directability’ (See Table 4) of machines and
systems [102]. EAST and FRAM will display this as the result of functional exchange difficulties
between agents or functions of the model. From a JCS perspective, automation, a key concept in
Industry 4.0, acts as an additional agent with humanlike characteristics, which can be recognized by
social metaphors applied to automation in the safety literature, including how to make automation
‘team players’ (See Table 4) [102] or how to certify the right amount of trust in automation [103,104].
Predictive judgement of machine competence is often the subject of mis-calibrated trust, leading to
either excessive trust or mistrust [98]. One study examined the consequences when navigation robots
apologized for their mistakes in trust repair [105], with human operators as one element, showing
the intricacies of ‘predictability’ and ‘team play’ between humans and machines. The robot apology
example also shows the significance ‘to reveal status and intentions’ (See Table 4) [102] for both machine
and human.

Automation surprises as identified in the manufacturing industry [106] have a longer research
legacy in healthcare and aviation. In some noticeable examples of these domains [107,108], automation
surprises have caused or contributed to tragic catastrophes [109–111]. Automation interaction
challenges in manufacturing list the same set of problems as the ones described in aviation accident
reports. Mode transition surprises whereby “operators may become unaware of changes in the
operating mode performed by automation” [106] (p. 455) are described in manufacturing automation.
The same authors describe automation-induced errors, whereby more automation can induce new,
unexpected forms of human performance or inappropriate distrust in automation from manufacturing
environments. Just as in aviation, healthcare and operation of nuclear plants, manufacturing automation
induces ‘out-of-the-loop’ conditions [106], which have been described as situations in which operators
can encounter difficulties achieving a complete picture of the automation processes and comprehending
how this may impair the detection of automation failures and the ability to regain manual control.
In Table 4 this is defined as ‘the transformation of knowledge and expertise’ (See Table 4) [99],
where new knowledge and skill demands might deprive human operators of sufficient context
for making appropriate decisions and as ‘the envisioned world problem’ (See Table 4), which
states that the introduction of autonomous technology transforms practice and coordination across
human and machine roles Accompanying impaired detection from technology changes or transient
‘out-of-the-loop’ conditions can be translated directly in STAMP’s reciprocal feedback and control loop
mismatches, whereas FRAM identifies the absence of a precondition or control aspect to properly
execute a downstream function and identify negative functional resonance. EAST can identify a
mismatch between the task and information/communication network. The models are also capable of
identifying gaps in transformed practices and coordination between roles for humans and machines
and of identifying requirements for new knowledge and expertise at higher levels in hierarchical
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socio-technical systems. The absence of a precondition or input (FRAM), lack a control (STAMP) or
flawed network relations (EAST) can also identify organizational aspects like suboptimal induction
training or inconsistent operating manuals to accompany the introduction of new technologies.

The interconnectivity principle in Industry 4.0 induces interactive complexity, whereas other
increasing forms of complexity [16] like dynamic complexity due to changes over time, or nonlinear
complexity, where cause and effect show no obvious relation, should be assessed with methods that can
assess intractable and tightly coupled issues. Methodologically, these coincide with ‘the principles of
interdependence’ (See Table 4)and ‘the principles of complexity’ (See Table 4) [99] from Table 4, while
simultaneously trying to achieve ‘transparency of complexity’ (See Table 4). Note that a descriptive
WAD is paramount to resolving such issues, and that any WAI approach that expects operators to
adapt to opaque systems will do little to alleviate the problem.

Woods reminds us that “[i]ncreasingly autonomous things such as road or airborne vehicles are
not ‘things’ at all but instead are complex networks of multiple algorithms, control loops, sensors,
and human roles that interact over different time scales and changing conditions” [112] (p. 132).
Autonomous transport vessels can be found in some Industry 4.0 environments, but the networks of
algorithms, loops and sensors are a basic premise of many other autonomous ‘things’ in the emerging
Industry 4.0 work systems. Such interconnected networks create a potential for what researchers call
‘strong silent automation’, which is automation that fails to communicate “signals that allow operators
to predict, control, understand, and anticipate what the machine is or will be doing” [99] (p. 2).
Automation surprises, mode confusion, mis-calibrated mental models and literal-minded machines
(defined as machines that correctly act upon an internal model that is not necessarily aligned with
the actual model of the world [97]) have brought about a shift in the causes of accidents. Therefore,
it is important for both humans and machines to commit to ‘shared knowledge, shared models, goals,
and intentions—committed to goal alignment’ (See Table 4), and provide a clear ‘interpretation of
signals’ (See Table 4) regarding status and intentions [102]. FRAM and EAST, in which functional
resonance or network metrics provide deeper insights into the effects of interconnectivity, are well
suited to apprehend network-like systems due to the correspondence between reality and method
representations. EAST has explicitly been defined as suitable for the analysis of work systems that
possess a common goal and coordination across different agents that are geographically dispersed, and
is supported by numerous systems, procedures and technology [85].

All the putative benefits from automation designers often deliver promises of offloading both
requirements for attention and a reduction in actual work. In reality, operators encounter novel
cognitive demands, often at busy or critical times, and have a requirement to actively track multiple
activities and changes [99]. This is what Wiener [113] defined as ‘clumsy automation’, a phenomenon
that occurs when the benefits of technology occur during a low workload and the burdens imposed
by it arise during periods of high workload or during the most critical phases of work, which is
labeled in Table 4 as ‘the law of stretched systems’ (See Table 4) [99]. New technological capabilities
lead surprisingly often to mis-engineered clumsy automation [114], and thereby paradoxically add
complexity to socio-technical work practices. A WAD analysis can only be applied to a running system.
Even if a WAD perspective (which is often associated with RE and Safety-II) is well suited to provide
descriptive models and identify the effects of unintended design surprises, the guiding principle
in the design of systems before they are operational requires a systems and complexity-thinking
approach that makes the intractable tangible [104]. The many documented issues with ‘strong silent
automation’ [99,107] and ‘clumsy automation’ [114–116] make clear how automation is a topic that is
inherently intertwined with supervisory control.

3.3.3. Supervisory Control

In the middle of the 20th century, Paul Fitts [117] published what is now still called the ‘Fitts list’,
producing 11 statements and thereby creating the first attempt of functional allocation. This principle
is also often cited as the MABA MABA principle, which is the abbreviation of discriminating between
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strengths of men and machine: ‘men are better at’ and ‘machines are better at’. In the MABA MABA
principle, “human and machine are construed as actuating and information processing systems with
different capabilities, on the basis of which it is possible to determine what should be automated and
what not” [100] (p. 2). Although both the original Fitts list and later MABA MABA updates have
been defended in the literature, they have also caused great debate (see [100,101]). There is currently
no consensus that a static dichotomy between a functional allocation of man and machine is feasible.
One of the conflicts of function allocation is that it results in ironies of automation, implying that
automation transforms work practices in ways unanticipated by designers [100,111,118]. One of these
ironies is that, despite advanced automation and autonomous systems, humans retain the ultimate
responsibility [119] in the form of a last fail-safe mechanism: “Currently, the burden of decision
making under uncertainty is placed solely on human operators” [120] (p. 6). This is why Table 4
refers to ‘the elimination of responsibility—authority double binds’ that “occur when a party has
responsibility in that others may impose sanctions on that party following outcomes, yet that party no
longer has sufficient authority to influence or control the processes that lead to outcomes” [97] (p. 153).
Equally, systems must be designed so that the supervisor is able to redirect the systems cognition
into lower-order cognitive tasks when the machine’s problem solving breaks down [98]. Operators
ought to swap between monitoring systems and take over when automation fails, which produces
a “need for a common or shared representation of the state of the world and of the state of the
problem-solving process” (p. 423). The action of monitoring, including the paradox of monitoring
non-events [121], is anything but a passive task, and yet can be the predecessor to an escalation of
reverting to manual control—something that was avoided in the first place because of the supposed
supremacy of automation and is labeled one of the ironies of automation [118]. Supervisory control is
therefore not simply a task where a human passively monitors a system, but an action in which the
operator monitors, uses system knowledge, anticipates and, if necessary, acts. Therefore, the promise
of automation substitution whereby “[a]utomation can replace human work without any larger impact
on the system in which that action or task occurs, except on some measures of its output” [111] (p. 90)
has been called a myth instead of a promise by several authors [99–101]. One particular study applied
EAST to compare the role of the driver from traditional cars with automated driving systems and
found that “there are considerably more cognitive tasks in the passive monitoring role than in the
active driving role” [122] (p. 2).

4. Discussion

Traditional OHS safety analysis methods lack the ability to analyze socio-technical issues
collectively, as discussed in Section 3.1. The closest attempt that has been made involved a number of
methods that assessed human reliability, with a consideration of human operators as being part of
systems that would work perfectly fine without their intervention [123]. However, this mechanical
cause–effect approach towards the assessment of human performance, in line with the reliability of
components, has been abandoned by several researchers [55,70]. It has been contradicted by the
Safety-II paradigm, where human performance is now assessed in terms of approximate adjustments
to mismatches in systems ergonomics while managing dynamic trade-offs and goal conflicts with
finite resources [77]. The answer to the research question, “Can complexity thinking contribute to
progress in occupational safety in Industry 4.0?” suggests a positive conclusion for several reasons.
First of all, traditional methods fall short in identifying and assessing emergent system properties,
whereas complexity methods respond to the absence of approaches that can assess tightly coupled
intractable issues. In complexity-thinking methods, humans, machines and interfaces need not to be
decomposed in disintegrative units of analysis. Contrarily, the methods are capable of taking the joint
problem-solving ensemble as the unit of analysis. Consider, however, that this remains a researcher’s
choice, and the substitution and opposition fallacies from Table 4 are not automatically solved by
applying complexity methods.



Safety 2019, 5, 65 25 of 33

An important contribution from complexity thinking also comes from abandoning the identification
of hazards and defenses as the only necessary measure to make fully protective systems. Instead,
we suggest a shift to be able to better understand and explain the unique conditions of every work
system. This is another reason why our initial choice for the phrase ‘safety analysis methods’ was
adequate, because it comprises more than just hazard identification and risk assessment. FRAM,
STAMP and EAST have been instrumental in better explanations of work systems, and they are able
to better manage and mitigate risks from individual weaknesses or system brittleness. In FRAM,
this would be the amplification of positive resonance and the dampening of negative resonance; in
STAMP, it would be the reconsideration of control constraints and feedback loops; and in EAST, it
would be to modify the causes of flawed network interactions. How to achieve these goals remains an
individual choice for the user of a methodology. It would, however, be an oversimplification to think
that complexity can be managed with predefined fixes.

4.1. Current Use of Complexity-Thinking-Inspired Methods for Industry 4.0

This raises the question of whether these methods are already in use in the context of Industry 4.0.
When one looks to the previous uses of the EAST, STAMP and FRAM methods in industrial environments
and autonomous and automated systems, relatively few publications have shown immediate connection
to our topic. The combinations of ‘Industry 4.0′, or the original German term ‘Industrie 4.0′, with the
names of the complexity methods provided zero returns in the Scopus database. When performing a
broader search regarding EAST we mainly retrieved papers that concerned distributed cognition of crew
work in aviation, maritime and military operations, and we retrieved some studies applied to road traffic
interactions. The only paper that applied EAST with an appropriate correction to our topic concerned
the changing role of the driver within automated driving systems [122]. This at least establishes the
capability for assessing one of our main Industry 4.0 challenges: shifting supervisory control. STAMP
was slightly more affiliated with the scope of our topic in previous studies. We found a study about
STAMP/STPA hierarchical structures in risk analysis of a complex multi-robot mobile system, and an
STAMP/STPA for software-intensive systems [124]. Most relevant was a STAMP case study regarding
safety and security of a cyber-physical system [125], an actual Industry 4.0 application, and a clear
example of an assessment of one additional challenge from our study: interconnectivity. Note that
cybersecurity is another emerging challenge in Industry 4.0. [5,13], and although mainly a security issue,
it impacts safety. Although FRAM is mainly used in maritime, aviation and health care operations [126],
the method has been applied to analyses in industrial settings [127,128]. We identified an exploratory
exercise that applied FRAM to manage OHS in complex and unpredictable manufacturing systems,
although in a low automation environment [129]. FRAM was also used to refine operating guidelines
in the manufacturing process of aeroengine blade forging [130]. One study compared fault trees,
Bayesian networks and FRAM [46] applied to an industrial accident, and identified some advantages
of FRAM, such as the ability to assess context-sensitive information, which the two other methods
proved to be incapable of achieving. However, this FRAM study was a retrospective analysis, whilst
our scope focused on prospective risks; in any case, the literature identifies that FRAM can be equally
applied to retro- and prospective analyses. Even if our results are not exhaustive, we can learn from
the relatively low content of relevant scientific papers that it is not only Industry 4.0 that needs to
embrace complexity methods, but that complexity methods will need to embrace Industry 4.0.

Recently a study investigated the utility of integrating principles from the STAMP method
with the EAST framework [131] to assess safety management in the design and operation of a
railway level crossing. In relation to building FRAM models, progress can also be expected from the
integration of Industry 4.0-like solutions. Wearables could be introduced to track operators’ normal
performances in everyday work, for example, as the basis for FRAM models concerned with variability
in everyday activities. Likewise, software-based tracking of information exchanges could yield better
understandings of the interactions between components of work systems. Artificial intelligence-based
algorithms are also capable of supporting systematic and dynamic operator decision making in both
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normal and abnormal practices [132]. Although this paper has mainly discussed the underestimated
threats from autonomy and automation in Industry 4.0, we should not forget that many Industry 4.0
technologies can be deployed for the benefit of safety as well.

4.2. Practicability of Complexity-Thinking-Inspired Methods for Industry 4.0

One needs to recognize that EAST, STAMP and FRAM methods do not have the benefit of a
longer tradition in industry, and users first need to familiarize themselves with each methodology;
an obstacle that once was also true for methods like HAZOP and FMEA. Complexity-thinking methods
are not intuitive methods that can be used without studying their methodologies first. In terms
of practicability, STAMP/STPA [133] and FRAM [126,134,135] offer open-source software tools to
build models. Some EAST studies report the use of existing software previously designed for other
network metrics analysis [82]. Even with the support of software, analysis using one of these three
methods is very time-consuming. Some additions to the traditional FRAM model have included the
use of the abstraction/agency framework [81], a framework based on Rasmussen’s hierarchical risk
model that deconstructs (rather than decomposes) socio-technical systems. Note that Rasmussen’s
socio-technical framework is already integrated in the STAMP framework. The myFRAM software
also offers another addition to the traditional FRAM by offering a matrix representation [136] of
dependencies. This matrix analysis makes it easier to systematically assess positive and negative
functional resonances in the model and where they occur. A last addition to FRAM is a Monte Carlo
simulation [47,48] to apply probabilistic distributions to scenarios and parameters of WAD models,
which turns FRAM into a semi-quantitative approach/application and provides one way to deal with
uncertainty. ISO 31010 lists Monte Carlo simulation as a risk management technique. Although it is
mainly used to assess assumptions about frequency and the severity of incidents from classical risks,
it can also be applied to estimate uncertainty of complex dependencies when used in conjunction
with FRAM. A proposition to transform STAMP into a semi-quantitative engineering approach has
been recommended by Karanikas et al. [137]. We suggest that consideration be given to the fact that
EAST is inherently a semi-quantitative approach, as it applies network analysis metrics to assess a
socio-technical system. Finally, it is worth mentioning that FRAM can be used in combination with the
multi-criteria decision method AHP (see Section 3.1) to allow the simultaneous participation of multiple
experts during the different steps of a risk analysis. The use of AHP to assign different phenotypes in
FRAM reduces subjectivity [48] when determining performance variability. This approach has been
used in FRAM applied to sustainable construction [138].

It is also valuable to consider that there are advances in traditional safety analysis methods by
using dynamic and semi-automated hazard identification methods [15], although these techniques
will not overcome their causation model limitations. Progress has been made by computer-coded
stored ‘flaw and failure scenarios’, defined by traditional HAZOP and FMEA methods to question
what can make a condition or item fail [15], rather than just determining a failure; this closes the gap
with more complex methods. Unfortunately, complexity-thinking-based methods like EAST, FRAM
and STAMP are very resource- and time-consuming, and it is not realistic to expect such methods to be
used in the identification of an exhaustive list of industrial risks. Rather, the safety community needs
to think about ways to prioritize which complex risks deserve a deeper analysis and how particular
strengths and weaknesses of models can deliver the most efficient and resource-friendly solutions.
Hans-Ringdahl’s initial criteria for traditional safety analysis methods included that the application of
the methods under consideration should be possible with reasonable resources and should be easy
to understand for the user. In addition to being more resource-consuming than traditional methods,
EAST, STAMP and FRAM will also require a more elaborate investment in the informants involved in
an analysis. This is also true for the investigators in charge, who must become familiar with these
methods. We suggest transforming Hans-Ringdahl’s initial criteria into a criterion of proportionality
with the complexity of the hazards and risks under consideration.
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5. Conclusions

From the review presented in this paper, it has become clear that current safety analysis methods
in OHS have some limitations and were mostly designed for risks established from another era.
At the same time, complexity methods have been described as very time and resource intensive.
Understanding and managing risks will therefore increasingly become a skill of switching between
micro, meso and macro understandings of systems, which justifies the use of hybrid methods at different
levels of abstraction from systems and their subsystems. There is also a need to unravel the current
overlaps between hazard identification, risk assessment, injury models, management techniques
and risk mitigation applied to guidelines for integrated approaches [31,39] as a countermeasure to
cherry-picking methods. All in all, there is no one-size-fits-all solution, and risk management should
not be an exercise of an isolated method or solution, but an integrated attempt to improve systems.
The process industry with its increasingly tightly coupled functioning and network-like behavior
will benefit from the complexity-thinking methods that today are still predominantly applied within
an academic context. There will be a need to assess complex safety challenges, either to make the
interactions in systems transparent or to examine specific safety issues of concern that can be managed
with reasonable resources. Preferably, these methods should already find their application in the
design phase.

In conclusion, we agree with the concerns from the literature that provoked the thinking and
rationale found in this paper and that ultimately questioned whether OHS consequences of Industry
4.0 are being appropriately evaluated; we considered and provided a way forward via the introduction
of complexity-thinking and systemic safety analysis methods. In addition, we also expect that some
of the technical progress in Industry 4.0 can also be used for a better understanding of performance
variability in work systems, and we call for further research that will support such developments.
A magic bullet method does not exist, which is inherently related to the ever-varying conditions of
work systems. To quote Vincent et al. [139] (p. 5): “Safety is a constantly moving target.”
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