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Abstract: Recently, many researchers have employed a microsimulation technique to study the 
chain of interactions among vehicles, which generates an accident occurrence in some 
circumstances. This new approach to studying road safety is named traffic conflict technique. The 
aim of this paper is to assess how the microscopic simulation is a useful tool to identify potentially 
unsafe vehicle interactions and how high-risk locations identified by a microsimulation technique 
are similar to the ones identified by using historical accident data. Results show that high-risk 
locations identified by the simulation framework are superimposable to those identified by using 
the historical accident database. In particular, the statistical analysis employed based on Pearson’s 
correlation demonstrates a significative correspondence between a risk rate defined with simulation 
and an accident rate determined by the observed accidents dataset. 
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1. Introduction 

Traditional methodologies for analyzing traffic safety problems make use of inferential statistics 
applied to accident history data, analyzing the relationship between accidents and influencing factors 
[1,2]. The problems of consistency and availability of accident history data for a specific site as well 
as the methodological challenges posed by the extremely random nature and the uniqueness of 
accidents have led to the development of complementary approaches for analyzing traffic safety 
problems, such as traffic conflict techniques (TCTs). The basic hypothesis according to this approach 
is that there is a close relationship between conflicts and accidents. The interaction between road-
users can be described as a continuum of safety related events that are evaluated by some surrogate 
safety performance indicators. The traffic conflict technique, in some circumstances, is difficult to 
apply, owing to the hardness in identifying vehicle within larger data sources [3–5]. One of the most 
common methodologies to determine and quantify traffic conflicts is the use of microsimulation [6,7] 
to replicate the interaction between the factors contributing to the conflict and, in some circumstances, 
to the crash process. The potential of microscopic simulation in traffic safety and traffic conflicts 
analysis was initially investigated by Darzentas et al. [8] and has gained a growing interest due to 
recent developments in human behavior modeling and real time vehicle data acquisition [9–12]. 
However, to make the microsimulation reflective of real interactions among vehicles, a proper 
calibration process is necessary, considering those based on observational data as input parameters. 
In this way, an estimate of realistic traffic conflicts can be produced. 

The objective of this paper is to assess the validity of a microscopic framework to identify 
potentially unsafe vehicle interactions, providing a link between simulated surrogate safety 
indicators and observed accidents. The aim of the analysis is to demonstrate that high-risk locations 
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identified by a microsimulation technique are superimposable to the ones identified by using the 
historical accidents data. 

In Section 2, the paper traces the development of research studies in modelling driver behavior 
and safety using the simulation technique. Section 3 describes the methodological approach followed 
by the authors. In particular, this section is focused on the microsimulation package employed in the 
analysis, the surrogate safety indicators and the data used for the experiment. In Section 4, the authors 
present the results of the simulation, with the identification of high-risk locations. In Section 5, the 
authors discuss the results, in which the potential risk areas are compared to those where real 
accidents occurred, verifying the ability of the traffic conflict technique to identify real risk scenarios. 
The paper has been completed with some considerations on the strengths and weaknesses of the 
proposed methodology and makes suggestions about future developments and studies. 

2. Literature Review 

In the literature, there are several simulation models that provide measures of safety using 
surrogate safety measures. These models are able to analyze a set of situations and scenarios: un-
signalized intersection, signalized intersection, rear-end, lane changing and bus stop conflicts [5]. 
Many software packages determine surrogate safety measures making use of SSAM, a post-processor 
on the data output from the simulation model, developed by the Federal Highway Administration 
(FHWA) [13]. This tool is compatible with the most employed traffic simulation models like VISSIM 
[14], AIMSUM [15], PARAMICS [16] and TRITONE [17]. 

In 2009, Archer and Young [18] used VISSIM to investigate an incident reduction function at 
signalized vehicle actuated intersections, exploring the interaction between driver decisions, the 
dilemma zone and consequent red-light running for light vehicles. This study showed that the 
employment of a binary logistics function in road safety simulation models allows for the estimation 
of the number and severity of conflicts using surrogate safety measures. The performance measure 
considered by the authors was post-encroachment time (PET) and the case study for the experiment 
was an intersection in outer Melbourne. 

Pirdavani et al. [19] utilized PARAMICS to show the relationship between traffic volume, speed 
limits and safety. They applied microsimulation technique to evaluate safety effects of policy 
measures like speed limit at un-signalized intersections. The measure of conflicts they used was PET. 
However, the simulation model was employed without any calibration, verification nor validation 
process. Astarita et al. [17] calibrated TRITONE using Deceleration Rate to Avoid a Crash (DRAC) 
and Time To Collision (TTC) as surrogate safety measures. Results showed that the methodology 
allows evaluation of applied traffic control measures in terms of safety. 

Mahmud et al. [20] proposed a division of the surrogate safety performance indicators into 
temporal and non-temporal proximal indicators. According to this categorization, temporal proximal 
indicators work under the assumption that when the vehicles are closer, the risk of a collision 
increases under the hypothesis that each collision is preceded by conflicts. One of the most frequently 
used temporal indicators is time to collision (TTC), expressed in seconds, which can be defined as 
expected time for two vehicles to reach a common position on the road assuming their speed and 
trajectory remain the same. A critical or threshold value is chosen to distinguish between safe and 
unsafe interactions. A TTC value lower than the selected threshold highlights an unsafe conflict. 
Different authors studied TTC threshold values, considering different application ambits [21–24]. 
Another commonly used surrogate safety measure is the post-encroachment time (PET), which 
represents the difference in time between the transit of a couple of vehicles (“offending” and 
“conflicting” road users) over a common area of potential conflict [25]. Minderhoud and Bovy [26] 
have proposed two new indicators derived from the time-to-collision (TTC) concept: the time 
exposed time to collision (TET) and the time integrated time-to-collision (TIT). TET represents the 
sum of all episodes (over the considered time period) in which a driver approaches a front vehicle 
with a TTC-value below the threshold value. TIT measures the level of safety with the integral of the 
TTC profile of drivers (in s2). 
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Among the non-temporal proximal indicators there are the distance based proximal indicators. 
The proportion of stopping distance (PSD) was proposed by Allen et al. [27] in 1978. It can be defined 
as the ratio between the remaining distance to the potential point of collision and the minimum 
acceptable stopping distance. Other non-temporal proximal safety indicators are those based on a 
deceleration rate. The most employed indicator of this category is Deceleration Rate to Avoid the 
Crash (DRAC) defined by Almqvist et al. [28], in 1991. DRAC explicitly considers the role of speed 
differentials and decelerations in traffic flow and is defined in terms of the speed differential between 
following vehicle (FV) and lead vehicle (LV) divided by their closing time. The LV is responsible for 
the initial action (braking for a traffic light/stop sign, changing lanes and/or accepting a gap), while 
the FV responds to this action by braking. Archer [29], in 2005, defined a risk scenario when the 
DRAC of a vehicle exceeds a threshold braking value of 3.35m/s2. This threshold value was 
considered also by Guido et al. [12], in 2011, highlighting higher risk vehicle interactions. Another 
important indicator derived from DRAC is the crash potential index (CPI) [9,11]. CPI is defined as 
the probability that a given vehicle DRAC exceeds its maximum available deceleration rate (MADR) 
during a given time interval. MADR is a stochastic component introduced to take into account 
different vehicles categories and different pavement conditions (e.g., dry/wet) during a braking event 
that requires a specific DRAC level. 

3. Methodology 

The proposed methodology was applied to a subset of an urban network of a medium-small 
city, as better described in Section 4.1 The safety performances of the network were analyzed using 
some surrogate safety measures highlighting some potential conflicts scenarios (or risk areas). The 
areas of greatest risk were obtained from the simulation, calibrated with real traffic flow data. These 
areas, in the next phase, were compared with those in which real accidents occurred. The fitting 
between simulated risk areas and real accidents locations was proved using Pearson’s correlation 
coefficient. 

3.1. The Microsimulation Model 

The microscopic package TRITONE is capable of simulating freeways and roads with different 
traffic scenarios. This software overcomes some limitations of other commercial traffic 
microsimulation packages, because it is open source and has a developer module which allows 
simulation procedures to be modified and traffic safety performance evaluated, through a series of 
indicators (Crash Potential Index, Deceleration Rate to Avoid Crash, Available Maximum 
Deceleration Rate, Time to Collision, etc.). In TRITONE the traffic components are microscopic, and 
the traffic flow attributes can be represented as resulting from individual vehicles movements. 
Moreover, the software gives the opportunity to choose different car following models. 

For the present study Gipps’s car-following model was selected [30]. In this model the speed of 
the follower vehicle is determined by three conditions. The first condition ensures that the vehicle 
does not exceed the desired speed or free-flow speed. The second condition ensures that the vehicle 
accelerates to its desired speed. This acceleration increases when the speed of the vehicle is near the 
initial speed and then decreases when vehicle is approaching the desired speed. The coefficients of 
the model were obtained from an interpolation curve using data collected on a moderate traffic road. 
The third condition regulates the speed of the vehicle that depends on the reaction time of the driver.  

The equation of Gipps’s car following model is: 

𝑉௡ሺ𝑡 + 𝑇ሻ = 𝑉௡ሺ𝑡ሻ + 2,5𝑎௡𝑇 ቆ1 − 𝑉௡ሺ𝑡ሻ𝑉ௗ௘௦ ቇ ඨ0,025 + 𝑉௡ሺ𝑡ሻ𝑉ௗ௘௦  (1) 

where, Vn(t) is the speed of the target vehicle at time t (m/s), an is the maximum acceleration (m/s2) of 
the target vehicle, T is the driver’s reaction time (s), Vdes is the free flow speed (m/s). 

The lane-changing model used in TRITONE for the study is the Gipps model [31]. This model 
links lane change decisions to urban driving situations, taking into account important factors, such 
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as safety gaps, the position of permanent obstacles, the presence of heavy vehicles and the speed 
advantage. Based on these criteria, drivers decide whether to move to the adjacent lane or not. The 
conditions for a vehicle lane changing in the Gipps model are the following: 

• the presence of permanent obstacles on the vehicle’s current lane; 
• the presence of lanes for special purposes; 
• the presence of a heavy vehicle on the current lane of the vehicle; 
• the target vehicle gains a speed advantage changing its lane. 

Regarding the generation model of the vehicle, the time interval τ between the arrivals of two 
consecutive vehicles is governed by a random distribution of the assignment model [32]. 

In order to apply this microscopic package for obtaining the trajectories of the vehicles and hence 
the potential conflicts based on the surrogate safety measures introduced below, it was necessary to 
calibrate and validate the simulation model. 

The calibration was performed comparing two sets of traffic volumes through the GEH statistic 
[33]: (1) observed traffic flow data at intersections, and (2) simulated traffic flow rate at intersections. 𝐺𝐸𝐻௜௡௧௘௥௦௘௖௧௜௢௡ = ඨ2ሺ𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑ሻଶ𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 + 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑  (2) 

A GEH of less than 5.0 is considered a good match between the modelled and observed hourly 
traffic flow volumes. According to [34], at least 85% of the volumes in a traffic model should have a 
GEH of less than 5.0. 

𝐺𝐸𝐻 = ෍ 𝐺𝐸𝐻௜௡௧௘௥௦௘௖௧௜௢௡#௜௡௧.
௜ୀଵ ≥ 85% (3) 

The validation was carried out by using a new set of traffic volumes and comparing it with a 
new set of simulations in which the parameters of the model were calibrated. The goodness of fit of 
the model was measured employing root-mean square percentage Error (RMSPE). 

3.2. Surrogate Safety Measures and Potential Risk Areas by Simulation 

In order to obtain simulated surrogate safety measures, and then the potential risk areas, the 
authors applied the SSAM package to the TRITONE output. SSAM analyzes the vehicles trajectories 
generated by TRITONE and evaluates the interaction of each vehicle according to scientific criteria 
(e.g., the magnitude of safety measures) with which it can establish whether there is a potential 
conflict and to which category it belongs according to the collision angle. 

The surrogate safety measures considered in the present study are Time to Collision (TTC) and 
Post Encroachment Time (PET). 

As reported in the literature review section, TTC can be defined as the expected time for two 
vehicles to reach a common position on the road assuming their speed and trajectory remain the 
same. The equation form of TTC is: 

𝑇𝑇𝐶 = ൝ ∆𝑋 − 𝐿௩𝑉ி௩ − 𝑉௅௩  𝑉ி௩ > 𝑉௅௩ ∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ൡ (4) 

where, ΔX is the initial relative distance between the leading and following vehicles, Lv is the length 
of the vehicle, VLv is the initial speed of the leading vehicle, and VFv is the initial speed of the following 
vehicle. 

A TTC value lower than the selected threshold of 1.50 s highlights a potential conflict. 
PET is defined as the time difference between the moment an “offending” vehicle leaves the area 

of potential collision and the moment the other vehicle arrives in the collision area. A value of PET 
lower than 5.00 s determines a risk scenario. 

As previously introduced, potential conflicts scenarios have been identified in a simulation 
environment when the above-mentioned surrogate safety measures (TTC and PET), as obtained by 
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SSAM, exceed some thresholds. A potential conflict between vehicles is defined when the values of 
TTC and PET are simultaneously lower than their respective thresholds. 

Furthermore, a graphic tool has been implemented as an add-on of TRITONE to allow for a 
qualitative-quantitative analysis of the areas at greatest risk of collision based on the SSAM analysis. 
The experimental site has been divided into square zones with a side of 15 m to discretize the network 
and evaluate the local effects of the vehicle interactions. 

3.3. Accident Database 

The accidents dataset was obtained from the database of Regional Center for Road Accidents’ 
Data Collection of the Calabria Region—CRISC (https://sicurezzastradalecalabria.it/). In this dataset, 
each accident occurrence has a set of information such as accident occurrence time, location, three 
levels of severity namely fatal, injury, and property damage only (PDO), and other characteristics. 
The following figures illustrate two screenshots from the CRISC web pages highlighting a sample of 
accident occurrence locations next to the experimental site (Figure 1) and a sample of accident 
information report (Figure 2). 

 
Figure 1. Sample of accident occurrence locations from Regional Center for Road Accidents’ Data 
Collection of the Calabria Region (CRISC) website. 

 
Figure 2. Sample of accident information report from CRISC website. 
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4. Experimental Results 

4.1. Experimental Site Description 

As mentioned before, in order to test the reliability of the results produced with the application 
of the proposed methodology, a test site was selected from an urban road network in Cosenza (Italy). 
The total population is about 67,000 inhabitants. The area of the test site is 0.14 km2 (Figure 3). The 
subset size of the road network is about 5 km, including 33 intersections, six road north–south 
oriented segments and six east–west oriented road segments. 

 
Figure 3. Simulated road network in TRITONE. 

4.2. Accident Locations 

An analysis of the critical points was carried out in the area based on the accidents dataset 
obtained from the CRISC for a period of five years starting in 2014 (Figure 4). The accidents we have 
considered are only those that involved two or more vehicles (e.g., frontal, side and rear-end 
collisions); no other types of accidents were considered (e.g., accidents between vehicles and 
pedestrians, or accidents between vehicles and obstacles), as they cannot be evaluated by SSAM. As 
highlighted in Figure 4, a total of 47 accidents were observed in the study area from 2014 to 2018, 
almost all of which occurred at intersections. The number in the circle indicates the number of 
accidents that occurred around the network node. 
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. 

Figure 4. Road accidents locations (years 2014–2018). 

4.3. Risk Areas Detection by Simulation 

The identification of potential conflicts scenarios was performed applying the SSAM package to 
TRITONE output, as described in Section 3.2. However, before applying SSAM to obtain TTC and 
PET values from the simulated vehicles trajectories, a calibration stage of the simulation model was 
necessary based on the traffic flow volumes of the network links. Traffic flow volumes were 
previously evaluated with manual counting that allowed establishing average and peak traffic flows 
and the presence of 4.5% of heavy vehicles. The resulting dynamic O/D matrix that has been used for 
the dynamic network loading was extended over the 24 h of an average day. 

The calibration stage of TRITONE showed that the GEH was lower than 5 (on average 3.14) for 
88% of the compared traffic volumes (29 intersections out of 33); therefore, it is possible to assume 
that the simulation is well calibrated, and that its outputs in terms of network performance are 
reliable. Furthermore, for the validation stage, a value of RMSPE of 91% was assessed. 

Based on this assumption, SSAM was applied to analyze the vehicles trajectories generated for 
a 24-h simulation and to evaluate TTC and PET values, obtaining an average value of TTC of 1.18 s, 
and an average value of PET of 2.03 s. Furthermore, the total number of potential conflicts in the 
simulated network was estimated to be 1758. 

Figure 5 shows the potential conflicts heat-map as generated by the TRITONE’s add-on 
described in Section 3.2. 
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Figure 5. Potential conflicts heat-map. 

5. Discussion of Results 

From a first summary and qualitative analysis between the evidence coming from the CRISC 
accidents dataset and from the simulated potential conflicts areas, a correspondence between the risk 
areas highlighted by the two methodologies (Figure 6) appears evident. 

(a) (b) 

Figure 6. (a) Accidents locations from CRISC dataset; (b) Potential conflicts risk areas from simulation. 

However, in order to assess the validity and the reliability of the proposed methodology for 
detecting risk areas by simulation, a correlation analysis was carried out between risk areas 
estimation and observed accidents locations. 
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Risk estimation is strictly determined by risk areas detection by simulation (ref. 4.3.). A Risk Rate 
was calculated for each road intersection as in Xie et al. [34]: 𝑅𝑖𝑠𝑘𝑅𝑎𝑡𝑒௜ = 𝑃𝑜𝑡𝐶𝑜𝑛𝑓௜𝑇𝑜𝑡𝐹𝑙𝑜𝑤௜ (5) 

where i is the intersection index, PotConfi are the potential conflicts at intersection i as estimated by 
SSAM (ref. 4.3.), and TotFlowi is the value of the simulated flow traversing the intersection i. 

While the Accident Rate was calculated for each intersection as: 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑅𝑎𝑡𝑒௜ = 𝐴𝑐𝑐𝐶𝑜𝑢𝑛𝑡𝑠௜𝐴𝐴𝐷𝑇௜  (6) 

where i is the intersection index, AccCounti are the annual average number of accidents that occurred 
at intersection i during the selected time interval (5 years), and AADTi is the annual average daily 
traffic volume for intersection i. 

Table 1 summarizes the dataset used for the analysis of the 33 intersections. 

Table 1. Dataset used for the correlation analysis between Accident Rate and Risk Rate. 

Intersection 
ID 

Average Annual 
Observed Accidents 

Simulated Potential 
Conflicts 

Total Simulated  
Flow (veh/d) 

AADT 
(veh/d) 

1 0.2 0 7232 7336 
2 0.2 0 7736 7544 
3 0.0 0 7765 7400 
4 0.4 37 8136 8088 
5 0.2 47 7840 8176 
6 0.0 0 9872 9304 
7 0.0 0 7152 7472 
8 0.0 0 9600 8272 
9 0.0 0 8360 8600 

10 0.0 0 7656 7984 
11 0.8 313 8256 8712 
12 0.4 1 7928 7944 
13 1.4 113 8342 8080 
14 0.0 0 6984 7648 
15 0.6 0 7986 8224 
16 1.0 88 7592 7304 
17 0.0 0 9324 8864 
18 0.2 22 8896 9312 
19 0.0 0 7920 7624 
20 0.0 0 9025 8712 
21 0.4 0 8184 8880 
22 1.0 628 7904 8088 
23 0.2 0 8712 8576 
24 0.6 79 7920 7800 
25 0.0 0 7472 7384 
26 0.0 0 7736 7936 
27 0.0 0 8016 8104 
28 0.6 0 8432 8496 
29 0.0 0 7944 7864 
30 0.6 0 8145 8088 
31 0.4 0 9234 9320 
32 0.2 430 9102 8832 
33 0.0 0 7712 7864 

The correlation analysis is based on the evaluation of Pearson’s correlation coefficient [35] 
between risk rate and accident rate. A correlation significance test was also performed. In particular, 
Pearson’s correlation coefficient reached the value of 0.492 with a p-value of 0.002; it highlights that 
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the p-value is less than 0.05, which indicates a statistically significant correlation between simulated 
risk scenarios and observed accidents. This result represents a validation of the applied methodology, 
providing a link between the microsimulation and observational data. Moreover, these outlines are 
supported by other studies as in Xie et al. [34]. 

An in-depth analysis was also performed to identify which type of conflicts/accidents mainly 
characterizes each intersection (e.g., frontal, side and rear-end). Table 2 shows the percentage of 
simulated conflicts and observed accidents grouped by type. 

Table 2. Simulated potential conflicts and observed accidents grouped by type. 

Intersection 
ID 

Observed Accidents Simulated Potential Conflicts 
Frontal 

(%) 
Side 
(%) 

Rear-End 
(%) 

Frontal 
(%) 

Side 
(%) 

Rear-End 
(%) 

1 - - 100 - - - 
2 - - 100 - - - 
3 - - - - - - 
4 - - 100 - 17 83 
5 - - 100 - 9 91 
6 - - - - - - 
7 - - - - - - 
8 - - - - - - 
9 - - - - - - 

10 - - - - - - 
11 - 25 75 - 8 92 
12 - - 100 - - 100 
13 - 29 71 - 24 76 
14 - - - - - - 
15 - 66 34 - - - 
16 - 60 40 - 65 35 
17 - - - - - - 
18 - - 100 - 11 89 
19 - - - - - - 
20 - - - - - - 
21 - 100 - - - - 
22 - 80 20 - 69 31 
23 - 100 - - - - 
24 - 66 34 - 56 44 
25 - - - - - - 
26 - - - - - - 
27 - - - - - - 
28 - 66 34 - - - 
29 - - - - - - 
30 - 34 66 - - - 
31 - 50 50 - - - 
32 - - 100 - 23 77 
33 - - - - - - 
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6. Conclusions 

This paper investigates the correlation between real accident locations and simulated risk areas 
in an urban road network through an analysis based on a microscopic framework. TRITONE, a 
microscopic traffic simulation software package developed by the authors, was applied to simulate a 
subset of an urban road network in Cosenza (Italy), and to identify potentially unsafe vehicle 
interactions, providing a link between two simulated surrogate safety measures (TTC and PET) and 
observed accidents. 

Risk areas identified by SSAM as potential conflicts scenarios highlighted in a simulation 
environment by TTC and PET were then compared to accidents locations coming from the database 
of Regional Center for Road Accidents’ Data Collection of Calabria Region (CRISC). 

The main findings of the experimental application of the methodology described in Section 3 
can be summarized in three highlights: 

(1) A qualitative graphic analysis obtained by the superimposition between the risk areas, as 
generated by the simulated conflicts technique applied to a vehicle-to-vehicle interactions, and 
the observed accident locations, as obtained from the CRISC (the graphic tool implemented as 
an add-on of TRITONE shows that the areas at greatest risk of collision based on the SSAM 
analysis coincide with those in which the highest frequency of accidents is recorded); 

(2) A quantitative analysis obtained by Pearson’s correlation coefficient between risk rate and 
accident rate, which indicates a statistically significant correlation between simulated risk 
scenarios and observed accident (Pearson’s correlation is 0.492, with a p-value < 0.05); 

(3) Microsimulation can provide reliable results in terms of safety evaluation on road networks 
when properly calibrated as in the paper (the GEH statistic ranges from a minimum of 0.179 to 
a maximum of 14.048 with an average value of 3.14, and 88% of the volumes in the simulation 
model has a GEH of less than 5.0). 
To overcome the actual limitations of these methodologies, the authors intend to investigate how 

other surrogate safety measures can affect the correlation between risk rate and accident rate by 
evaluating the optimal thresholds values to be used for the determination of potential conflicts (e.g., 
less or more than 1.5 s for TTC). 

Furthermore, a future development of the methodology could consider not only vehicles 
interactions, and therefore accidents involving two or more vehicles (e.g., frontal, side and rear-end 
collisions), but also other types of accidents involving isolated vehicles (e.g., accidents between 
vehicles and pedestrians, or accidents between vehicles and obstacles). 

Because of that, in the next works, attention will be placed on formulating new specific safety 
measures, investigating the correlation between risk rate and accident rate for network links (not only 
for intersections), and making new experiments for wider areas. 

Author Contributions:  Conceptualization, G.G. and A.V.; Methodology, G.G. and A.V.; Software, V.A. and 
V.P.G.; Validation, G.G., A.V. and V.A.; Formal Analysis, G.G. and A.V.; Data Curation, V.A. and V.P.G.; 
Writing-Original Draft Preparation, G.G. and V.A.; Writing-Review & Editing, G.G., A.V. and V.A.; 
Visualization, A.V. and V.A.; Supervision, G.G. 

Funding:  This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Shi, X.; Wong, Y.D.; Li, M.Z.F.; Chai, C. Key risk indicators for accident assessment conditioned on pre-
crash vehicle trajectory. Accid. Anal. Prev. 2018, 117, 346–356. 

2. Alonso, F.; Alonso, M.; Esteban, C.; Useche, S.A. Knowledge of the concepts of “black spot”, “grey spot” 
and “high accident concentration sections” “among drivers”. Am. J. Traffic Transp. Eng. 2016, 1, 39–46. 

3. Pande, A.; Chand, S.; Saxena, N.; Dixit, V.; Loy, J.; Wolshon, B.; Kent, J.D. A preliminary investigation of 
the relationships between historical crash and naturalistic driving. Accid. Anal. Prev. 2017, 101, 107–116. 



Safety 2019, 5, 60 12 of 13 

4. Zheng, L.; Ismail, K.; Meng, X. Traffic conflict techniques for road safety analysis: Open questions and some 
insights. Can. J. Civ. Eng. 2014, 41, 633–641. 

5. Young, W.; Sobhani, A.; Lenné, M.G.; Sarvi, M. Simulation of safety: A review of the state of the art in road 
safety simulation modelling. Accid. Anal. Prev. 2014, 66, 89–103. 

6. FHWA. Surrogate Safety Measures from Traffic Simulation Models; Siemens Gardner Transportation 
Systems/FHWA: Tucson, AZ, USA, 2003. 

7. Caliendo, C.; Guida, M. Microsimulation approach for predicting crashes at unsignalized intersections 
using traffic conflicts. J. Transp. Eng. 2012, 138, 1453–1467. 

8. Darzentas, J.; Cooper, D.F.; Storr, P.A.; McDowell, M.R.C. Simulation of road traffic conflicts at T-junctions. 
Simulation 1980, 34, 155–164. 

9. Cunto, F.; Saccomanno, F.F. Calibration and validation of simulated vehicle safety performance at 
signalized intersections. Accid. Anal. Prev. 2008, 40, 1171–1179. 

10. Oh, C.; Kim, T. Estimation of rear-end crash potential using vehicle trajectory data. Accid. Anal. Prev. 2010, 
42, 1888–1893. 

11. Saccomanno, F.; Cunto, F.; Guido, G.; Vitale, A. Comparing Safety at Signalized Intersections and 
Roundabouts Using Simulated Rear-End Conflicts. Transp. Res. Rec. J. Transp. Res. Board 2008, 2078, 90–95. 

12. Guido, G.; Saccomanno, F.; Vitale, A.; Astarita, V.; Festa, D. Comparing safety performance measures 
obtained from video capture data. J. Transp. Eng. 2011, 137, 481–491. 

13. FHWA. Surrogate Safety Assessment Model (SSAM); FHWA-HRT-08-049; Research, Development, and 
Technology, Turner-Fairbank Highway Research Center: McLean, VA, USA, 2008. 

14. PTV. VISSIM User Manual Version 7.0; PTV Planung Transport Verkehr AG, Karlsruhe, Germany, 2014. 
15. AIMSUM. AIMSUN NG Manual; Transport Simulation Systems: Barcelona, Spain, 2007. 
16. Quadstone. Paramics Modeller V3.0 User Guide and Reference Manual; Quadstone Ltd., Edinburgh, U.K., 2002. 
17. Astarita, V.; Guido, G.; Vitale, A.; Giofré, V. A new microsimulation model for the evaluation of traffic 

safety performances. Eur. Transp.-Trasp. Eur. 2012, 51, 1–16. 
18. Archer, J.; Young, W. Signal treatments to reduce heavy vehicle crash-risk at metropolitan highway 

intersections. Accid. Anal. Prev. 2009, 41, 404–411. 
19. Pirdavani, A.; Brijs, T.; Bellemans, T.; Wets, G. Evaluation of traffic safety at un-signalized intersections 

using microsimulation: A utilization of proximal safety indicators. Adv. Transp. Stud. 2010, 22, 43–52. 
20. Mahmud, S.M.S.; Ferreira, L.; Hoque, M.S.; Tavassoli, A. Application of proximal surrogate indicators for 

safety evaluation: A review of recent developments and research needs. IATSS Res. 2017, 41, 153–163. 
21. Van der Horst, A.R.A. A Time-Based Analysis of Road User Behaviour at Intersections; In ICTCT Conference 

Proceedings; TNO Institute for PerceptionSoesterberg: Soesterberg, The Netherlands, 1990. 
22. Sayed, T.; Zaki, M.H.; Autey, J. Automated safety diagnosis of vehicle-bicycle interactions using computer 

vision analysis. Saf. Sci. 2013, 59, 163–172. 
23. Vogel, K. A comparison of headway and time to collision as safety indicators. Accid. Anal. Prev. 2003, 35, 

427–433. 
24. Huang, F.; Liu, P.; Yu, H.; Wang, W. Identifying if VISSIM simulation model and SSAM provide reasonable 

estimates for field measured traffic conflicts at signalized intersections. Accid. Anal. Prev. 2013, 50, 1014–
1024. 

25. Cooper, P.J. Experience with Traffic Conflicts in Canada with Emphasis on ‘Post Encroachment Time’ 
Techniques. In International Calibration Study of Traffic Conflict Techniques; Springer: Berlin/Heidelberg, 
Germany, 2011. 

26. Minderhoud, M.M.; Bovy, P.H.L. Extended time-to-collision measures for road traffic safety assessment. 
Accid. Anal. Prev. 2001, 33, 89–97. 

27. Allen, B.J.; Shin, B.T.; Cooper, B.J. Analysis of traffic conflicts and collision. Transp. Res. Rec. 1978, 667, 67–
74. 

28. Almqvist, S.; Hyden, C.; Risser, R. Use of Speed Limiters in Cars for Increased Safety and a Better Environment; 
Transportation Research Board: Washington, DC, USA, 2003. 

29. Archer, J. Indicators for Traffic Safety Assessment and Prediction and Their Application in Micro-Simulation 
Modelling; Royal Institute of Technology: Stockholm, Sweden, 2005. 

30. Gipps, P.G. A behavioural car-following model for computer simulation. Transp. Res. Part B 1981, 15, 105–
111. 



Safety 2019, 5, 60 13 of 13 

31. Gipps, P.G. A model for the structure of lane-changing decisions. Transp. Res. Part B Methodol. 1986, 20, 
403–414. 

32. Cowan, R.J. Useful headway models. Transp. Res. 1975, 9, 371–375. 
33. UK Highway Agency. Design Manual for Roads and Bridges; UK Highway Agency: Guildford, UK, 2008, 

Section 2, Volume 12. 
34. Xie, K.; Yang, D.; Ozbay, K.; Yang, H. Use of real-world connected vehicle data in identifying high-risk 

locations based on a new surrogate safety measure. Accid. Anal. Prev. 2019, 125, 311–319. 
35. Pearson, K. Note on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 1895, 58, 240–

242. 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


