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Abstract: Exposure to air pollutants leads to a variety of health effects in humans. Inhalation is one of
the most common routs of exposure to poor quality air, mostly in work environments. Respiratory
masks are used to prevent breathing in hazardous gases and vapors, especially in the absence of
proper controlling measures. This study aims to review the effectiveness of respiratory masks
with a nanostructure. The electronic search of the genuine databases, including PubMed, Magiran,
Iran Medex, Science Database (SID), Science Direct, Web of Science, and Scopus, was conducted in
January and February 2017 in chronological order of publications with the keywords defined in the
search strategy. Of all identified papers, nine were collected and included in the study. The results of
this study indicated that the use of nanomaterials in the structure of brand new mask filters compared
with conventional masks enhances the performance and efficiency of breathing air filtration, improves
permeability, increases antimicrobial properties, and offers reasonable comfort to the workers.

Keywords: nanomaterials; personal respiratory protection equipment; PPE (Personal protective
equipment), mask; respirator

1. Introduction

Various combinations of air pollutants, their concentration, and the exposure frequencies and
durations may affect several aspects of a human’s health and well-being [1,2]. Air pollution is defined
as a complex blend of airborne particle, biological components and gases that threatens human life,
plants, and animals. According to statistics, an estimated number of three million people lose their
lives annually due to air pollution and many others suffer from air pollution-related ailments [3].
A large body of literature has already reported epidemiological data indicating the detrimental effects of
air pollution [4]. Depending on the levels and duration of exposure, the concentration of substances,
and also issues such as individual differences, the various effects of air pollutants on humans include
respiratory problems, skin irritation, delayed birth, decreased immune system activity, cardiovascular
problems, cancer, etc. [5–7]. Human exposure to various air pollutants mainly occurs through two
routes, namely, inhalation and skin contact. Generally, as regards occupational exposure to chemical
agents, other routes such as ingestion seem to have a limited contribution and mostly occur only in the
case of accidental exposure [8]. Therefore, the entry of substances into the body through the respiratory
tract is often identified to be a major concern for occupational hygienists [9,10].

An occupational health hazard to protect them is based on a hierarchy of controls. The first
effective control is eliminating the hazard. If eliminating a hazard is not possible, substituting a
less hazardous material or process, effective control measures such as engineering controls and
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administrative controls, and Personal Protective Equipment are used. Personal Protective Equipment
is usually used in the absence of verified controlling measures and as a measure in conjunction with
other controls and Respirators are one of the pieces of Personal Protective Equipment which are widely
applied to prevent the inhalation of harmful gases, vapors, and particulates in the work environment,
especially in the absence of verified controlling measures [11]. There are two categories of respirators,
including air-purifying respirators with a filtering element and air-supplied respirators which provide
the wearer with fresh air. Currently, the use of purifying masks is one of the most cost-effective
and beneficial methods, as well as a practical option on account of its performance in reducing the
exposure level of workers to chemical airborne contaminants in the workplace [12]. There is an
assortment of air-purifying respirators, ranging from inexpensive single-use, disposable masks to
more robust reusable models with replaceable filter containers and face shields extensively used in
occupational environments. The replaceable container in which the sorption media is positioned is
commonly named a cartridge or canister. Sorption media usually removes the gas or vapor from the
breathing air during inhalation [13].

Different strategies, such as applying nanoparticles in their production process, have been
employed to enhance the efficiency and performance of respiratory masks in recent years. The use of
nanoparticles has received considerable scholarly attention in various fields in a way that a wide
range of nanoscale materials are currently being devised to serve various purposes in manufacturing
agriculture, electricity generation and storage, and pharmaceutical products, etc. with regard to their
unique properties [14,15]. In recent years, many studies have been carried out for incorporating the
nanomaterials in the manufacturing of protective masks, but almost no comprehensive data in terms of
an increased level of effectiveness of such respirators is yet available.

This study therefore sets out to review the previous research conducted on the effectiveness of
respirators and respiratory masks containing nanomaterials in their structure. Throughout this paper,
the terms “mask”, “cartridge”, or “canister” will be used to refer to “mask filter” or “sorption media”.

2. Method

A comprehensive literature review was performed from multiple databases in English and Persian
languages in January and February 2017 based on the chronological order of publications on the use of
nanotechnology in the production of respirators. Data used in this review were obtained from Persian
databases, including Magiran, Iran Medex, and Science Database (SID), using keywords such as
nanomaterials, nanoparticles, nanotubes, nanocomposites, cartridge, protective mask, and mask.
English papers retrieved from Biomedcentral, PubMed, Sciencedirect, Web of Science, and Scopus
databases were also reviewed.

The following list of keywords was used for searching the related publications:
Nano* OR “nano composite” OR “nano clay” OR “nano material” OR “nano particle”

OR “nano structure” OR “nano wire” OR “nano tube” OR “nanofiber” OR “CNT (Carbon Nanotube)”
OR “carbon nano tube”

AND
“Respiratory protection device” OR “personal respiratory protection” OR “mask”, respirator*

OR “cartridge” OR “half mask”
All studies identified through the database searches were placed in a “user defined field” of

an Endnote database by only one researcher. Subsequently, duplicated articles were removed from
the library and two researchers independently evaluated and reviewed the articles and removed the
irrelevant ones. Then, the abstracts from the remaining papers were reviewed. Ultimately, the full
texts of the remaining articles were examined so that all the papers were specified in line with the
entry criteria.

Having extracted the related papers in accordance with the objectives of the study, a highly
detailed examination revealed which articles were consistent with the objectives of the present study.
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Similarly, all the relevant sources of the articles were taken into account, and the related articles were
extracted and re-examined as well.

The principal inclusion criterion in this study was the use of nanomaterials within the structure of
the respirators media in order to protect people against hazardous substances in occupational
environments. Therefore, the use of nanoscale materials in safety equipment other than respirators
and non-occupational applications was excluded.

Figure 1 presents a flowchart related to the study selection process, including the
exclusion of studies.
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3. Results

Details from the extracted papers such as the name and affiliation of the lead author, year of
publication, the type of nanoparticles under study, the use of nanomaterials in the structure of the
respirators or cartridges, and key findings from each article were specified. Lack of consistency in the
results obtained by the first two researchers was resolved through deliberating with the third reviewer.

A brief overview of selected papers that were reviewed in this study is outlined in Table 1.

Table 1. The summary of study samples.

No. Author
(year) Application Protection

Provided
Applied

Nanomaterials Results in Brief

1 Y. Li
(2006) Surgical masks

Against
infectious

agents

Mixture of silver
nitrate, titanium

dioxide, Ca2+, Mg2+

and oleophobol C

Nanoparticle-coated fabrics
show promising result for
producing protective clothes
that reduce transmission of
infectious agents.

2 X. Li
(2015) Gauze masks

Prevent
inhaling the

PM2.5
(particulate

Matter 2.5) fine
particles

Polysulfone-based
nanofber

Nano-fiber masks efficiently
filter out the PM2.5 particles
along with maintaining an
acceptable breathability.

3
M.

Jahangiri
(2012)

Cartridge Against organic
vapors

AC/CNF (Activated
Carbon and Carbon

nanofiber) composite

The results showed that
nanofibers can be used
effectively in the
development of PPE against
organic solvents.

4
AK.

Selvam
(2015)

Protective mask
filter

Anti-bactericidal
filter

PAN (Polyacrylonitrile)
nanofibres with Ag

nanoparticles

Anti-bactericidal activity and
also 99% BFE (Bacterial
Filtration Efficiency) is
suitable in production of
protective mask.

5
M.

Jahangiri
(2013)

Respirator
cartridge Organic-vapor

Activated carbon and
carbon nanofiber

(AC/CNF)

The results showed this
composite has lower weight
and higher adsorption
capacities and is a very
effective alternative adsorbent
for respirator cartridges.

6
A.

Rengasamy
(2015)

Facepiece
respirators Bioaerosol

Three types of carbon
nanotube (CNT)
filters+ different
densities SWNTs

(single-walled carbon
nanotube) onto round
polypropylene filters

Significant improvements
were observed in filtration
performance of higher CNT
loaded filters, also higher
biological aerosol particle
filtration efficiencies than the
total aerosol particles.

7 SD. Skaria
(2014)

Polydisperse
aerosols

Face mask with
nanofiber filter media

Low airflow resistance and
effortless exhalation through
mask filter made by nanofiber
filter media, making it suitable
for surgical mask production.

8 TK. Lin

Water filters,
masks, protective

clothes and
wound dressing

Inhibition of
bacterial
growth

Silver
nanoparticle-loaded

activated carbon

Results showed proper
disinfectant properties and
using the hydro-gel formula
provided a large surface area.

9 Y. Li Nano-masks

Water
repellency and

antibacterial
function

Coating with
antibacterial

nano-materials

Nano-masks can yield extra
protection in stopping
capillary diffusion and
antibacterial activities.



Safety 2018, 4, 47 5 of 12

The comprehensive search yielded a total of 437 relevant articles. A total of 382 articles were
excluded because they were duplicates or not in line with the objectives of this study and the inclusion
criteria. Afterwards, 55 abstracts from the papers were independently reviewed by two reviewers and
the irrelevant studies were excluded. In total, 28 full texts papers were also independently reviewed
by two reviewers. Following this, 19 full texts papers were excluded because the researchers did not
make use of nanomaterials in manufacturing respirators and protective cartridges.

4. N95 Respirators

Fine particles can cause various short- and long-term effects on human health, including allergies,
asthma, pneumoconiosis, and cancer, as well as bio-aerosol-related infectious diseases, such as
tuberculosis, fever Q, measles, and influenza [16].

N95 particulate filtering face piece respirators (FFRs) are widely used as cheap, accessible,
and effective masks to reduce the inhalation of harmful particles.

These types of respirators are approved by the Food and Drug Administration (FDA) as a
surgical mask to protect patients and health care workers against the transmission of microorganisms,
body fluids, and classified particles [17,18]. Although the respirators have been designated as protective
devices [19], several studies have shown that the N95 mask and also the ordinary surgical mask do not
provide adequate protection against bacteria and viruses [20].

Surgical masks are broadly used in hospitals and healthcare centers in order to protect the staff.
According to many studies, N95 masks and surgical masks may not provide sufficient protection
against ultra-fine particles such as viruses [16,20,21]. Hence, more attention should be paid to the
overall efficiency and effectiveness of these respirators [22].

Today, various methods have been put forth to increase the effectiveness of such respirators.
The use of nanomaterials in the structure of the respirator has been specifically studied in several cases.

Skaria et al. illustrated that the use of a nanofiber prototype would reduce the weight (0.02–0.5 g m−2

versus 5–200 g m−2 for melt-blown filter), enhance the surface area, and minimize micropores of the
respirators’ filter [23]. As opposed to commercial surgical masks, the nanofiber prototype has lower
resistance to the airflow, even in cases where it is totally sealed. Thanks to this lower resistance to the
airflow, the likelihood of leakages and breakthroughs was minimized and resulted in more particles
being trapped. The results of this study demonstrated the relative effectiveness of the nanofiber
prototype over N95 masks [23].

The proper use of the respiratory protective equipment (RPE) is one of the most important
factors for efficient protection, whereas statistics indicate that, in most cases, such a goal seems to be
unattainable [24–27]. Moreover, wearing a respirator may contribute to overall discomfort via
excessively increasing the user’s heart rate, facial skin temperature, fatigue, breathing resistance,
etc. [28]. Several factors, such as being unfitted, permeability to water and moisture, improper
usage [29], and facial discomfort [24,30], along with resistance to the airflow [23], may considerably
reduce the effectiveness of the respirators [31]. The harmful agents might find their way into the
respirator if its surface becomes contaminated. In order to prevent this problem, the sorption media in
the respirator filter was covered with a thin layer of antimicrobial nanoparticles.

In Li et al.’s study, nanoparticles of silver and titanium dioxide were used as a coating on the
surface of the mask to protect the respirator wearers against infectious agents. The results showed a
100% decrease in E. coli and S. aureus activity after 48 h [31].

In Rengasamy et al., the study resistance of airflow and biofiltration performance of CNT filters
and conventional facepiece respirators were compared. In this study, CNT that is known to have
antimicrobial properties was applied to filtering facepiece respirators (FFRs) and its pressure drop
and biological aerosol filtration performance were compared with other commercially available masks
using a manikin-based protocol. The studied masks were:

N95 FFRs (three types), medical masks (two types), doctor mask (one type), and activated carbon
mask (one type).
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The purpose of this study was to incorporate CNT materials into the mask to increase breathability
and protection efficacy. They showed that except for the active carbon mask, all other respirators
provided at least 80% protection from particles. Increasing CNT loading content indicated a better
performance, and the filtration efficiency of the biological aerosol in CNT filters was significantly
greater than total aerosol [22].

5. Nanoparticles Application to Increase the Filtration Performance of PM2.5

Several studies have revealed that airborne particles lead to respiratory, cardiovascular,
and pulmonary abnormalities [32–34]. Particles with a diameter of 2.5 µm or less (PM2.5) may
penetrate to the deepest part of the lungs, such as the alveoli, mainly due to their small size, and cause
chronic diseases such as asthma [35] and cancer in humans [28], decrease average life expectancy [36],
and lead to other diseases [37].

In Xingzhou Li’s study, 18 wt % (dissolved in DMAc (Dimethylacetamide)/acetone)
polysulfone-based nano-fibers were used to prevent the inhalation of PM2.5 particles. Due to the higher
porosity of the mask materials, regular gauze masks are not able to remove PM2.5 particles, and masks
with such features have poor breathability, which makes respiration difficult [38]. Nanofibers were
used to produce high-performance and low-cost respirators. The results of this study revealed that
nanofiber respirators effectively filter out PM2.5 particles and provide acceptable breathability [39].

Various studies have shown that the use of carbon nanofibers improves the filter absorption
properties of materials such as SOx and NOx [40], as well as the removal of metals from water [41].
Active carbon granules are mainly used in air-purifying respirator cartridges or canisters to absorb
organic vapors [42]. Nonetheless, several limitations, such as poor selectivity [43] and limited
absorption capacity, have already been attributed to this type of filter [44].

Jahangiri et al. used carbon nanofiber and granulated activated carbon in respiratory mask
cartridges to absorb and remove volatile organic vapors from breathing air. They made use of CO2 for
sample preparation and recovering the surface area and micropores of the cartridge. The results of this
study showed that the breakthrough time for this type of cartridge was more extended than other types.
Similarly, the carbon fiber and activated carbon nanofibre composite was determined to be a very
suitable alternative for respiratory cartridges because of its lower weight and acceptable absorption
capacity [45]. Another study by Jahangiri et al. showed that an activated carbon and carbon nanofiber
(AC/CNF) composite which was impregnated with a nickel nitrate catalyst precursor has lower
weight and higher adsorption capacities, and is a very effective alternative adsorbent for respirator
cartridges [46]. Consequently, carbon nanofibers are likely to be suitable materials for absorption and
catalyst supports on account of their unique properties, including their purity, mechanical strength,
and larger surface area [40,47–49].

6. Antibacterial Nanoparticles

Recently, there have been numerous reports on the levels of resistance that bacteria have developed
towards antibiotics and antibacterial agents. Several antimicrobial agents are highly stimulating and
have even proved to be toxic, so researchers are seeking new types of safe and cost-effective materials to
eliminate such harmful microorganisms [50]. Moreover, the performance of surgical masks used in
healthcare centers against infectious agents is still open to debate [51].

Some antimicrobial formulations and nanoparticles have been identified as effective antibacterial
agents [52,53], which have unique properties, including a large aspect ratio and unique chemical and
physical properties [54,55]. For instance, Borkow used copper oxide to eliminate influenza viruses in
the mask filter, and the results showed that the mask's performance was more than 99.85% [51].

This is similar to the combination of silver sulfadiazine which has been applied for half a century to
treat chronic wounds [56–58], including Gram-positive, Gram-negative, yeast, and fungi [59].
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Several studies have also used silver ions as an antibacterial agent [60–64]. Annually, about 500 tons of
silver nanoparticles are produced and consumed worldwide [56]. Silver ions and silver-based
compounds are known to be highly toxic to microorganisms [57,58]. Hence, these compounds are
used as an antimicrobial agent with [65] biocide effects for 16 types of bacteria [66]. Such a compound
leads to the destruction of the bacterial cell wall and cell membrane [67] when positively charged
silver ions interact with the negatively charged cell wall of the bacterium [68]. However, most studies
have argued that the precise mechanism of the antibacterial activity of silver is still unknown.

Klabunde’s study highlighted that some metal oxides nanoparticles (Cl2, Br2) are very effective
antibactericidal agents against gram-positive and gram-negative bacteria [53]. After discovering
the antimicrobial properties of these metal oxides, numerous studies were conducted to more
objectively find similar properties in other metal nanoparticles. Considering that the toxic properties of
silver ions for microorganisms have already been recognized [57,58,67], and only a few species are
resistant to silver nanoparticles [15,58,69], various studies have demonstrated promising results
related to the antimicrobial properties of this nanoparticle. Also, studies have found a successful and
cost-effective way to produce silver nanoparticles, which is used for antibacterial properties of silver
nanoparticles [59,67].

In a study by Li et al., a combination of nanoparticles of AgNO3 and TiO2 was applied to produce
antibacterial respiratory masks. For this purpose, related compounds with sizes in the order of
100 nm were used to increase the aspect ratio and improve the microbicidal process. They had used
E. coli and S. aureus as test microorganisms. One side of the mask was covered with nanoparticles of
0.4 mg/cm2. Antibacterial activity of mask coated with nanoparticles was examined using the AATCC
100–1999 method (Antibacterial Finishes on Textile Materials). The results showed that modified masks
at low concentrations exerted effective antibacterial activity and after 48 h of incubation, 100% of
bacteria were killed [31].

Respirators with uncoated nanoparticles not only did not prevent the bacterial growth, but the
number of bacteria (E. coli and S. aureus) increased by 25% and 50%, respectively [31].

The effects of nanoparticles on human skin were also examined by the case-control group
and according to the results that indicated whether volunteers had signs of skin inflammation or
itching [31].

Selvam et al. used electrospun poly acrylonitrile (PAN) nanofibres with different weight
percentages of nanosilver particles for assessing the anti-bactericidal activity of E. coli and S. aureus and
bacterial filtration efficiency (BFE). Furthermore, dimethylformamide (DMF) was used as a solvent for
PAN and reducing agent for silver ions. In this study, the antibacterial activity of PAN and also PAN
with 5, 10, and 15 wt % of silver was investigated.

The results demonstrated that higher antibacterial activity was related to the combination of PAN
with 15% weight of silver. Furthermore, it reduced 99% of the activity of this bacterium as well [68].

In another study, a silver nanoparticle loaded on an activated carbon cloth that formed a hydro-gel
was used to treat water, produce protective garments and masks, and disinfect wounds. The results
from the physical contact showed antibacterial properties that were greater than 99% [59].

In another study, the combination of silver nanoparticles with activated carbon cloths coated on
a respirator was used to increase its performance to provide protection against antimicrobial agents.
The results from this study indicated that although the referred respirators did not show a significant
impact on air and vapor permeability in comparison with N95 and surgical masks, their antibacterial
activity was found to be much more satisfactory [70].

It is worth mentioning that due to unknown effects for nanoparticles, the use of such material in
the mask structure can lead to skin irritation and itchy skin in people with sensitive skin.

In addition to the advantages of these particles, they can also cause adverse effects in people.
For example, studies have shown that Titanium dioxide nanoparticles can dissolve in human sweat
and can enter stratum corneum and epidermis through the skin. Also, due to prolonged exposure,
these nanoparticles can cause toxic effects in humans [71].
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In the case of silver nanoparticles, there are different opinions about the probability of penetrating
through skin in different studies [72]. Some studies have shown that silver nanoparticles can enter the
human body through intact skin, and that damaged skin can also cause these particles to penetrate
into the body [73,74]. A review study also showed that “Intact skin is observed to pose an efficient
barrier against silver. Mucosal surfaces, including in the eye, are observed to pose a less efficient
barrier. When skin is compromised by burns, scalds, or wounds, it is observed to be more penetrable.
Following exposure, silver has been detected in all organs investigated. Detection in the brain indicates
that silver crosses the blood–brain barrier” [73].

Some studies also reported allergic contact dermatitis, irritation of the skin and eyes,
and genotoxicity, upon exposure to nanosilver [73,75].

Therefore, in addition to the positive effects of the use of nanoparticles in the structure of personal
protective equipment, the less-known effects of these nanoparticles should also be considered in the
exposed work force.

7. Conclusions

In recent years, nanotechnology has displayed rapid progress and has been extensively applied in
many areas of science and technology. According to previous studies, the application of nanomaterials
in the structure of protective respirators compared with conventional masks has numerous plus points,
such as increasing the efficiency and performance of breathing air filtration, along with boosting
antimicrobial properties.

Often, in the working environment, other particles exist, the effects of the nanoparticles used
in the protective respiratory structure of these particles should be taken into account. Additionally,
skin allergy of the facial skin of people who use these masks should be more carefully examined.
Therefore, along with the positive effects of using these particles, the unknown or lesser known
effects of these particles also require further investigation.
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