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Abstract: This paper presents the advantages of using Weibull distributions, within the context of
railway signaling systems, for enabling safety-oriented decision-making. Failure rates are used to
statistically model the basic event of fault-tree analysis, and their value sizes the maximum allowable
latency of failures to fulfill the safety target for which the system has been designed. Relying on
field-return failure data, Weibull parameters have been calculated for an existing electronic signaling
system and a comparison with existing predictive reliability data, based on exponential distribution,
is provided. Results are discussed in order to drive considerations on the respect of quantitative
targets and on the impact that a wrong hypothesis might have on the choice of a given architecture.
Despite the huge amount of information gathered through the after-sales logbook used to build
reliability distribution, several key elements for reliable estimation of failure rate values are still
missing. This might affect the uncertainty of reliability parameters and the effort required to collect
all the information. We then present how to intervene when operational failure rates present higher
values compared to the theoretical approach: increasing the redundancies of the system or performing
preventive maintenance tasks. Possible consequences of unjustified adoption of constant failure rate
are presented. Some recommendations are also shared in order to build reliability-oriented logbooks
and avoid data censoring phenomena by enhancing the functions of the electronic boards composing
the system.

Keywords: safety modeling; maintenance modeling; reliability analysis; railway signaling systems;
Weibull distribution

1. Introduction

The choices in terms of the design of a safety-critical architecture classically rely on the required
safety and reliability targets. Although these architectures have now spread to different fields,
the constraining trend of the reference safety standards requires more frequently assessing the
pertinence of the hypothesis used for the demonstration. Basically, lots of methodologies can be
adopted to demonstrate the fulfillment of safety and reliability targets.

Within the railway domain, CENELEC standards are required to demonstrate a lack of systematic
safety-relevant failures, and that random failures occur with a frequency directly linked to the desired
safety target, also called the Safety Integrated Level (SIL).
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The more demanding target in the railway domain is the SIL4, which is related to an occurrence of
10−9/h of safety-related failures. Several methodologies can be adopted to demonstrate the quantitative
estimation of safety targets: most of them rely on a basic metric, the failure rate.

Let us take the example of a fault-tree analysis (FTA), in which the top event is the scenario we
want to avoid, and the basic events (BE1 and BE2) are the elementary events that, once combined,
can lead to the hazardous situation. The hypothesis considered is that the occurrence of each single
event can be detected and passivated. Under this hypothesis, the latency, considered as the time in
which the event has occurred but not detected or passivated, plays a key role. The two considered
events are independent and the event BE1 is “tested” each T1 hours (in order to reduce the latency),
while for BE2, the time considered is the time of the mission (supposed to be 30 years).

It is a common belief that electronic behavior is described by reliability functions based on constant
failure rates throughout the entire life. Within this case, wearing-out phases are not taken into account.

The way reliability performances are determined is then crucial because the adopted assumptions
can impact the quantitative analysis and, consequently, choices on architecture and allowed latency for
safety purposes.

Although railways can benefit from the existence of standards providing recommendations
for reliability aspects, the CENELEC EN50129 [1] standard does not specify the process by which
reliability evidence has to be gathered. CENELEC EN50129 directly or indirectly refers to reliability
prediction models for the demonstration of reliability figures, implicitly considering the assumption
of a constant failure rate. The massive presence of reliability prediction models such as FIDES [2],
MIL-HDBK-217F [3], or RDF2000 [4], all based on the constant failure rate hypothesis, might contribute
to an abuse of exponential distribution, determining a complete misalignment between predictive and
operational reliability figures [5–7] that are adopted to describe the basic events that could lead to
hazardous situations. These reliability prediction models aim at providing empirical formula in order
to determine the (constant) failure rate for each component of the board. Moreover, the use of such
reliability prediction models might lead to inaccurate reliability figures, calculated as the sum of the
reliability of each component of the board.

Despite the fact that the cost of implementing such reliability models at the beginning of a project
can be relatively low compared to more complex models, the non-achievement of reliability or safety
target could lead to high costs during the project life.

The use of more realistic distributions, like Weibull distribution, has been demonstrated in several
works pertaining to railway infrastructure [8], and is common in other industrial domains.

In most industrial fields, the Markovian assumption considering the failure rates (or mean time
between failures) as constant is no longer considered acceptable since systems are aging. This is
also the case in the railway industry. A literature analysis can thus underline that, in reliability and
safety analysis of infrastructure components, it is commonly accepted that Gamma processes are
particularly adapted to model the track geometry degradation [9]. Petri nets are also used to model
the degradation of the track [10] or to analyze the safety of level crossings. Piecewise deterministic
Markov processes were also used for the reliability analysis of air conditioning systems for rolling
stock [11]. Among all the standard stochastic approaches for modeling reliability and safety, the use of
the Weibull distribution has been particularly relevant in the railway field, for infrastructure as for
rolling stock.

Thus, Weibull approaches are often considered to model the degradation of rails [12,13] and
sleepers [14] but also rolling stock components such as bearings [15] or wheels [16].

Finally, the only railway field still reluctant to undergo this evolution is the railway signaling industry.
Indeed, most studies still consider that all electronic devices verify the Markov hypothesis [17–19].
Moreover, this misconception is a common basis for industrial practices.

If this assumption was true in the past, the evolution of electronic structures, components,
and materials seems to introduce changes in this behavior. The aim of this study is to sensitize the
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community to another possibility, by benefiting from the domains where the use of Weibull distribution
is widely adopted.

The disadvantage related to inappropriate reliability estimation approaches might have an impact
on the achievement of safety and reliability targets, resulting in a complete misinterpretation of the
performances of complex systems as depicted by [20–22], and cost of mitigations that have to be
undertaken to cope with this problem.

What if the reliability misestimating is discovered only after the safety-related architecture has
been set up?

The aim of this paper is to investigate the possible consequences of the unjustified adoption of
a constant failure rate and to provide insights to enhance the process for gathering reliability-oriented
data from systems already in revenue service by working on both the logbook and the functions of the
electronic system [23,24].

2. Considered Railway Signaling Systems

All electronic railway signaling systems, like the one presented in Figure 1, could benefit
from the considerations presented in this work. The problem of fulfilling reliability and safety
targets is common to onboard and wayside signaling systems, both for high-speed lines and
metro applications. Despite the generality of the approach, some railway systems require more
constraining target, like communication-based train control (CBTC). CBTC is a railway signaling system
based on communication between the train and the track in order to perform traffic management
and infrastructure control. CBTC systems can ensure a more accurate positioning of the train
compared to traditional signaling systems such as track circuits, thus ensuring more efficient and
safer traffic management. Moreover, the headway is improved while safety is maintained (or even
improved). Modern CBTC systems allow different levels of automation (technically known as Grades
of Automation (GoA)). They range from “manual protected operation,” GoA 1, to “fully automated
operation,” GoA 4, also referred to as a “driverless solution.”

Figure 1. Example of electronic signaling equipment.
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In case of driverless solutions, unavailability might have several impacts that cannot be neglected:

- Potential safety-related impacts due to the fact that a train that is wrongly stuck down might be
linked to inappropriate and unsafe evacuation passenger procedures;

- Service availability impact, because a blocked train can be removed only by means of a so-called
“rescue train” that is used to drive the failed train to a depot. This case might dramatically impact
the availability of the whole line, causing an unacceptable degradation of the headway.

The overestimation of safety and reliability performances might be due to the bias induced by
unverified reliability models. Quantitative analysis, like FTA, adopted to numerically estimate the
performance, is based on failure rates of components that need to be correctly addressed along the
whole life of the system. That is why adopting Weibull distribution is one of the key recommendations
of this paper.

3. Introduction to the Use-Case Study

3.1. Use-Case Definition

In order to move from constant predictive reliability parameters to time-dependent field-based
ones, Weibull distribution is chosen to describe the behavior of a use case identified in an electronic
railway signaling system [25,26]. The probability density function (denoted pdf) mathematically
defines the Weibull distribution, which is widely used in life-data analysis:

f (t) =
β

η

(
t − γ

η

)β−1
e−( t−γ

η )
β

, (1)

where

• β is the shape parameter, also known as the Weibull slope;
• η is the scale parameter;
• γ is the location parameter.

In this paper, the location parameter γ will be assumed to be zero. The value of the β parameter
has a huge impact on the whole Weibull distribution. If β < 1, the failure rate decreases over time,
a condition known as early-life or infantile failure. Weibull distributions in which β is close to or equal
to 1 have a constant failure rate, indicative of useful life or random failures.

In case β > 1, the distribution presents a failure rate increasing with time due to wear-out
failures. The three sections describe the classic “bathtub curve.” A mixed Weibull distribution with
one subpopulation with β < 1, another with β = 1, and a third one with β > 1 would have a failure rate
plot identical to the bathtub curve [25,26].

The fact that, in some cases, the initialization time of the degradation is unknown (introducing
a left censor) would require the use of a negative Gamma parameter. Nevertheless, considering such
a value would mean that the considered system began its degradation before the initial temporal step
t0 = 0; that is far from reality and should induce a stronger bias that censored data themselves. For this
reason, in this study, a Gamma = 0 was chosen. Alternative options [27] allowing for dealing with
censored data could be taken into account but are not considered for this article and will be exploited
in further works, although extensions of the expectation-maximization (EM) algorithm are available in
the literature [28].

In order to significantly determine Weibull parameters, field-return data need to be relevant:
from this perspective, the reference use-case is a signaling system based on deployed electronic boards
and in revenue service since years. Because of the possible impact on the whole maintenance costs,
both wayside and on-board equipment have been considered for this application.
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Each circuit board composing the signaling system is a line replaceable unit (LRU) of the system;
the LRU is an element that can be replaced on site and with standard techniques and tools to restore
the operating status following a failure.

3.2. Field-Return Data Processing

Field-return data are collected in a database represented by the after-sales service logbook.
The after-sales department collects all the boards that are brought back to the maintenance workshops
for repair when they are out of service or have experienced failures after deployment. A huge amount
of data is present within this database:

• Name and serial number of the board: for the unique identification of the circuit board.
• Customer indication and project data: provides a useful link to the relevant people involved

in the project to gather critical information, which is often not included within the database.
This information is also useful to perform project-specific reliability demonstration tests
and evaluations.

• Part number and revision number: allows for clearly identifying a bill of material (BOM).
Each circuit board could have different BOMs along its life, in case obsolescence phenomena or
retrofitting occurs.

• The date, on which the board was brought back to the after-sales service for the calculation of
the TTF (Time To Failure). This information must be supplemented with further details such the
deployment date in order to have an accurate calculation. Moreover, depending on the customer’s
policy, this could potentially not be the date on which the failure occurred. This phenomenon,
known as censoring, might affect the accuracy of the TTF calculation with a subsequent impact
on the determination of reliability figures.

• Customer analysis of the failure: describes observations of the customer about the failure event.
• After-Sales analysis: based on the knowledge of the electronic board and the analysis of the

customer, it describes the real failure that occurred on the board. In some cases, no failures
are detected and the logbook reports “no fault found.” This information is not relevant for
reliability purposes.

The structure of the database used to collect relevant information has not been designed for
reliability purposes, even if the amount and quality of information available is impressive: the number
of boards deployed within a given project and the deployment information are not included in the
database. As a consequence, relevant persons of the targeted projects are involved to retrieve or fill in
the missing information, causing a delay and uncertainty in the processing of the information

3.3. Field-Return Data Analysis: The Case of Censored Data

After-sales database has been processed by selecting different types of boards in the use-case.
Investigations have been made to gather all the possible data from the maximum number of

projects. Some old projects were affected by censored data, meaning that observations of failures and
TTF are only partially known, like for projects in which the complete deployment of the signaling
equipment lasted months or years. In such a situation it is not possible to accurately calculate the TTF
on the basis of the boards brought back to the after-sales department.

In further cases, the beginning of the revenue service phase has been delayed even if the signaling
system was already installed and deployed. Even in this case it is not possible to accurately estimate
the TTF.

Another source of data censoring is the supply policy of specific customers: in some cases,
customers buy big stocks of boards that are gathered in a dispatching center for an unknown period.
The customer decides when and which project has to be provided with a given number of boards:
this might have a major impact on reliability analysis. Censoring might also affect the moment at
which the failure is accounted for.
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• On-field failure might not be immediately recorded: the effective record depends on the frequency
of inspections of the system.

• Before bringing the electronic boards back to the provider’s maintenance department, the customer
might collect several items affected by failures. The moment at which the boards are recorded in
the after-sales database might hide relevant reliability information.

Even some already known chart formats designed for reliability purposes, such as the Nevada
Charts for warranty data analysis, might not be sufficient to cope with that kind of problem.

4. Discussion

4.1. Weibull Analysis

The choice of projects already in service for allows increasing the accuracy of information provided
within the database; moreover, these data have been verified by interviews with relevant people
involved in each project considered. This allowed for gathering more complete information for the
calculation of Weibull parameters.

All the data present in the logbook have been processed in order to remove irrelevant data,
for example related to failures associated with “no fault found.”

Once the relevant information has been collected, they are processed by a proprietary tool
developed in Matlab® that is able to accurately determine the Weibull parameters associated with the
considered set of data.

Results of this processing are shown in Table 2.
Three projects have been selected for the analysis. Field data of one wayside (hereafter called

“Board_WS”, WS meaning wayside) and one on-board circuit board (hereafter called “Board_OB”,
OB meaning onboard) have been collected. Table 1 shows synthetic information about each project,
called Prj1, Prj2, and Prj3: the revenue service date and the number of boards deployed. These data are
essential for the evaluation of reliability figures. TTF information for Wayside board has been gathered
on both Prj1 and Prj2.

Table 1. Board and project information matrix.

Board Project Revenue Service Number of Boards

Board WS Prj1 2003 122
Board WS Prj2 2007 172
Board ON Prj3 2009 336

Cumulated failures and TTF information have been plotted for each [board, project] couple on
a Weibull chart, as depicted in Figures 2–4.

Figure 2. Weibull chart of board_WS—Prj1 project.
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Figure 3. Weibull chart of board_WS—Prj2 project.

Figure 4. Weibull chart of board_OB—Prj3 project.

A first graphic approach helps understanding that the β factor is not close to ‘1’ in all three
considered cases. Consequently, the hypothesis of constant failure rate, referring to exponential
distribution, is not verified. Datasets have been tested to verify that the data follow Weibull distribution.
Among the possible indicators providing a measure of how well the observed outcomes are replicated
by the model, the coefficient of determination R2 has been adopted: it indicates the proportion of the
variance in the dependent variable that is predictable from the independent variable and can vary
between 0 and 1. The closer this number is to 1, the better the observed outcomes are replicated by the
model. When R2 is equal to 1, the observed outcomes perfectly fit the model.

This coefficient has been applied to each considered project and assumes values of 0.7513 for
Prj1, 0.9355 for Prj2, and 0.6101 for Prj3, allowing us to conclude that the data indeed follow Weibull
distribution. Numeric iterative techniques, using the “least squares” method, have been implemented,
which allows for calculating a straight line that best fits the available data. The equation of this
straight line is presented in each Weibull chart, and the slope represents the Weibull parameter, β.
Datasets used for the determination of Weibull distribution are mainly right-censored: this is not
limiting the determination of the parameters, but is necessary to correct them when new data are made
available through an adaptive approach along the whole project life.

Table 2 collects the exact β and η values for each electronic board and associated project. The fact
that β value > 1 confirms the distribution is in its wear-out phase. Considering that Board_WS is the
same for Prj1 and Prj2, it can be assumed that the behavior of the distribution is not exactly the same
within the two projects.
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Table 2. Weibull parameters β and η for use-case boards.

Board Project β η

Board WS Prj1 3.75 51,683
Board WS Prj2 3.85 36,264
Board OB Prj3 2.37 160,667

4.2. Failure Rate Estimation

With the calculation of β and η, it is possible to determine and plot the failure rate over time.
A comparison of the behavior in the case of exponential distribution versus the case of Weibull
distribution is also presented.

Figures 5 and 6 compare the constant failure rate, referring to exponential distribution, and the
time-dependent failure rate, referring to Weibull distribution, over time: the two values quickly diverge
and after 10 years (100,000 h) they have almost four orders of magnitude of difference.

Figure 5. Comparison of failure rate λ(t) for Prj1.

Figure 6. Comparison of failure rate λ(t) for Prj2.

Figure 7 presents the same comparison for Board_OB and Prj3. In this case the divergence between
the two values is restrained due to the fact that the β value is lower than in the two previous cases.
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Figure 7. Comparison of failure rate λ(t) for Prj3.

In Table 3 a comparison between the predictive MTBF (Mean Time Between Failures) figure,
calculated according to the exponential distribution, and the MTBF figure calculated according
to Weibull distribution is presented. The calculation of exponential MTBF is performed by using
“RDF2000” reliability prediction models. RDF2000 is a reliability prediction model providing empirical
relationships to deduce MTBF for several families of devices by taking into account several factors
such as environmental and qualitative parameters [29]. Limits of the constant failure rate approach
appear evident in Table 3 since Board_WS presents the same exponential MTBF value for Prj1 and
Prj2, instead of the Weibull-based MTBF that is calculated by using the β and η values previously
calculated. This application also underlines the fact that Weibull MTBF is more conservative compared
to the exponential MTBF value.

Table 3. Exponential vs. Weibull MTBF (Mean Time Between Failures).

Board Project Exponential MTBF (h) Weibull MTBF (h)

Board WS Prj1 1.22 × 106 4.69 × 104

Board WS Prj2 1.22 × 106 3.28 × 104

Board OB Prj3 2.54 × 106 1.42 × 105

4.3. Comparison in Terms of Cumulative Distribution

The cumulative distribution function (CDF) of each board and within each considered project is
plotted for both exponential

F(t) = 1 − exp(−λ∗t) (2)

and Weibull distribution:
F(t) = 1 − exp(−

t
η )

β

. (3)

The use of CDFs allows for evaluating the probability at a given time, in order to define basic
events and move to the top event of a fault tree analysis.

Figures 8 and 9 compare distribution functions over time: the value of the CDFs for Weibull
distribution quickly tends to 1 due to the wear-out described by the value assumed by β.
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Figure 8. Comparison of cumulative distribution functions F(t) for Prj1.

Figure 9. Comparison of cumulative distribution functions F(t) for Prj2.

Figure 10 presents the same evidence, but the slope of the function for Weibull distribution is
lower compared to the previous cases, in line with the associated values of β.

Figure 10. Comparison of cumulative distribution functions F(t) for Prj3.

These results highlight the possible bias of the use of exponential distributions, impacting not
only reliability-centered maintenance policies but the demonstration of safety targets. This evidence
will be presented in Section 5.
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5. Comparison between Exponential and Weibull Distribution Approaches

5.1. Comparison for a Given Architecture

It is possible to numerically evaluate the impact of adopting the two models on the demonstration
of safety targets.

Let us consider the FTA mentioned in Section 1, and let us assume the exponential failure rate
model represents the basic events failure occurrence, such that:

- Failure Rate λ1 is 8.2 × 10−7 (calculated as the reciprocal of the exponential MTBF for Board_WS);
- Failure Rate λ2 is 3.94× 10−7 (calculated as the reciprocal of the exponential MTBF for Board_OB);
- The time for “testing” BE1 is T1 = 4 months, expressed as 2628 h.
- The time T2 is the time of the mission, supposed to be 30 years, expressed as 262,800 h.

The probability associated with the BE1 is then

PBE1 = 1 − e−(λ1∗T1), (4)

while the probability associated with BE2 is

PBE2 = 1 − e−(λ2∗T2). (5)

The probability associated with the top event is

PTE = PBE1 ∗ PBE2 (6)

Let us assume the target value is the probability of failure associated with a SIL4 function with
a mission time of 30 years:

Ptarget = 10−9 ∗ 24 ∗ 30 ∗ 365 = 2.63 × 10−4. (7)

With the assumptions made, PTE = 2.12 × 10−4, so that the target is fulfilled.
Let us now consider the same FTA, but we now assume the Weibull failure rate model.
For BE1, we have β1 = 3.75 and η1 = 51,683.
For BE2, we have β2 = 2.37 and η2 = 160,667.
For the calculation of the associated probability we will use the Weibull distribution function, with:

PBE1 = 1 − e(−
T1
η1

)
β1

= 0.1736 (8)

and

PBE2 = 1 − e(−
T2
η2

)
β2

= 0.9792, (9)

so that PTE = 0.17, and the target has clearly not been met.
What could be the mitigation route if the reliability function adopted to build the architecture is

exponential, and the field-return data does not confirm that choice? Possible solutions deal with the
optimization of the architecture or the use of preventive maintenance tasks. These possibilities will be
presented in Section 5.2.

5.2. Definition of a Reliability-Driven Architecture

The unjustified use of exponential distribution instead of the more realistic Weibull distribution might
have a dramatic impact on the choice of architecture of the signaling system if the field return data do not
confirm the hypothesis made at the beginning of the project. Let us consider that exponential distributions
have been wrongly adopted to describe reliability performances and that the considered system, under that
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hypothesis, fulfills the reliability and safety requirements for which it has been developed. If the relationship
between exponential and Weibull parameters is as presented in Tables 2 and 3, some mitigation should be
put in place to allow the system to fulfill the requirements, for example introducing opportune redundancies.
The choice of the redundancy is influenced by reliability parameters: optimistic figures can determine
low redundant architectures. Such a situation might have dramatic consequences since reliability targets
might not be reached and the architecture is already established. Even under the hypothesis that it is
always possible to introduce redundancies into the considered system, do they allow for filling the gap
with respect to the exponential case? In order to answer that question, the reliability function has been
calculated for different types of k-out-of-n.

For the system considered in our examples, we make the hypothesis that corrective maintenance
tasks cannot take place even in the case of detection of loss in one of the redundant sections.

The considered redundancy is for safety purposes, and a comparison of safety-related configurations
is shown in Figure 11a–c. Only in the case of project Prj3 is it possible to achieve performances
comparable with the single unit described by exponential distribution, considering two redundant
2-out-of-3 architectures (Figure 11c). Even with that kind of redundancy, performance drops in case
of exponential behavior after about four years. In all the other cases, adding redundancies of the type
k-out-of-n, with k and n greater than 1, will not provide significant advantages compared to the exponential
bias (Figure 11a,b).

Figure 11. Reliability functions with redundancies k-out-of-n. Solutions for (a) project Prj1; (b) project
Prj2; and (c) project Prj3.

Another option to achieve safety targets, once the architecture has already been set up, relies on
the possibility of preventive maintenance tasks. The presence of wearing-out circuit boards within
the use-case signaling system is the condition allowing the introduction of systematic preventive
as-good-as-new maintenance activities. This consists of replacing a board before a possible failure
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occurs due to wear-out phenomena. The choice of the time at which the maintenance is scheduled
depends on the β factor of the board, which is the measure of the wear-out degree, and on the
ratio between the average cost of systematic preventive maintenance and the average cost of
corrective maintenance.

6. Conclusions and Further Work

This paper aimed at describing the consequences of the unjustified adoption of exponential
reliability distributions to model basic events leading to hazardous situations. Although the advantages
of using Weibull distribution compared to exponential distribution are well understood in the industrial
domain, the railway signaling field seems to suffer from calcified practices based on the constant failure
rate myth. Although reliability prediction models have historically adopted exponential distribution
for modeling the behavior of electronic components, the hypothesis of a constant failure rate needs to
be verified by using field-return data.

A numerical example has been provided to assess the gap introduced when wrong data are used
to perform the demonstration of safety targets.

Reliability figures have been calculated following Weibull distribution and compared with existing
predictive figures, demonstrating that the hypothesis of constant failure rate is not respected, since the
form parameter is over 1.

An example has been provided for an SIL4 function. Given the relationship between the
basic events and the top event, the evaluation of the probability has been provided for both cases,
demonstrating that the SIL4 target is not fulfilled when data are modeled through Weibull distribution.
This can have consequences on the choice of architecture and the mitigations that could be put in place
to reach the safety target.

The first consideration dealt with the impact on the architecture of a system when reliability
parameters have been calculated with a reliability model overestimating performance. It has been
shown that even adding redundancies might not solve the problem and the whole performance would
be below the expected behavior, jeopardizing safety and reliability targets.

The second consideration is the use of systematic preventive maintenance tasks, allowing for
reducing the impact of the wear-out of the electronic system.

As depicted in previous sections of this paper, some factors strongly impact the reliable collection
of field-return data, consequently determining data censoring.

The calculation of Weibull parameters and reliability figures is limited by such phenomena.
Possible improvements, to be detailed and studied in future work, are presented hereafter.
A first element that can be enhanced is the after-sales database: all the information required for

the calculation of reliability figures should be gathered within it, in particular the number of boards
deployed in the project as well as the revenue service date. Accurate information about the time
at which failures occur should also be provided to the customers, or somehow gathered directly by
the system.

Improvements in the design of the circuit boards can also be considered: typically, efforts are
made only to reduce the Mean Time to Repair (MTTR) in case of failure. Therefore, the diagnostic
system is implemented, allowing for the quick identification of the failed LRU, so that the activities of
the maintainer can be completed in the shortest possible time.

The design of the boards could be enhanced by adding functions monitoring the operating
time. For electronic boards already equipped with logic circuits, like CPU (Central Processing
Unit)-based boards, it is possible to add a real-time clock (RTC) with a backup battery and non-volatile
memory. “Non-intelligent” circuit boards, like power supply, front-end boards, and power controller
boards, could be redesigned in order to add the same components required for the CPU boards,
allowing a minimum of intelligence to be used for reliability purposes. This improvement is justified
since the cost of the components is much lower than the whole cost of the board.
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Another improvement could be the monitoring of some environmental parameters that could
affect the reliability of the boards. Considering that temperature, physical solicitations, and low-quality
power supply are some of the most influential parameters, the design of the boards could be enhanced
by adding temperature sensors (e.g., very low cost negative temperature coefficient (NTC) devices)
or integrated accelerometers like cheap MEMS (Micro Electro-Mechanical Sensors) mastered by
a microprocessor. The collection over time of all this information can increase the knowledge of the
system in terms of reliability, allowing defining correlations between stress and reliability reduction.
These improvements allow for gathering several mission profiles that can be used to predict behavior
in case of new projects.

Improved design, combined with the proposed methodology to calculate reliability figures based
on Weibull distribution, allows for building up a portfolio of mission profiles that can be used to
predict the behavior in case of new projects based on the reference signaling system, avoiding the use
of existing architecture to fulfill unreachable safety targets.
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