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Abstract: Traditional accident risk prediction models need adequate data on explanatory variables,
most importantly data on traffic flows. However, in the case of accidents between bicycles the
availability of such data is often limited. Therefore, alternative bottom-up simulation modelling
approaches are expected to complement traditional equation-based models. In this paper we present
an agent-based approach to explore bicycle-bicycle accidents. Specifically, we hypothesise that
(1) bicycle-bicycle accidents are based on the population of encounters between cyclists rather than
on bicycle flows and (2) that encounters have a non-linear relationship with flows. Bicycle flows
and encounters are simulated by means of an agent-based model that is implemented for the road
network of the city of Salzburg. Simulation results are tested against a 10-year dataset of police
records on bicycle-bicycle accidents. The results affirm both hypotheses: First, cyclist encounters
exhibit a linear relationship to accidents and thus suggest being the true population of bicycle-bicycle
accidents. Second, flows show a relationship in the form of a second-order polynomial function with
encounters as well as accidents.
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1. Introduction

Collisions between bicycles have not received much attention in the literature as compared to
accidents that also involve motorised vehicles. However, due to under-reporting of bicycle accidents,
they are likely to be underestimated in official statistics [1]. Furthermore, as cycling becomes more
popular and more bicycle path infrastructure is offered, safety on bicycle paths is expected to become
increasingly important [2].

From a methodological perspective, bicycle accident risk models—just as any other accident risk
model—aim to explain the occurrence of accidents, usually with the help of explanatory variables.
The variable with the most explanatory power therefore is traffic volume [3]. The more traffic there
is, the more accidents can be expected. However, this is a non-linear relationship [3–5]. For example,
Martin [6] showed that for car accidents in which two or more vehicles are involved, the rate of
accidents per road user increases with the number of road users. Jacobsen [7], in contrast, describes
the safety in numbers phenomenon, where the individual accident risk of a cyclist with a motorized
vehicle declines with the number of bicyclists around. It is under debate whether this non-linear
correlation is due to the adaptive behaviour of motorists or to differences in the infrastructure design
of the compared locations [8]. Greibe [3] reports that the flow in accident risk models needs to be raised
to a power, with power values typically ranging between 0.8 and 1.0 for urban roads. In accordance
with the ‘safety in numbers’ phenomenon this results in a decreasing accident rate for increasing traffic
volumes. Eenink, Reurings, Elvik, Cardoso, Wichert and Stefan [4] report an even smaller power value
of 0.32 for urban roads in the Netherlands. Usually, the models are calibrated with data by means
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of probabilistic methods such as logistic regression, Bayesian modelling, Markov chains or neural
networks [9–11]. Given that enough adequate calibration data for explanatory variables are available,
accident prediction models can be highly accurate and can explain up to 60% of accidents [3].

Analysis of the risk of bicycle-bicycle accidents is likely to be limited by data scarcity. In most
cities, bicycle traffic flow data are incomplete or virtually non-existent [12]. Other data sources such as
voluntarily collected bicycle accident data exist, but are mostly restricted to sportive leisure cycling [13].
Also, bicycle accidents statistics are characterised by severe under-reporting. Only a fraction of bicycle
accidents that result in hospitalisation are reported to the police [1,14]. Minor accidents are even less
likely to be included in official statistics [15,16]. Online platforms to collect voluntary reports on bicycle
accidents or near misses have been developed recently [17], but to date contain only few reports. In the
case of such data scarcity, explanatory models on bicycle accidents are hard to calibrate and their
predictive power is poor, especially for bicycle-bicycle accidents.

Scarcity of bicycle data is also true for the city of Salzburg, which serves as the test bed for the
present study. The city administration provides data from six bicycle count stations, but there is
no empirical data on the city-wide distribution of bicycle flows [18]. Therefore, the prediction of
bicycle accidents is expected to benefit from alternative modelling approaches that are less data-driven,
although a caveat remains regarding potential biases in the police accident reports, which serve as
validation data [19].

Generally, agent-based modelling has gained popularity as an alternative approach in transport
modelling [20–24]. A major difference between agent-based models (ABM) and equation-based models
is their bottom-up approach: bottom-up transport models are based on individual road participants
that move and interact in a highly disaggregated representation of the road network. ABMs are rooted
in complexity theory, which suggests that system-level patterns emerge from the rule-based interaction
of individual entities [25]. Traffic flows are not modelled by mathematical equations, but they emerge
from the stepwise simulation of dynamic behaviour of individual road participants interacting on
a spatially heterogeneous road network [26]. Due to the fine spatial and temporal resolution of the
simulation, ABMs cannot only simulate flows, but also individual encounters of two vehicles on a road
network. For traffic safety research this is important, as an accident can only occur if the trajectories of
two road participants cross. Each crossing trajectory is tagged as an encounter (passing, overtaking,
or crossing). The relation between encounters and accidents has been used to study road safety based
on interactions at the local scale [27], e.g., at specific intersections [28], roundabouts [29], or in abstract
traffic environments [30]. However, to the best of our knowledge, simulated encounters have not been
explored for their adequacy as exposure variables compared to conventionally used traffic flows for
large networks on the scale of an entire city.

In this paper, we use an agent-based modelling approach to simulate two alternative
spatio-temporal datasets to represent the populations at risk for bicycle-bicycle accidents: (1) bicycle
traffic flows and (2) bicycle-bicycle encounters. We then compare the two simulated populations with
accidents reported by the police. We hypothesise first that the number of bicycle-bicycle encounters is
the true statistical population for accidents between bicyclists, which thus have a linear relationship
with observed accidents; and second that flow volumes have a non-linear relationship with encounters
and thus also have a non-linear relationship with observed accidents. The general idea is exemplified
with an agent-based model that is first implemented in an abstract network graph and then applied
to the city of Salzburg, Austria. A dataset of all bicycle accidents in the city of Salzburg that were
reported to the police between the years 2002 and 2011 was available to test the hypotheses.
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2. Methods

2.1. Overall Approach

Bicycle traffic flows and respective encounter points were simulated by means of the Agent-based
Bicycle Traffic Model that has been successfully applied to the city of Salzburg [18]. For this research,
the existing model was extended to not only compute cyclist counts per time (flows), but also to record
points at which cyclists meet (encounters).

The overall workflow is visualised in Figure 1. First, the Agent-based Bicycle Traffic Model
was implemented on a simple, abstract network to explore the general relation between flows and
encounters. The network is represented by a graph, which consists of nodes (junctions in a real-world
context) and edges (representing road segments). Second, the model was used to simulate encounters
of cyclists on the road network graph of the city of Salzburg. Both models were implemented in the
NetLogo modelling framework [31]. The simulated results for the city of Salzburg were then plotted
against police reported accident data. Assuming that the population at risk explains a large part of
accidents, we expected to gain insights on the true nature of the population at risk from contrasting
flows versus encounters in relation to accidents. Accident data in the present study exclusively referred
to police-reported bicycle-bicycle accidents between the years 2002 and 2011. This dataset comprised
14% of all police-reported bicycle accidents. In the 10-year study period we assumed stable conditions
and we did not account for any variations in, e.g., weather, infrastructure or cycling preferences.
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Figure 1. The diagram shows the overall approach of this paper. The relation between simulated flows
and simulated encounters is explored. Then, the hypothesis is tested that encounter density more
adequately represents the statistical population from which accidents emerge compared to commonly
used flows. The relationship between flows and accidents is expected to be quadratic, whereas the
relationship between encounter densities and accidents is expected to be linear.

2.2. Flows and Encounters in an Abstract Network

Conceptually, if all road users meet each other once, the relation of encounters can be described
as the sum of natural numbers: Two cyclists can have only one encounter (C1 with C2). Three cyclists
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have three encounters (C1 with C2 and C3 + C2 with C3). Four cyclists have six encounters, etc.;
n cyclists therefore encounter n ˆ (n ´ 1)/2 times. This relation between cyclists and encounters can
be described mathematically in the form of a second-order polynomial function:

´0.5 ˆ n ` 0.5 ˆ n2 (1)

where n is the number of cyclists.
In a network of many nodes, one cyclist meets only a fraction of other cyclists, depending on the

number of nodes and the connectivity in the network. We would therefore expect the relation between
flows and encounters to be of the general form of a ˆ n + b ˆ n2, where the coefficients a and b are
related to the complexity of the network.

To illustrate the relation between flows and encounters with a simple simulation model, the bicycle
model was implemented on an abstract network graph (Figure 2). This graph consisted of two
intersecting square streets, each of which consisted of eight regular segments of equal length. Street B
is well suited for cycling, whereas street A is less suited. In the simulation, a user-defined number of
cyclists travelled along these streets over 10,000 time steps. Each time step, a cyclist travelled from one
node to another through one street segment. Cyclists could change direction at crossings, but could
not make a U-turn to return to where they came from. At a crossing, a cyclist decided in 80% of the
cases to travel street B instead of street A. All cyclists travelled at the same speed, therefore encounters
occurred, if cyclists passed, crossed or travelled together.
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Figure 2. Layout of an abstract street graph to explore general relations between flows and encounters:
the grey street A is preferred by only 20% of cyclist agents, while 80% decide to travel the black street B.

After 10,000 time steps, the following state variables were recorded for further analysis: number
of encounters, proportion of encounters on street A to street B, and proportion of travelled segments
along street A to street B. This simulation was repeated for 10 different numbers of cyclists, ranging
between n = 1 and n = 20.

2.3. Agent-Based Bicycle Encounter Model for the City of Salzburg

The extended Agent-based Bicycle Traffic Model was then applied to the city of Salzburg. Each
agent cycled from home to its destination (e.g., work or study place) and back again. The resolution
of time steps was reduced to one second in order to record all encounters. The spatial resolution of
the road graph was continuous. Simulations were computed with multiple numbers of cyclist agents
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per day ranging between 50 and 10,000. The number of simulated trips thus ranged between 100
and 20,000 trips per simulation. Each simulation was run twice, so that in total 24 simulation runs
were computed.

After each simulation, the following data were recorded for further analysis: (1) a geospatial point
dataset of the encounter locations with the attributes ‘time’, and ‘encounter angle’; (2) a geospatial
dataset of the road network graph with the attribute ‘number of times traversed’ for each segment;
and (3) the spatially aggregated number of actively cycling agents and encounter events with a
resolution of 15 min. In a post-processing step, encounter angles were coded as one of the following
types: overtaking (0˝ to 45˝), crossing (45˝ to 135˝), and oncoming (135˝ to 180˝). The probability that
two cyclists from opposite directions crash on an ordinary road is negligible. Therefore, encounter
points between oncoming cyclists were excluded, except for bicycle-only infrastructures. As we
exclusively focused on the population at risk we did not consider any further risk factors such as road
design, trip purpose, or weather condition.

The simulation outcomes were further analysed to identify a potential relation between the
number of cyclists and the number of encounters. Therefore, the number of cycling agents per time
(flow) was plotted against the simulated number of agents that met (encounters). These flow-encounter
pairs were calculated at three spatial and temporal granularities:

‚ First, the number of cyclists and the number of encounters were aggregated over the entire day
for each of the 24 simulation runs. For each simulation, the total number of cyclist agents was
plotted against the total number of generated encounter points.

‚ Second, the simulated results were discretised temporally into 15 min time bins. For each time bin
the number of actively cycling agents was plotted against the respective number of encounters.

‚ Third, simulation results were discretised spatially into individual street segments. For each street
segment the number of cyclists that traversed the segment was plotted against the respective
number of encounters per metre street length. For this purpose encounters had to be further
processed from points to line-based densities. The density was computed as a network-based
kernel density using the SANET toolbox [32] with a 10 m search radius and 10 m output
segment length. To identify potential relations between the number of cyclists and the amount of
encounters, trend lines were fitted through the flow-encounters plots.

2.4. Comparison with Police Record Data

Finally, simulated flows and encounters were compared with observed bicycle counts and police
reported accidents. To explore the temporal match, diurnal traffic dynamics of the simulation were
juxtaposed to observed dynamics. To explore the spatial match, maps of simulated flows and
simulated encounters were visualised in comparison to a map of the reported accident locations.
Finally, simulated flows and encounters were plotted against the reported accidents in one-hour time
bins. Trend lines with 68% confidence intervals were fitted through the data and the number of data
points within the confidence intervals was counted to get an indication how well the regression model
fits. Further, the residuals were evaluated and the adjusted R2 was computed.

3. Results

In the abstract street graph model, the number of simulated encounters took the form of a
second-order polynomial function with respect to the number of modelled cyclists (Figure 3a). The form
of the function resembles our conceptual considerations on encounters in a network (Equation (1)).
The goodness of fit expressed by the adjusted R2 is equal to one, indicating a perfect fit. However,
the parameters are different from Equation (1) as expected, because agents do not encounter each of
the other agents in the network at every time step.
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Figure 3. The relation of simulated encounters with the number of modelled cycling agents exhibits a
non-linear relationship in form of a second-order polynomial function: (a) encounters vs. cyclists in
the abstract street graph; (b) encounters vs. cyclists in 24 simulations of the Salzburg bicycle model;
(c) encounter densities vs. cyclists per street segment in the Salzburg cyclist model; and (d) encounters
vs. cyclists per quarter-hour in the Salzburg cyclist model.

Next, the Salzburg cyclist model was used to simulate flows and encounters over one day for
various numbers of cyclist agents. The model outcomes were analysed analogously to the abstract
street graph, i.e., the number of encounters was plotted against the number of simulated cyclist agents.
Three further plots resulted from this analysis: The first plot (Figure 3b) shows the relation between the
total number of simulated encounters and the respective number of simulated cyclist agents, for the
24 simulation runs. The second plot (Figure 3c) disaggregates the results spatially. The outcomes of
a simulation run with the maximum of simulated cyclists (n = 10,000) was taken to plot the number
of encounters on one metre of street length against the number of simulated cyclists that passed the
respective street segment. The third plot (Figure 3d) shows the results in a temporally disaggregated
view. It plots the encounter-cyclist pairs for 24 h at 15 min time intervals. Through all plots a trend line
of the type of a second-order polynomial function was fitted. The trend line exhibited high goodness
of fit (adjusted R2 = 0.992, 0.952, 0.973, respectively).

The non-linear relationship between the number of cyclists and encounters also became apparent
when the number of cyclists in the model was juxtaposed with the number of encounters over the
course of one day (Figure 4, left). During late-night hours, when there are only a few cyclists on
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their way, the number of encounters was low, whereas encounters increased disproportionally during
rush hours. Analysis of the police records unveiled a similar pattern for the observed accidents
(Figure 4, right).
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Figure 4. The simulated number of encounters per cyclist (left) compares well with the police-reported
number of accidents related to cyclist count numbers (right): cyclist rush hours triggered high
numbers of encounters (accidents), whereas in times of low traffic volumes, the number of encounters
dropped disproportionally.

The maps in Figure 5 visualise the spatial distribution of simulated flows (left) and encounter
densities (centre). The third map on the right shows the actual location of reported accidents.
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Figure 5. The maps visualise the bicycle commuting region of Salzburg, clipped to the city boundaries.
Simulated bicycle flows for (left) and cyclist encounter densities (centre) are juxtaposed to the police
records on locations of police reported bicycle-bicycle accidents (right).

Figure 6 shows the goodness of fit for simulated flows and encounter densities against accident
events. In order to provide simulation data for the same 10-year duration as the observed accidents,
the one-day simulation results were upscaled to 10 years. The reference for upscaling was the mean
number of cyclists of two long-term counting stations at the day for which the simulation was calibrated
(6 June 2013) in relation to the total bicycle count at these stations over one year. The conversion factor
calculated this way amounted to a value of 185 for one year and 1850 for 10 years, respectively. Both
datasets, the simulated flows and the simulated encounters, were therefore multiplied by a factor
of 1850. A second-order polynomial function fitted the flows to the observed accident data with a
high goodness of fit (adjusted R2 = 0.91). All values were in the limits of the 68% confidence interval.
Simulated encounters exhibited a linear relationship with the reported accidents, also with a high
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goodness of fit (adjusted R2 = 0.87). Only half of the data points (12 of 24) fell into the 68% confidence
interval of the regression line and only 80% of the data was within the 95% confidence interval, which
suggested that the regression model may not be correct and additional factors should be considered
to predict accidents. However, the residuals were dispersed randomly, which supported the linear
relationship between encounters and accidents.Safety 2016, 2, 14 8 of 11 
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a linear relation (right). The dashed lines indicate the 68% confidence interval (grey) and the 95%
confidence interval (black).

4. Discussion and Conclusions

Validation of flows and encounters that were simulated with the Salzburg bicycle model showed a
reasonably good fit with the observed accident data. The main implications of this good fit are threefold:

Firstly, the results affirm the quality of the simulation data and thus the validity of the Salzburg
bicycle model for the purpose of simulating bicycle traffic flows of a city. Validity thereby has to be
stated in reference to its specific purpose for which it was designed [33]. Unlike fine-scaled ABMs that
are designed to study the interaction of traffic participants at intersections or other specific spatial
contexts, the purpose of the Salzburg bicycle model is to simulate traffic flow patterns of the road
network of an entire city. It therefore trades off behavioural realism at the local scale, e.g., giving way
or adapting speed, with behaviour on the regional scale, e.g., finding a safe route. In the absence
of observed city-wide bicycle traffic data, ABM has proven to be an approach that is well suited to
estimating traffic patterns. Agent-based simulation modelling thus can be used as a means to overcome
a lack of adequate bicycle traffic data, which is one of the main challenges in estimating bicycle accident
risks [34].

Secondly, the results show a linear relation between simulated encounters and observed accidents,
but a quadratic relation between simulated flows and accidents. This backs the first hypothesis of
this paper that bicycle-bicycle accidents emerge from the population that is defined by encounters
rather than by traffic flow. Exposure data usually refer to distance travelled, cycling travel time,
number of bicycles at a certain location or the number of trips made [29,34]. All these data relate to
traffic flows rather than encounters. However, our results suggest that the use of traffic flow as an
exposure variable is actually a surrogate for encounters. A good reason for using traffic flow data in
equation-based accident prediction models is that it can be acquired more easily than encounter data.
This is especially true for the scale of a region or an entire city. Whereas traffic flow data are usually
collected by means of a set of spatially distributed in-situ count stations [35], encounter data need a
more elaborate collection technique, such as video analysis of a specific location [27]. Our results show
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that disaggregate agent-based models are of particular importance in this context, as they can simulate
not only realistic city-wide flows but also city-wide encounters from traffic count data.

Thirdly, the excellent fit of simulated flows with accidents by a second-order polynomial function
backs the theoretical considerations that led to the second hypothesis, i.e., that flows and encounters
exhibit a non-linear relationship. The results of this research imply that increasing bicycle volumes
leads to a disproportional increase in encounters and hence potential accidents. This finding at the
first sight is not backed by the literature, as increasing traffic volume is usually accompanied with
decreasing accident rates. Elvik et al. [36] explain this relation with better road standards and increased
attention from drivers. Also the ‘safety in numbers’ phenomenon describes decreasing bicycle accident
rates with increasing traffic volumes. Possible explanations relate to safer infrastructure for highly
frequented bicycle routes [8,37] and increased attention of car drivers in response to high numbers
of cyclists [7,30]. However, Bhatia and Wier [38] argue that any causal interpretation of aggregate
statistics on the macroscale may be incorrect and needs to be closely examined at the local scale.
Agent-based modelling has contributed to illuminate how the safety in numbers phenomenon can
emerge from the behaviour of car drivers at the local scale [30]. A distinct feature of the agent-based
model presented here is the focus on bicycle-bicycle encounters only, which is fundamentally different
from the interaction between non-motorised and motorised vehicles [39]. In this respect our research
compares well with Martin’s [6] study on car-car accidents in relation to car traffic volumes. In line
with the presented results, Martin found increasing accident rates for increased traffic volumes on a
highway. The question thus remains how encounters are related to accidents between bicycles and
whether bicycle-bicycle accidents differ from single bicycle or bicycle-car accidents. Schepers et al. [40]
suggest a linear relation of single-bicycle accidents with bicycle flows, which further supports the use
of encounters as a base for bicycle-bicycle accidents. Accidents between non-motorised and motorised
vehicles also develop from encounters and thus also draw from the statistical population of encounters.
Reasons for the contrary trend in accident numbers with respect to traffic flows may lie in the different
mechanisms that turn an encounter into an accident.

Regardless of the question of whether flows or encounters are more adequate as exposure
variables, the results are encouraging in terms of applying ABMs to estimating traffic patterns for an
entire city. However, data scarcity limits rigorous model validation, especially in the city periphery,
where only a few bicycle count stations are located. Whilst acknowledging this limitation, ABMs have
the major benefit of capturing the spatial distribution of accident risks, where encounter densities are
even more spatially accurate than flows. The simulation of data can be specifically valuable in the
case of scarcity of adequate empirical data. In addition to that, ABMs are particularly well suited to
integrating local context and behavioural information of individual road users [41]. The next step
ahead in predicting accidents with ABM is thus to systematically analyse context-specific risk factors
that are associated with an encounter, such as encounter angle, road type, traffic mode, weather, time
of the day, or certain road user characteristics [2], and integrate these into ABM models.
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