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Abstract: Computed tomography (CT) is a widely used examination technique that usually requires 

a compromise between image quality and radiation exposure. Reconstruction algorithms aim to 

reduce radiation exposure while maintaining comparable image quality. Recently, unsupervised 

deep learning methods have been proposed for this purpose. In this study, a promising sparse-view 

reconstruction method (posterior temperature optimized Bayesian inverse model; POTOBIM) is 

tested for its clinical applicability. For this study, 17 whole-body CTs of deceased were performed. 

In addition to POTOBIM, reconstruction was performed using filtered back projection (FBP). An 

evaluation was conducted by simulating sinograms and comparing the reconstruction with the orig-

inal CT slice for each case. A quantitative analysis was performed using peak signal-to-noise ratio 

(PSNR) and structural similarity index measure (SSIM). The quality was assessed visually using a 

modified Ludewig’s scale. In the qualitative evaluation, POTOBIM was rated worse than the refer-

ence images in most cases. A partially equivalent image quality could only be achieved with 80 

projections per rotation. Quantitatively, POTOBIM does not seem to benefit from more than 60 pro-

jections. Although deep learning methods seem suitable to produce better image quality, the inves-

tigated algorithm (POTOBIM) is not yet suitable for clinical routine. 
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1. Introduction 

Computed tomography (CT) is one of the most advanced achievements in diagnostic 

radiology and is now a widely used method, but it has led to increased radiation exposure 

in the general population [1]. In the early 2000s, there was growing concern about CT due 

to the higher doses required compared with conventional radiography and possible radi-

ation-induced carcinogenic effects [1,2]. Thus, in the period from 2007 to 2016, the use of 

CT examinations increased by approximately 45%, with CT accounting for 9% of the pro-

cedures used in medicine, corresponding to 67% of the collective effective dose [3]. How-

ever, the ALARA (As Low As Reasonably Achievable) principle legally requires that ra-

diation exposure be kept as low as possible, even below regulatory limits [4]. Neverthe-

less, sufficient image quality is required for CT scans to provide the desired diagnostic 

value, otherwise they must be omitted. 

The high radiation exposure and long acquisition time arise from the large number 

of X-ray projections acquired at different angles, from which the tomographic slices are 

computed. Commonly, 1000–2000 projections are acquired per rotation (dense-view) from 

which the CT scan is reconstructed.  
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A sparse-view CT offers an alternative where the image is computed from fewer than 

100 projections per rotation [5], but all these efforts must fulfill the requirement of compa-

rable accuracy. Reducing the number of projections reduces radiation exposure and could 

additionally reduce acquisition times and costs [6]. However, sparse-view CT is accompa-

nied by a loss of image quality and the reduced projections can cause significant artifacts 

when considering conventional reconstruction algorithms. Therefore, there is a strong de-

sire for alternative reconstruction algorithms that provide a comparable image quality to 

routine examination CTs but with a reduction in radiation exposure. Besides medical ap-

plication, sparse and especially incomplete data is also prevalent in industry CTs, where 

large objects or objects with reduced accessibility limit the number of projections that can 

be acquired [7]. Analogous to medical CT, the reduced number of projections used can 

lead to artifacts or to high scanning times when using too many projections [8]. 

In medical CTs, filtered back projection (FBP) was considered the standard method 

of diagnostic CT reconstruction until a few years ago. FBP is considered a fast and robust 

method for generating CT images of reasonable quality. However, significant image noise 

and artifacts can occur if not enough radiation dose is applied [9,10]. 

Another reconstruction technique—iterative reconstruction (IR)—which has been 

further developed in recent years makes it possible to obtain equivalent image quality in 

terms of image noise at the same dose, with the aim of reducing the radiation dose (pre-

served image sharpness, lower image noise). In the early years of CT, IR was already used 

for reconstruction purposes, but was initially displaced by FBP due to increasing data vol-

umes [10]. In the intervening years, however, IR has emerged as a standard CT reconstruc-

tion technique [11]. Iterative approaches such as the originally proposed algebraic recon-

struction technique (ART) [12] or later refined techniques, e.g., model-based iterative re-

construction [13], can provide superior image quality and are less effected by incomplete 

data or a reduction in projection angles as in sparse-view CTs [14,15]. Specialized recon-

struction algorithms for sparse-view CTs have also been proposed for incomplete data in 

different industrial settings [16,17]. 

More recently, deep learning methods have been proposed for a broad field of appli-

cations and also for CT reconstruction issues, e.g., automated transform by manifold ap-

proximation [18]. For sparse-view reconstruction, the model parameters are learned based 

on pairs of low-dose and high-dose image pairs in a supervised fashion. However, these 

models are sensitive to variations in the input data [19] and the reconstruction artifacts 

can include hallucinations of anatomical features not included in the sinogram [20]. To 

address these concerns, deep image prior (DIP) has been proposed in which the model is 

parameterized separately for each reconstruction during unsupervised training [21]. But 

DIP is vulnerable to overfitting and therefore requires manual intervention in early stop-

ping or model under-parametrization. Consequently, a Bayesian neural network (BNN) 

approach to DIP has been considered to automate the prevention of overfitting [22,23]. 

Outperforming previous approaches, Posterior Temperature Optimized Bayesian Inverse 

Models (POTOBIM) have recently shown the most successful application of Bayesian DIP 

in the context of sparse-view reconstruction [24]. However, a clinical test of its applicabil-

ity in routine CT scans has not yet been investigated.  

Therefore, in this work, we evaluate the clinical readiness and limitations of sparse-

view reconstruction based on BNNs for post mortem CT evaluation as model of whole- 

body scans in clinical use. The deciding factor for the viability of the reconstruction is the 

diagnostic value and not just reduced error metrics. Therefore, we consider the reconstruc-

tion of post mortem slices with clinically relevant anatomical structures. In addition to 

quantitative error metrics, we consider qualitative evaluation by an expert radiologist 

with years of experience in forensic imaging. We compare the dense-view ground truth 

with simulated sparse-view reconstructions for both FBP and POTOBIM.  

This investigation shall discover to what extent these newly developed methods pro-

duce qualitatively sufficient and comparable images that can also be used to recognize 

and evaluate important structures and to what extent they can keep up with established 
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methods despite a lower dose. We hypothesize that POTOBIM is superior to FBP and 

comparable to dense-view ground truth (first hypothesis).  

Furthermore, we want to interpret the results of the quantitative and qualitative eval-

uation. We hypothesize that the results of the quantitative evaluation represent the quali-

tative/subjectively perceived quality to a similar degree, i.e., that quantitatively measura-

ble changes are also qualitatively perceptible. 

2. Material and Methods 

2.1. Post Mortem Computed Tomography 

Philips Incisive Plus 128-slice MDCT (Philips GmbH, Hamburg, Germany) was used 

for 3 different scans. Whole-body scans with a slice thickness of 1 mm, slice spacing of 

0.75 mm, 0.5 pitch, 120 kV voltage and a current of 113–130 mA. Head scans with a slice 

thickness of 0.8 mm, slice spacing of 0.65 mm, 0.3 pitch, 120 kV voltage and a current of 

300 mA. Pelvis-leg scans with a slice thickness of 0.8 mm, slice spacing of 0.65 mm, 0.5 

pitch, 120 kV voltage and a current of 110–212 mA. 

2.2. Data Collection 

Post mortem CT data was collected for 17 corpses during a scientific death case eval-

uation. To create a data set of high variability, CT scans from different anatomical regions 

with a representative selection of interfaces of tissues of different radiographic density 

was performed.  

Both sides of the femur and the fifth lumbar vertebra were chosen as examples of 

bones. The transition from the heart to the lungs and pneumonia as a typical pathology 

within the lungs were considered as thoracic regions of interest. Total hip endoprostheses 

and dental crowns were selected as typical medical foreign bodies for their demarcation 

from surrounding tissues. Another important structure selected was brain tissue with the 

distinction from subdural hematoma. The spleen, kidney, pancreas and thyroid gland 

were selected as examples of organs. The rectus abdominis muscle was chosen as an ex-

ample of musculature. In addition, the subcutaneous adipose tissue and, within the soft 

tissue, a hematoma (exemplarily at the right forehead) were selected for examination. 

2.3. Sparse-View Reconstruction 

Given the reference dense-view reconstructions, corresponding sparse-view data is 

simulated via the forward Radon transform. We assume a parallel-ray projection geome-

try and simulate sparse-view sinograms with 8, 20, 40, 60 and 80 projections per rotation. 

For each sinogram, the simulated projection angles (φ) are uniformly distributed between 

0° and 180° (Figure 1). Sparse-view CT slices were then reconstructed from the simulated 

sinograms using POTOBIM and FBP with a Shepp–Logan filter. For the former, configu-

rations for temperature candidates and iteration cycles were used as suggested by Laves 

et al. [24] for the task of sparse-view CT reconstruction.  
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Figure 1. Schematic of parallel beam geometry that was considered to simulate sparse-view sino-

grams via the forward Radon transform. The projection angle (φ) was varied between 0° and 180° 

with different, equidistant step sizes to simulate sinograms with 8, 20, 40, 60 and 80 projections per 

rotation. 

2.4. Quantitative and Qualitative Evaluation 

We reconstruct slices from the simulated sparse-view sinograms using POTOBIM. 

We additionally reconstruct with conventional FBP to visualize the differences. We quan-

titatively evaluate the reconstructed slices using peak signal-to-noise ratio (PSNR) and 

structural similarity index measure (SSIM). The PSNR is calculated based on  

PSNR = 20 log10 (
MAXf

√MSE
)  

With the maximum signal value MAXf and the MSE (mean squared error) with re-

spect to the reference image. The SSIM is calculated according to Wang et al. [25]. Based 

on these findings, a good trade-off between the evaluation metrics and the increased dose 

was found for 40 projections. Consequently, the comparison by the expert was exempli-

fied conducted for 8, 40 and 80 projections per rotation. These three different categories 

therefore cover the majority of the range considered as sparse-view CT (<100). Error met-

rics were evaluated in python using the Scikit-image toolbox [26]. 

The visual (qualitative) evaluation was performed as a comparison between the ref-

erence image (dense-view) and the sparse-view reconstruction with both POTOBIM and 

FBP. Images were graded according to a visual grading analysis (VGA) according to Lu-

dewig et al. [27].  

For relative assessment, which was used in this study, one or more reference images 

were needed. In this case, the quality of the target structure is compared with the corre-

sponding target structure in the reference image. Using a 3, 5, or 7 point scale, the assess-

ment can be categorized semi-quantitatively [27]. 

In this study, a modified version of Ludewig’s 5 level scale was applied: 

• 1—test image clearly better than reference image 

• 2—test image slightly better than reference image 

• 3—test image equal to reference image 

• 4—test image slightly worse than reference image 

• 5—test image clearly worse than reference image 

It needs to be considered that better images at reconstruction (grades 1 or 2) with 

reduced sinogram are not to be expected. Qualitative evaluation by the radiologist expert 

was conducted by displaying the two images side-by-side for each combination of ana-

tomical structure, reconstruction algorithm and the number of projection angles.  
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2.5. Statistical Analysis 

Statistical analyses were performed with SPSS (Version 29.0.0.0 (241), IBM Corp. (Ar-

monk, NY, USA). One-Sample Wilcoxon Signed Rank Test was performed for projections 

at 8×, 40× and 80× (POTOBIM and FBP) in comparison to the reference image. The level of 

significance was defined as p < 0.05. 

3. Results 

3.1. Visual Grading 

Examples of the sparse-view reconstructions for 8, 40 and 80 projection angles are 

shown for dental crown in Figure 2 which can be seen in the left maxilla (blue arrow). 

Enlargements of this area are used in the last row to show the differences between ground 

truth, FBP and POTOBIM for 80 projections. Additional examples of sparse-view recon-

structions for subdural hematoma, spleen and the transition between heart and lung are 

shown in Figures A1–A3. For example, in the case of the left-sided subdural hematoma 

one can barely see the hematoma at 80 projections for POTOBIM, and it is unclear at 80 

projections for FBP. 

Figure 2. Exemplified images of a dental crown (blue arrow) for reconstructions with 8, 40 and 80 

projections used with the FBP (center) and POTOBIM (right). In comparison, the reference image 

using all projections (left). Detailed view (white box) displaying relevant anatomical region.  

At 8 projections, a significantly worse image impression was found in all cases com-

pared to the reference image (p < 0.001; One-Sample Wilcoxon Signed Rank Test). This is 

true for both the average values of POTOBIM vs. ground truth and FBP vs. ground truth. 
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Overall, the image quality is not sufficient for a satisfactory evaluation since the struc-

tures can partly not be visualized in both alternatives. 

Again, at 40 projections a significantly worse image impression could be demon-

strated (p < 0.001; One-Sample Wilcoxon Signed Rank Test). This is true for the average 

values of POTOBIM vs. ground truth as well as FBP vs. ground truth.  

Even at 80 projections there is a significant difference (significantly worse; p < 0.001; 

One-Sample Wilcoxon Signed Rank Test). This again applies for the average values of PO-

TOBIM vs. ground truth as well as FBP vs. ground truth. 

The image quality of the foreign bodies (dental crown; total hip endoprosthesis) as 

well as the boundary between the heart and lung (Figure A3) can be described as compa-

rable for POTOBIM as well as the dental crown (Figure 2) and the right frontal hematoma 

for FBP. To compare the two methods itself, the demarcation from the surroundings is 

comparable for both methods; however, the internal structure differs slightly depending 

on the method used. 

It is only at 80 projections that the tomographic reconstruction by means of BNN 

produces approximately equivalent images in four cases. In the majority (13 cases), the 

image is qualitatively worse than the reference image.  

As for an intracranial hemorrhage, one can barely or not surely demarcate blood at 

all; for the evaluation of organs even if the outer structure like a capsule is relatively good 

to differentiate (for example the spleen; Figure A2), the internal structure is not good to 

assess. 

A subjective slightly or clearly better image impression could be achieved in no single 

case (this applies for ground truth vs. POTOBIM and ground truth vs. FBP).  

The individual evaluations for the respective regions or structures are summarized 

in Tables 1 and 2. 

Table 1. VGA for POTOBIM vs. ground truth after Ludewig et al. [27]. 

Region/Structure 8× 40× 80× 

Femur (both sides) 5 4 4 

Heart-lung 5 4 3 

Brain tissue 5 5 5 

Total hip endoprosthesis left 5 4 3 

Total hip endoprosthesis right 5 4 3 

Lung 5 5 4 

Lumbar vertebral body 5 5 4 4 

Rectus abdominis muscle 5 5 4 

Dental crone 5 4 3 

Spleen 5 5 5 

Kidney left 5 5 5 

Pancreas 5 5 5 

Subcutaneous adipose tissue 5 4 4 

Thyroid gland 5 5 4 

Hematoma right frontal 5 4 4 

Subdural bleeding right 5 5 5 

Subdural hematoma left 5 5 5 
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Table 2. VGA for FBP vs. ground truth after Ludewig et al. [27]. 

Region/Structure 8× 40× 80× 

Femur 5 4 4 

Heart-lung 5 5 4 

Brain tissue 5 5 5 

Total hip endoprothesis left 5 4 4 

Total hip endoprothesis right 5 4 4 

Lung 5 5 4 

Lumbar vertebral body 5 5 4 4 

M. rectus abdominis 5 5 4 

Dental crone 5 4 3 

Spleen 5 5 4 

Kidney left 5 5 4 

Pancreas 5 5 4 

Subcutaneous adipose tissue 5 5 4 

Thyroid gland 5 5 4 

Hematoma right frontal 5 4 3 

Subdural bleeding right 5 5 4 

Subdural hematoma left 5 5 5 

3.2. Quantitative Evaluation 

The quantitative assessment of the sparse-view reconstruction compared to the 

ground truth is shown in Figure 3. PSNR and SSIM were averaged for the 17 data sets and 

plotted over the number of simulated projections. The shaded area around the mean cor-

responds to the standard deviation. Initially, the additional projections suggest a signifi-

cant increase in image quality as from 8 to 20 projections, the PSNR increases from 28.08 

to 34.68 and from 17.38 to 22.93 for POTOBIM and FBP, respectively. The SSIM also in-

creases initially from 0.77 to 0.91 for POTOBIM and from 0.23 to 0.37 for FBP. A further 

increase to 40 projections leads to an increased PSNR of 38.61 and 26.89 and a SSIM of 0.95 

and 0.55 POTOBIM and FBP, respectively. After that, FBP benefits from additional projec-

tions with a PSNR of 28.55 and 29.51 and a SSIM of 0.68 and 0.76 for 60 and 80 projections 

per rotation, respectively. In contrast, the curve flattens out for POTOBIM and the PSNR 

for 60 and 80 projections yield 39.64 and 40.23, respectively, while the SSIM yields a sim-

ilarity of 0.96 to the reference image in both cases.  

 

Figure 3. Mean value (line) and standard deviation (shaded) for PSNR (left) and SSIM (right) over 

the number of projections used (8–80) for POTOBIM (blue) and FBP (orange). 
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The average computation time for POTOBIM reconstruction with 1 × 105 iterations 

was 95 min per slice using a RTX 3090 GPU, Nvidia Corp. (Santa Clara, CA, USA).  

4. Discussion and Conclusions 

In the field of clinical imaging such as CT, one main goal is to explore methods that 

apply lower radiation doses than conventional CT and still have good diagnostic qualities. 

In addition to already established methods such as FBP and IR [11], a new method and its 

applicability should be explored. Deep learning methods are at this point innovative 

methods to which the attention should be directed. In general, the development of deep 

learning methods aims to improve image quality—while a reduction in radiation dose is 

a positive side effect [11].  

Established reconstruction methods in the context of deep learning methods are con-

volutional neural networks (CNNs) trained in a supervised procedure [28]. In the current 

study, POTOBIM, an unsupervised approach of Bayesian CNNs, was applied as a new 

method to counter the problem described above. As already shown in the study of Laves 

et al. [24], POTOBIM is a method that shows a lower reconstruction error in the region of 

interest compared to other unsupervised methods aiming to prevent hallucinations dur-

ing reconstruction.  

However, POTOBIM remains inferior to conventional CT in this given study. A 

slightly or clearly worse image impression was produced when using 8, 40 or 80 projec-

tions instead of the original number.  

Given these findings, the POTOBIM method does not yet seem to be suitable for clin-

ical routine in the field of low-dose CT due to very long computing times of more than 

one hour as well as insufficient qualitative image impressions. However, there were four 

examples of POTOBIM sparse-view reconstructions with a diagnostic quality comparable 

to the dense-view ground truth. So, while the general application does not seem ready yet 

for widespread clinical use, positive results underline the potential of BNNs for low-dose 

CT. 

Other deep learning-based methods are already in clinical use, e.g., TrueFidelity (GE 

Healthcare) or AiCE (Canon Medial Systems). The development of these reconstruction 

methods was primarily addressed with improving quality [11] and it remains unclear 

whether reduced currents or also reduced projections per rotation were used [29,30]. This 

makes direct comparisons to our results difficult.  

From the basic point of view, deep learning reconstruction methods are well suited 

to produce better image quality. However, from the evaluation of the current study, it can 

be said that the POTOBIM method is not yet mature enough to provide qualitatively com-

parable images in sparse-view CTs. The application of 80 projections in this procedure 

(POTOBIM) does not reach the level of conventional CT images in terms of quality. The 

quantitative analysis shows that POTOBIM did not seem to benefit from a higher dose 

beyond 60 projections per rotation. Thus, the procedure seems suitable for low-dose re-

construction only and needs to be further developed to be competitive. 

The results also address the second question raised, as even though the quantitative 

evaluation shows an increase in image quality, especially with regard to 40 projections, 

this is not perceived to the same extent by the radiologist expert. An increase in image 

quality (viewed quantitatively) is therefore not automatically accompanied by sufficient 

image quality (recorded qualitatively). It has been shown that most objective quality met-

rics do not also directly translate to diagnostic quality in magnetic resonance images [31]. 

The results presented here underline similar findings for low-dose CT reconstruction. 

The given study has some relevant limitations. Firstly, the number of CT scans in-

cluded was low for economic reasons and thus, only partially allows generalizable con-

clusions. Further investigations could consider additional reconstruction algorithms, ad-

ditional anatomical structures or involve multiple medical experts in the evaluation. Sec-

ondly, we used postmortem scans from our daily routine in an institute of legal medicine. 
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The issue of reduced radiation exposure is no longer important for the cadavers them-

selves but should be addressed here also for the technical staff. Thirdly, sparse-view re-

construction was only tested for simulated sinograms that are highly limited due to the 

assumption of parallel beams for 2D slices. 

In conclusion, our findings underline that future studies on new or improved recon-

struction methods should be compared to existing approaches both quantitatively and 

qualitatively and postmortem centers are excellent study locations. In the best case, a re-

duction in radiation in sparse-view CTs could be achieved with the same or improved 

image quality. While we have investigated multiple examples of anatomically relevant 

structures for our evaluation, other scenarios would also be valuable to consider in future 

research steps. It would be interesting to study newly developed reconstruction methods 

with regard to the detection of lesions in organs or for arterial and venous examinations 

after application of contrast medium.  

Author Contributions: Conceptualization, I.K. and R.M.; Methodology, I.K. and R.M.; Software, 

R.M.; Validation, I.K. and R.M.; Formal Analysis, I.K. and R.M.; Investigation, I.K. and R.M.; Re-

sources, A.S. and B.O.; Data Curation, I.K.; Writing—Original Draft Preparation, I.K., R.M. and M.G.; 

Writing—Review and Editing, A.S., A.H. and B.O.; Visualization, R.M..; Supervision, A.S., A.H. and 

B.O.; Project Administration, A.H., A.S. and B.O.; Funding Acquisition, A.S. and B.O. All authors 

have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the FMTHH (grant number 01fmthh2021) supported by the 

Hamburg University of Technology (TUHH) and the University Medical Center Hamburg-Eppen-

dorf (UKE). 

Institutional Review Board Statement: This research has been approved by the independent ethics 

committee of the Hamburg Chamber of Physicians in March 2021 (reference numbers 2020-10353-

BO-ff). Data were pseudonymized according to the guidelines from the central ethics commission 

of the federal medical association. 

Informed Consent Statement: Informed consent was obtained from a next of kin or legal represent-

atives and health authorities. 

Data Availability Statement: The data presented in this study are available on reasonable request 

from the corresponding authors. The data are not publicly available due to ethical and legal re-

strictions. 

Conflicts of Interest: The authors declare no conflicts of interest. 

  



J. Imaging 2023, 9, 170 10 of 12 
 

 

Appendix A 

 

Figure A1. Exemplified images (subdural hematoma left, blue arrow) for reconstruction with 8, 40 

and 80 projections used with the FBP (center) and POTOBIM (right). In comparison, the reference 

image using all projections (left). Detailed view (white box) displaying relevant anatomical region. 

 

Figure A2. Exemplified images (spleen, blue arrow) for reconstruction with 8, 40 and 80 projections 

used with the FBP (center) and POTOBIM (right). In comparison, the reference image using all pro-

jections (left). Detailed view (white box) displaying relevant anatomical region. 
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Figure A3. Exemplified images (heart-lung) for reconstruction with 8, 40 and 80 projections used 

with the FBP (center) and POTOBIM (right). In comparison, the reference image using all projec-

tions (left). Detailed view (white box) displaying relevant anatomical region marked by blue arrow. 
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