
Citation: Bayat, N.; Kim, J.-H.;

Choudhury, R.; Kadhim, I.F.;

Al-Mashhadani, Z.; Aldritz Dela

Virgen, M.; Latorre, R.; De La Paz, R.;

Park, J.-H. Vision Transformer

Customized for Environment

Detection and Collision Prediction to

Assist the Visually Impaired. J.

Imaging 2023, 9, 161.

https://doi.org/10.3390/

jimaging9080161

Academic Editors: Antonio

Fernández-Caballero and

Byung-Gyu Kim

Received: 30 June 2023

Revised: 28 July 2023

Accepted: 7 August 2023

Published: 15 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Vision Transformer Customized for Environment Detection and
Collision Prediction to Assist the Visually Impaired
Nasrin Bayat 1 , Jong-Hwan Kim 2, Renoa Choudhury 3 , Ibrahim F. Kadhim 3, Zubaidah Al-Mashhadani 1 ,
Mark Aldritz Dela Virgen 3, Reuben Latorre 1, Ricardo De La Paz 3 and Joon-Hyuk Park 3,*

1 Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA;
nasrinbayat@knights.ucf.edu (N.B.); zubaidah@knights.ucf.edu (Z.A.-M.); reubengel18@knights.ucf.edu (R.L.)

2 AI R&D Center, Korea Military Academy, Seoul 01805, Republic of Korea; jonghwan7028@gmail.com
3 Department of Mechanical and Aerospace Engineering, University of Central Florida,

Orlando, FL 32816, USA; renoa@knights.ucf.edu (R.C.); ibrahimkadhim@knights.ucf.edu (I.F.K.);
mark.aldritz.dela.virgen@knights.ucf.edu (M.A.D.V.); ricardojdelapaz@knights.ucf.edu (R.D.L.P.)

* Correspondence: joonpark@ucf.edu

Abstract: This paper presents a system that utilizes vision transformers and multimodal feedback
modules to facilitate navigation and collision avoidance for the visually impaired. By implementing
vision transformers, the system achieves accurate object detection, enabling the real-time identifica-
tion of objects in front of the user. Semantic segmentation and the algorithms developed in this work
provide a means to generate a trajectory vector of all identified objects from the vision transformer
and to detect objects that are likely to intersect with the user’s walking path. Audio and vibrotactile
feedback modules are integrated to convey collision warning through multimodal feedback. The
dataset used to create the model was captured from both indoor and outdoor settings under different
weather conditions at different times across multiple days, resulting in 27,867 photos consisting
of 24 different classes. Classification results showed good performance (95% accuracy), supporting
the efficacy and reliability of the proposed model. The design and control methods of the multimodal
feedback modules for collision warning are also presented, while the experimental validation concern-
ing their usability and efficiency stands as an upcoming endeavor. The demonstrated performance of
the vision transformer and the presented algorithms in conjunction with the multimodal feedback
modules show promising prospects of its feasibility and applicability for the navigation assistance of
individuals with vision impairment.

Keywords: vision transformer; object detection; collision prediction; visually impaired; self-supervised
segmentation; assistive device

1. Introduction

According to the Centers for Disease Control, there are approximately 12 million people
40 years or older in the United States with some form of vision impairment, including
1 million individuals who are legally blind [1]. The World Health Organization estimates
that there are at least 2.2 billion people who experience visual impairment, roughly half of
which are either untreated or could have been prevented [2]. Visually impaired individuals
(VIIs) face several challenges that require the use of assistive technology (AT) to enable
essential activities of daily living. Current ATs targeting VIIs primarily address three major
challenges: (i) navigation through indoor and outdoor environments through GPS-determined
routes, e.g., [3–7], (ii) obstacle detection via cameras and/or time-of-flight sensors, e.g., [8–15],
and (iii) enhancing traditional tools, such as the white cane, to enhance the independence
of VIIs, e.g., [16–18]. The risk of trips, collisions, or falls increases as VIIs are not able to
perceive and recognize objects in their surroundings, particularly their locations, states
(static vs. dynamic), and motions (direction and magnitude). Various types of assistive
devices have been developed to address these challenges to aid VIIs [19]. For example,
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enhanced white canes identify large, sound-reflecting objects through echolocation [16];
ioCane [17] and optical pathfinder [18] complement the white cane. However, being
close to the ground and short in range, the white cane and other similar technologies
fail to offer a comprehensive understanding of the environment and are incapable of
informing the user about objects outside of the immediate proximity or objects that are
moving at a distance. Another focus of AT is the utilization of body sensors and cameras
to collect data about the user’s immediate surroundings and provide feedback to help
the user [5–7]. The most common applications of navigation aid for VIIs utilize object
classification and segmentation via computer vision and deep learning, such as the Blind
Sight Navigator [8], Intelligent Belt [9], AngelEye glasses [10], and more [11–15]. Vibrotactile
cues have been frequently utilized to inform the user about directional cues, e.g., [3,4].
Despite these advancements and different approaches used, intuitive and efficient ways to
convey the contextual information of objects within the environment to provide collision
prediction (such as the type of object, its distance and location, and its movement trajectory
relative to the user’s current direction) are lacking. To address this gap, we propose
an AT system that enhances the situational awareness of VIIs through the utilization of
state-of-the-art vision transformers to achieve accurate object classification, an algorithm
developed to identify an object’s relative location and movement trajectory for collision
prediction, and integrated multi-modality sensory feedback modules to help VIIs interpret
their surroundings and objects within. The vision transformer utilized in the proposed
object detection architecture offers several advantages over other state-of-the-art models
while requiring less computational resources. This is because vision transformers use the
mechanism of attention, which weighs the importance of each component of the input
data differently [20]. In addition, the presented model deals with the image’s internal
structure, using masked image modeling (MIM) [21]. MIM lies in the proper design of
the visual tokenizer, which transforms the masked patches into supervisory signals for
the target model. We first undertook self-supervised learning with our dataset and then
fine-tuned the pre-trained model for two downstream tasks, namely image classification
and semantic segmentation. In related works, extensive research has been conducted on
finding objects, such as shops, hotels, restrooms, etc., and detecting obstacles in walking
paths [5,19,22,23]; however, a few classes, such as crosswalks, elevators, or room signs, have
not been well established [22]. On the other hand, creating and publishing a high-quality
image dataset pertaining to VIIs would help advance computer vision-based navigation
assistance systems for the visually impaired. Thus, the unique contributions of this work
are as follows:

1. The creation and utilization of a dataset that includes object classes that are particularly
important for VIIs (e.g., crosswalk, elevator), while accounting for different weather
conditions and times of the day (with varying brightness and contrast levels).

2. The successful implementation and demonstration of a state-of-the-art self-supervised
learning algorithm that uses vision transformers for object detection, semantic seg-
mentation, and custom algorithms for collision prediction.

3. Multimodal sensory feedback modules to convey environmental information and
potential collisions to the user, to provide real-time navigation assistance in both
indoor and outdoor environments.

The rest of this paper is structured as follows: In Section 2, we discuss recent related
works. In Section 3, we go into detail about the dataset collected for object detection and
image segmentation. In Section 4, we explain the methodology of the proposed navigation
assistance system and approaches. In Section 5, we describe the evaluation methods.
In Section 6, we present the results and discussions. Finally, we conclude the paper in
Section 7.
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2. Related Work
2.1. Assistive Systems

In this section, recent works on vision-based navigation and object recognition systems
for VIIs are introduced. Computer vision has been the primary method of creating vision-
based navigation assistance [24–28], which utilizes cameras and various algorithms to
discern different objects. A lightweight convolutional neural network (CNN)-based object
identification module was developed for deployment on a smartphone to avoid obstacles
and identify nearby objects [29]. Using an RGBD camera, a real-time semantic segmentation
algorithm was employed to assist VIIs in maintaining physical distance from others [30].
A DCNN (deep convolutional neural network) for indoor object recognition and a new
indoor dataset with 16 object classes were presented [30]. A convolutional neural network
(CNN) U-Net image segmentation approach for sidewalk recognition was proposed [31]. A
camera and vibration motors positioned on the waist were used to recognize and avoid the
obstacle and navigation guidance via vibrotactile feedback [32]. A wearable system with
a dual-head transformer for the transparency model was developed, which can partition
transparent and general items and carry out real-time pathfinding [33]. Inertial sensors and
the smartphone’s built-in camera were used as sensors to guide VIIs in indoor and outdoor
areas [34]. A system that uses deep learning and point cloud processing to carry out complex
perceptual tasks on a portable, low-cost computing platform was presented [35], which used
cutting-edge artificial intelligence (AI) accelerators (Neural Compute Stick-2 (NCS2)), model
optimization techniques (OpenVINO and TensorFlow Lite), and smart depth sensors, like the
OpenCV AI Kit-Depth, to avoid the need for costly, power-intensive graphical processing unit
(GPU)-based hardware required for deep learning algorithms. In-depth analyses of recent nav-
igation systems for VIIs and current challenges are discussed in [19]. A data-driven end-to-end
CNN is proposed in [36] to predict a safe and reliable path using RGBD data and a semantic
map. To overcome the hardware constraints of using computationally expensive processes,
a self-supervised system built on a CNN demonstrated safe and effective navigation assis-
tance with considerably lower processing requirements [37]. An obstacle-detecting method
is suggested that uses the modern vision transformer architecture to quickly and precisely
detect obstacles [38]. The YOLO-v3 model was used in a device to detect obstacles at the
VII’s chest, waist, knee, and foot levels, with auditory feedback to inform the users [39].

2.2. Self-Supervised Learning

Self-supervised learning (SSL) can learn discriminative feature representations for
image classification, eliminating the requirement for manual annotation on labels. One
widely used self-supervised learning is contrastive learning, which compares samples
against each other to learn attributes that are common between similar sample pairs and
attributes that set apart dissimilar sample pairs [40]. As opposed to contrastive learning,
Bootstrap your own latent (BYOL) [41] and Simple Siamese (SimSiam) [42] accomplish
similar representation performances without the use of negative sampling [43]. The aim of
these models is to maximize the similarity between two augmentations of a single image.
A straightforward self-supervised procedure termed DINO was presented in [44], which
is interpreted as a type of label-free self-distillation. A different Siamese architecture
was suggested, in which one network parameter is updated using the moving average of
another network parameter. Using the Road Event Awareness dataset [45], the efficacy of
contrastive SSL approaches, such as BYOL and MoCo, was examined [46]. Mask R-CNN [47]
was applied to instance segmentation and classification of the images [48]. The colorization
task was integrated into BYOL in [49], and the resulting self-supervised method was trained
on the cem500k dataset with two different encoders, namely Resnet50 and stand-alone
self-attention. IndexNet, a self-supervised dense representation learning method, was used
for the semantic segmentation of remote sensing images (RSIs) [50]. IndexNet considers
spatial position information between objects, which is critical for the segmentation of RSIs
that are characterized by multiple objects. A self-supervised learning approach for the task
of automatically generating segmentation labels for driveable areas and road anomalies
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was presented [51]. The image BERT pre-training with an online tokenizer (iBot) [21]
model, enhanced by its pre-training with an online tokenizer, has demonstrated superior
performance compared to other existing models. This state-of-the-art approach combines
the power of BERT [52], which is a highly effective language model with specialized image
understanding capabilities. By incorporating an online tokenizer during the pre-training
phase, the iBot model achieved enhanced contextual understanding and representation
learning [21].

3. Dataset

A total 4 h of video was recorded to build our own dataset from a chest-mounted RGB
camera (Kodak PlaySport) while walking in both indoor and outdoor settings within the
University of Central Florida’s main campus (Orlando, FL, USA) at various times of the
day across multiple days with varying weather conditions, Table 1. The camera was tilted
down by 30 degrees to capture the view of the ground as well as the front view of a person.
Image frames were then extracted from the collected videos, generating 27,867 photos,
resulting in 24 different categories of objects (Figure 1). The size of the images stored in the
dataset is 1280 by 720 pixels.

Table 1. Date,time, and weather conditions of multi-day data collection.

Date Time of the Day Weather

11 May 2022 5 pm sunny
13 May 2022 4 pm sunny
16 May 2022 11 am sunny
20 May 2022 6 pm cloudy
23 May 2022 8 pm cloudy
24 May 2022 10 am sunny
24 May 2022 7 pm sunny
25 May 2022 3 pm sunny
26 May 2022 11 am sunny
28 May 2022 6 pm sunny
29 May 2022 3 pm sunny

Figure 1. Representative images of 24 classes determined from the collected dataset.
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Data Allocation

Data allocation for training/testing/validation was conducted using an 80/20 split.
Moreover, 80% of the available data was allocated for training the model, while the remaining
20% of data was divided between testing and validation. The testing set, comprising 10% of
the total data, was used to evaluate the model’s performance and measure its accuracy on
unseen examples. Finally, the validation set, which also accounted for 10% of the data, was
used to fine-tune the model’s hyperparameters and assess its generalization capabilities.

4. Methodology

The methodology employed in this paper is summarized as follows. First, vision
transformers were configured to analyze images taken from a body-worn camera, which
leverages self-attention mechanisms to capture spatial dependencies and learn important
features of the images. Then, Mask RCNN was used to perform object classification, gener-
ate masks and bounding boxes, and output object detection and semantic segmentation
results. The collision prediction algorithm was developed and implemented, which takes
classification and segmentation results as input and computes the centers of the identified
objects, determines their relative positions with respect to the user, generates object trajec-
tory vectors, and pinpoints objects that are moving toward the user for collision prediction.
The output of this algorithm, specifically the object information in terms of its type, course,
and proximity, is conveyed to the user as a collision warning through multimodal feedback
that combines auditory and vibrotactile cues. In what follows, the detailed descriptions
of the above-mentioned methodologies are presented, including the system configuration
and control of the multimodal feedback module.

4.1. Framework for Object Detection and Semantic Segmentation

This section provides a detailed description of the presented framework. The vi-
sion transformer model for object detection and semantic segmentation is used in the
presented framework; Figure 2. The task layers were added to the model that has already
been trained in order to perform downstream tasks and adjust the parameters. Vision
transformer (ViT) has shown good performance when pre-trained on a large amount of
data and applied to several mid- to small-sized image recognition benchmarks (ImageNet,
CIFAR-100, VTAB, etc.), which requires less computational resources during training [20].
The MIM task is provided in [53] for pre-training the ViT. Specifically, during the pre-
training process, each image contains two views, namely image patches (16 by 16 pixels)
and visual tokens (i.e., discrete tokens). The original image is first “tokenized” into visual
tokens using a pre-fixed tokenizer qψ. Then, some image patches are fed into the backbone
transformer that had been randomly masked. The visual tokens of the original image
are predicted by pθ using the encoding vectors of the masked image, which is the goal of
the pre-training.

Self-distillation is a self-supervised discriminative objective presented in DINO
(self-distillation with no labels), a new self-supervised system by Facebook AI [44]. In DINO,
knowledge is distilled from past iterations of the model itself p̂θ and not from a pre-fixed
tokenizer. Specifically, the two views of each image that are created by applying two
random augmentations are put through the teacher–student framework.

iBOT, a self-supervised pre-training framework, is used for feature extraction [21].
iBOT performs masked image modeling (MIM) with self-distillation. First, two augmented
views of an input image are generated and named as a and b. To enable direct image data
entry into a standard transformer, the 2D images are divided into N = h× w/hp × wp
patches, where h and w are the resolutions of the input images, and hp and wp are the
resolutions of the patches [20]. Block-wise masking [53] is performed on a and b. The
minimum number of patches is set to 16 for each block. Block-wise masking is repeated until
at least R× N masked patches are generated, where R is the masking ratio. The masked
views â and b̂ are generated as Equation (1)

âi = ai + mi(e[M] − ai), i = 1, ..., N (1)



J. Imaging 2023, 9, 161 6 of 18

where mi is a sampled random mask (binary) and e[M] is a learnable embedding. To
conduct the MIM task, the non-masked and masked views are given to the teacher and the
student network, respectively. The architectures of both networks are the same, but their
parameters vary. The teacher and student networks are defined by a set of weights, θt and θs,
respectively, comprising a backbone f (vision transformer) and projection heads, hp and hcv,
where hp is a patch token and hcv is a cross-view token. An exponential moving average (µ)
of the student weight is used to update the teacher weights. Specifically, after each training
step, Equation (2) is implemented with µ ∈ {0, 1}.

θt = µθt + (1− µ)θs (2)

Figure 2. Overall framework of the vision transformer-based object classification and feedback.

The teacher and student networks produce probability distributions over K dimen-
sions, designated by pθt and pθs , depending on the input image. The teacher network
outputs the non-masked views of the a and b projections of the patch tokens pp

θt
, while

the student network outputs the masked views of a and b projections of the patch tokens
pp

θs
. The original image is restored from the distorted copy by minimizing the average

of the loss between pp
θt
(a) and pp

θs
(â), as well as the loss between pp

θt
(b) and pp

θs
(b̂). Most

of the models use cross-entropy loss or one of its variants [21]. To improve the model’s
functionality, we use focal loss.
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min LMIM = −
N

∑
i=1

mi

[
(1− pp

θt
(ai))

γlogpp
θs
(âi) + (1− pp

θt
(bi))

γlogpp
θs
(b̂i)

]
(3)

where γ is the focusing parameter to be tuned using cross-validation. To distill knowledge
from the teacher to the student, a is given to pcv

θt
and b̂ is given to pcv

θs
, then the cross-entropy

loss, which shows the similarity between these two projections, is minimized. The same
procedure is conducted for b and â, respectively. Similar to the MIM task, these two losses
are averaged.

min LCV = −
N

∑
i=1

mi

[
(1− pp

θt
(ai))

γlogpp
θs
(b̂i) + (1− pp

θt
(bi))

γlogpp
θs
(âi)

]
(4)

Finally, the total loss is calculated as Equation (5).

Loss = LCV + LMIM (5)

4.2. Collision Prediction Algorithm

Object detection and semantic segmentation results from the vision transformer model
are utilized in the collision prediction algorithm, which involves a series of computations to
ultimately discern objects that are likely to cause a collision with the user. The algorithm is
designed in such a way that it works when the user is either stationary or moving. In what
follows, each step-by-step computation is described with an illustration.

(a) Calculation of the center of the objects with respect to the image coordinate frame.

The first step of the algorithm is to calculate the centers of all objects detected and
segmented to find their relative location with respect to the user. The camera that captures
the front view of the user is mounted on the chest under the sternum; thus, it is reasonable
to assume that the image is also center-aligned with the user. The coordinate frame (OGlobal)
of the image is set at the left bottom corner with its axes defined, as shown in Figure 3.
The coordinate frames of segmented objects (OI , I = [A, B, C, . . . ]) are also defined in the
left bottom corners of the bounding box, whose origins are the x and y coordinates that
are expressed in the global frame (i.e., OI = [XI , YI ]). First, the width and height of the
bounding box (wI , hI) and object’s coordinate frame (OI) are extracted from the real-time
image. The center of the object [XIc , YIc ] is computed by half of the width and height of the
bounding box (wI , hI) added to the object’s coordinate frame (OI),

[xIc(ti)
, yIc(ti)

] = [
xI(ti)

+ wI(ti)

2
,

yI(ti)
+ hI(ti)

2
] (6)

where I denotes objects (I = A, B, C, . . . ), and subscript (ti) represents the time frame at
which these parameters are computed since the coordinates of OI change over time.

(b) Relative positions of the objects with respect to the user.

Once the center of the objects is known, determining the relative position—left, front,
or right—of the objects with respect to the user is straightforward, using the width of the
image (wimg).

• Case 1: xIc(ti)
<

wimg
3 Object I at ti is on the left side of the user.

• Case 2:
wimg

3 < xIc(ti)
<

2wimg
3 Object I at ti is in front of the user.

• Case 3:
2wimg

3 < xIc(ti)
Object I at ti is on the right side of the user.
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Figure 3. Calculation of the centers of the objects and their relative positions with respect to the user.

(c) Identify objects moving closer/further with respect to the user.

There are three possible cases for changes in the proximity of any object with respect
to the user, irrespective of their position in the X-Y plane. It can move closer or further if
the object is not stationary, or the user can move closer or further if the object is stationary.
In either case, such information can be extracted from the changes in the size of the
bounding box, as illustrated in Figure 4. First, the size of the bounding box of object I at
time i is calculated as BBI(ti)

= wI(ti)
× hI(ti)

, where w and h denote the width and height
of the bounding box. Next, BBI is compared between (ti) and (ti+1) to yield one of the
following three cases:

• Case 1: BB(ti)
< BB(ti+1)

. The Object is moving closer to the user.
• Case 2: BB(ti)

> BB(ti+1)
. The object is moving further from the user.

• Case 3: BB(ti)
= BB(ti+1)

. The object is stationary if the user is stationary, or it is
moving in the same direction and speed as the user.

Figure 4. (a) Identifying objects moving closer/further with respect to the user, (b) generating object
trajectory vectors.
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(d) Generate object trajectory vectors.

The following step of the algorithm generates an object trajectory vector using the
object center coordinates at (ti) and (ti+1). The object trajectory vector expressed at (ti+1)
is v(ti+1)

= aÎ + bĴ, where a = xIc(ti+1)
− xIc(ti)

and b = yIc(ti+1)
− yIc(ti)

, as illustrated in

Figure 4. If the object center coordinates do not change from (ti) to (ti+1), they are the same
as in Case 3 of (c) above. The object is stationary if the user is stationary, or it is moving in
the same direction and speed as the user. (e) Determine the objects moving toward or away
from the user for collision warning.

The final step of the algorithm is to determine the objects that are moving toward or
away from the user and identify those that are coming directly toward the user, which
would likely collide if they maintain their course. The results of all previous steps of the
algorithm are incorporated into this process. The first condition of “moving toward” is
step (c) Case 1: BB(ti)

< BB(ti+1)
(i.e., the object is moving closer to the user). Once this

condition is met, the relative position of the object (left, front, or right) from step (b) is
considered. If the object is on the left side of the user (i.e., xIc(ti)

<
wimg

3 ), the signs of a and
b of the object trajectory vector from step (d) are evaluated, as shown in Figure 5. If a > 0
and b < 0 (red arrow in Figure 5), it indicates that the object is on the left side of the user,
moving closer, and will likely collide. In all other cases (blue arrows in Figure 5), the object
is moving closer to the user but its trajectory is less likely to collide; hence, it is “moving
away”. The same logic applies to the other two relative position conditions (front and right)
in step (b), where there are three cases of “moving toward” when the object is in front of
the user, and there is one case of “moving toward” when the object is on the right side of
the user. The condition logic for all “moving toward” cases is as follows:

[BB(ti)
< BB(ti+1)

] AND


[

xIc(ti)
<

wimg
3 AND b < 0

]
OR[wimg

3 < xIc(ti)
<

2wimg
3 AND b < 0

]
OR[

2wimg
3 < xIc(ti)

AND a < 0 AND b < 0
]
 (7)

Figure 5. Objects moving toward/away for collision warning.

The integration of auditory feedback (detailed in the next section) to convey the
warning to the user is described in Algorithm 1.
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Algorithm 1 : Collision avoidance and feedback

1. Capture video from the camera
2. for i = 0, 1, . . . , N , N = NUMBER OF BOUNDING BOXES IN ONE FRAME do
3. Store the center point, height, and width of the bounding box in the current frame,
and the object trajectory vectors

a. [xIc(ti)
, yIc(ti)

] = [
xI(ti)

+wI(ti)
2 ,

yI(ti)
+hI(ti)
2 ]

b. a = xIc(ti+1)
− xIc(ti)

c. b = yIc(ti+1)
− yIc(ti)

4. Check if the object is moving toward the user:
a. If wI(t+1i)

× hI(t+1i)
> wI(ti)

× hI(ti)
then

I. If xIc(ti)
<

wimg
3 AND b < 0

print “Name of the detected object” is approaching you from your left side!

II. elseIf
wimg

3 < xIc(ti)
<

2wimg
3 AND b < 0

print “Name of the detected object” is in front of you!

III. elseIf
2wimg

3 < xIc(ti)
AND a < 0 AND b < 0

print “Name of the detected object” is approaching you from your right side!
b. If wI(t+1i)

× hI(t+1i)
= wI(ti)

× hI(ti)
then

print “Object is static!”
c. end

7. Store the current center points and distance for the next iteration
a. [xIc(ti)

, yIc(ti)
] = [xIc(t+1i)

, yIc(t+1i)
]

8. end

4.3. Auditory and Vibrotactile Feedback

Two different modalities of sensory feedback, auditory and vibrotactile, are utilized to
inform the user of a potential collision with surrounding objects. For auditory feedback,
the collision prediction algorithm’s outputs—“[object I] moving toward the user from [po-
sition (left, front, or right)”]—are transformed into speech through Festvox [54], an offline
software offering text-to-speech conversion, which supports multilingual speech synthesis
on multiple platforms. Then the auditory feedback is sent to the user via Bluetooth ear-
buds. Simultaneously, vibrotactile feedback is implemented to inform the user about the
direction and speed of an object moving toward the user; Figure 6. This is achieved by
using either the wrist or waist interface integrated with vibration motors, controlled by a
microcontroller (Adafruit nRF52840 Feather Sense) connected to a Servo Driver (PCA9685).
The Feather Sense contains an inertial measurement unit (IMU), which provides orientation
information. The servo driver accommodates up to eight vibrotactile motors, each wired to
a BJT NPN transistor to control the voltage applied to the motor. IMU data are periodically
sent to the main computer (1 Hz) to determine the body segment orientation relative to
the global coordinate frame (earth), such that the correct vibrotactile motor is turned on
to indicate the direction, irrespective of the wrist/waist orientation. Based on the data
collected by the computer, commands are sent to the microcontroller via Bluetooth Low
Energy (BLE) to control specific motor(s) to vibrate, and the strength and duration of the
vibration. The strength of the vibration is controlled by the duty cycle of the PWM signal
with 16-bit resolution.
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Figure 6. Vibrotactile feedback module: (a) electronic hardware schematics, (b) waist interface,
and (c) wrist interface.

5. Evaluation Setting

In this section, general evaluation settings, e.g., pre-processing steps, implementation
specifics, and evaluation metrics are described in detail.

5.1. Networks Architecture

A backbone f (ViT) and projection head h make up the teacher and student networks.
The outputs of the backbone f are used as features for object detection and semantic
segmentation tasks. The projection head is constructed using a three-layer multi-layer
perceptron (MLP) with hidden dimensions of 2048. This is followed by L2 normalization
and a weight-normalized fully connected layer with K dimensions [44]. Vision transformers
are used as backbone f with a patch size equal to 16× 16. The total number of patch tokens
corresponds to the ratio of the photo size used for both pre-training and fine-tuning
(224 by 224) to the patch token size (16 by 16), resulting in 196 patch tokens. The ViT model
sizes are denoted as base, large, or huge, which determine the number of layers, heads,
parameters, and the MLP size, as explained in [20]. In this work, the base ViT with a patch
size of 16 is employed for model pretraining.

5.2. Implementation Specifics

All the models were implemented using the PyTorch machine learning library, with a
learning rate of 10−6, and 0.4 weight decay. The model was pre-trained using the AdamW [55]
optimizer, with a batch size of 1024 on the ImageNet-1K [56] training set. The model was
fine-tuned using our dataset with 1000 epochs, a learning rate (lr) of 10−6, weight decay
(wd) of 0.4, accuracy (ACC) of 92%, and base ViT with a patch size of 16 as the backbone.
A Lambda Quad deep learning workstation was employed to conduct the experiments.
The machine was equipped using the Ubuntu 20.04.3 LTS operating system, Intel Core™
i7-6850K CPU, 64 GB DDR4 RAM, and 4 NVIDIA GeForce GTX 1080 Ti graphics processing
units (GPUs).

6. Results and Discussion

The presented model’s attention maps are presented in Figure 7. One of the funda-
mental blocks of the transformer is self-attention. This computational primitive helps a
network learn the hierarchies and alignments existing in the input data by quantifying
paired entity interactions. For vision networks to acquire greater robustness, attention is a
crucial component [20]. By providing more attentively visualized results to each part of the
image, our model demonstrated its capability to distinguish multiple objects or different
parts of a single object.
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Figure 7. Visualization of the attention maps of 12 heads of the final layer of ViT-B/16, with no supervision.

6.1. Object Detection and Semantic Segmentation

We used Mask RCNN [47] to perform both classification and object location tasks at
the same time by generating masks and bounding boxes simultaneously. Object detection
and semantic segmentation were performed on COCO [57] and ADE20K [58] datasets,
respectively. Figure 8 shows an example of object detection and semantic segmentation
results. The inability to successfully detect the bicycle rack in Figure 8 could be attributed
to a lack of diversity in the dataset used for training the model. If the model was trained on
a limited set of bicycle rack images that do not cover various angles, lighting conditions,
and designs, it may struggle to detect an object that is partially blocked or overlapped by
other objects or showing from an angle at which the key features are not visible.

Figure 8. Examples of object detection and semantic segmentation performed by the proposed framework.

For a thorough grasp of a scene, object detection alone is insufficient, especially when
it comes to identifying sidewalks, roadways, crosswalks, and vegetation. Semantic image
segmentation models were employed to facilitate safe navigation of VIIs through the
acquisition of semantic knowledge of the front scene. The model must first be constructed,
and the pre-trained weights must be loaded. Semantic segmentation can be viewed as a
classification problem at the pixel level; linear head and Mask RCNN were used for the
task layer.

Classification results on the validation dataset are presented in Table 2 for each of the
24 classes included in the model. The precision metric measures the ability of the model to
correctly identify instances of a particular class. The precision scores for most classes are
above 0.9; this indicates that the model has good precision. The recall metric represents
the ability of the model to correctly identify all instances of a particular class. The recall
scores for most classes are also high, ranging from 0.85 to 1.00, indicating that the model
has high sensitivity in detecting instances of each class. The F1 score is the harmonic
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mean of precision and recall, providing a balanced measure of a model’s performance.
The F1 scores for most classes are also high, ranging from 0.80 to 0.97, indicating an overall
good balance between precision and recall. The support column in Table 2 shows the
number of instances in each class used in validation. The overall classification accuracy
of the model on the entire dataset is 0.95, meaning that it correctly classifies 95% of the
instances. The confusion matrix from the classification of 24 classes on the validation dataset
is provided in Appendix A. The number of samples used in the validation varies across
different classes. The effect of such an unbalanced dataset on the classification results leads
to low precision, recall, and F1 scores for the minority classes, while the performance on the
majority classes may still be relatively high. Our model implements the transfer learning
technique on the pre-trained model, which can effectively address this issue of imbalanced
data, as evidenced by the reasonable precision, recall, and F1 score of a minority class in
our validation dataset (e.g., trash bin). In summary, the classification model demonstrates
good performance across most classes.

Table 2. Classwise classification results on the validation dataset.

Class Number Class Name Total Number of Images Precision Recall F1 Score

0 Asphalt 1076 0.97 0.97 0.97
1 Bike 62 0.90 0.90 0.90
2 Car 280 0.92 1.00 0.96
3 Chair 507 0.98 0.97 0.97
4 Crosswalk 3524 0.94 0.91 0.93
5 Door 1829 0.94 0.94 0.94
6 Elevator 347 0.96 0.96 0.96
7 Grass 569 0.98 0.97 0.98
8 Gravel 1296 0.93 0.95 0.94
9 Indoorfloor 758 0.96 0.96 0.96

10 Fire hydrant 430 0.96 0.93 0.94
11 Garden wall 95 0.93 0.93 0.93
12 Parking 965 0.98 0.95 0.96
13 Pavement 1111 0.93 0.93 0.93
14 Vegetation 732 0.93 0.96 0.94
15 Red pavement 629 0.97 0.95 0.96
16 Sidewalk 2732 0.91 0.96 0.93
17 Stair 4128 0.96 0.96 0.96
18 Traffic cone 70 0.97 0.85 0.90
19 Trail 3651 0.94 0.96 0.95
20 Trash bin 101 0.67 1.00 0.80
21 Tree 1690 0.92 0.94 0.93
22 Wooden bridge 1399 0.96 0.96 0.96
23 Wood flooring 420 0.97 0.91 0.94

Accuracy 0.95

6.2. Collision Prediction

The collision prediction algorithm was tested on sample images in which a person
was walking toward the user; Figure 9. It can be seen that the algorithm calculates and
compares the center of the bounding box of the person, then creates a movement trajectory
vector, along with distance changes between two different time frames. It demonstrates
that the algorithm properly functions and outputs the expected result. The model shows
robustness when dealing with objects of different sizes, indicating its ability to handle
diverse scale variations effectively.
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Figure 9. Demonstration of the implemented algorithm: (a) bounding box and the center of objects at
(ti) and (ti+1), and (b) generation of object trajectory vector.

6.3. Limitations and Future Work

The completion time of object classification and semantic segmentation of the imple-
mented model is less than 0.5 s, and with the collision prediction algorithm running in
tandem, the total response time is estimated to be 0.8 s. Visually impaired individuals
rely heavily on accurate and reliable environmental perceptions to avoid obstacles, haz-
ards, or potential dangers. Therefore, 95% accuracy of the presented classifier achieved
may still not be good enough to ensure the safety of visually impaired individuals when
navigating dynamically changing environments. Moreover, any errors in the semantic
image segmentation model could also lead to critical consequences, especially in outdoor
settings where uncertainty and complexity are higher. To address this, further optimiza-
tion and fine-tuning of the model, as well as incorporating additional techniques, will be
sought to further enhance the robustness and accuracy of the presented model, such as
simultaneously running multiple semantic segmentation models for cross-referencing the
segmentation results.

7. Conclusions

This work presents the implementation and evaluation of vision transformer-based
object classification, a custom-built algorithm for collision prediction, and the integration of
multimodal sensory feedback to provide real-time feedback to VIIs to help carry out indoor
and outdoor navigation safely. The dataset used in the developed model was collected
from indoor and outdoor settings under different weather and time-of-day conditions, gen-
erating 27,867 photos with 24 classes, which are accessible to the AT research communities.
In addition, the developed model includes a few classes that have been less focused on in
previous works, such as elevators. The collision prediction algorithm analyzes changes
in object locations between frames, allowing the system to predict whether the object is
currently in motion or stationary, their estimated trajectory, how far away they are from the
user at any given moment, and their current movement direction, with respect to the user.
These data are provided to the user through a combination of vibrations and auditory cues
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to allow VIIs to make informed decisions about how to interact with their surroundings.
Future work will include (i) testing and evaluation of the feedback module to assess its
functionality and usability, (ii) migrating the model and algorithms to a compact, high-
performance single board computer to enhance portability, and (iii) conducting human
subject trials with the developed system to validate the overall system performance in both
indoor and outdoor navigation scenarios.
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Appendix A

Figure A1. Confusion matrix from the classification of 24 classes performed on the validation dataset;
refer to Table 2 for the name (object) of each class label (0–23).
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