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Abstract: Cardiovascular diseases are among the major health problems that are likely to benefit
from promising developments in quantum machine learning for medical imaging. The chest X-ray
(CXR), a widely used modality, can reveal cardiomegaly, even when performed primarily for a non-
cardiological indication. Based on pre-trained DenseNet-121, we designed hybrid classical–quantum
(CQ) transfer learning models to detect cardiomegaly in CXRs. Using Qiskit and PennyLane, we
integrated a parameterized quantum circuit into a classic network implemented in PyTorch. We mined
the CheXpert public repository to create a balanced dataset with 2436 posteroanterior CXRs from
different patients distributed between cardiomegaly and the control. Using k-fold cross-validation,
the CQ models were trained using a state vector simulator. The normalized global effective dimension
allowed us to compare the trainability in the CQ models run on Qiskit. For prediction, ROC AUC
scores up to 0.93 and accuracies up to 0.87 were achieved for several CQ models, rivaling the classical–
classical (CC) model used as a reference. A trustworthy Grad-CAM++ heatmap with a hot zone
covering the heart was visualized more often with the QC option than that with the CC option (94%
vs. 61%, p < 0.001), which may boost the rate of acceptance by health professionals.

Keywords: medical imaging; chest X-ray; diagnosis; cardiovascular diseases; heart failure;
cardiomegaly; quantum computing; machine learning; transfer learning; visualization

1. Introduction

According to the WHO’s Global Health Estimate [1], ischemic heart disease is the
world’s biggest killer with 8.9 million victims in 2019, accounting for 16% of the world’s
total deaths. Each year, about 700,000 persons in the United States and 1,700,000 persons in
the 57 ESC member countries die from heart disease, i.e., about one in every five deaths [2,3].
Heart disease cost the United States about 229 billion USD each year from 2017 to 2018 and
cost the European Union 210 billion EUR in 2015.

For this reason, cardiology has been one of the branches of medicine where the most
progress has been made in recent years. The high prevalence of cardiovascular diseases has
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led to the constant development of new technologies for diagnosis and treatment. In recent
decades, there has been growth in advanced technological developments applied to solving
this situation addressing cardiovascular disease assessment, such as the application of
Machine Learning (ML) algorithms for the diagnosis of heart failure [4] or cerebrovascular
diseases [5], or for the analysis of arrhythmias [6,7]

Several deep learning techniques have been presented to assess cardiac diseases
using both tabular data and images. This manuscript presents an approach that merges
contributions from deep learning techniques with quantum ML techniques for detecting
cardiomegaly in chest X-rays (CXR).

CXR is a radiological modality widely used in inpatient and outpatient settings. It
is part of the tools used for assessment and follow-up in suspected or known cardiac
patients. On the other hand, CXRs are more often performed for a purpose other than
heart disease, e.g., in environments where they are first protocolized by on-duty physicians.
Some CXR findings may indicate an unsuspected underlying heart condition, unrelated
to the patient’s actual problem. Besides edema, pleural effusions and pulmonary opacity
often revealing heart failure, cardiomegaly is the most relevant indicator of a cardiac
problem. Pericardial effusion is another concerning cause of the characteristic enlargement
of the heart silhouette, but its presence never excludes concomitant cardiomegaly. The two
conditions can thus be aggregated in an early triage. Cardiomegaly is usually a sign of
dilated or hypertrophic cardiomyopathy, which is observed in a large range of congenital
and acquired diseases [8,9]. One prominent cause of cardiomyopathy is coronary artery
disease [10].

Cardiomyopathy is a severe condition leading to heart failure, but also to sudden
cardiac death, malignant arrhythmias and thromboembolism from cardiac origin. This
represents a major cause of morbidity and mortality all over the world [11]. In summary,
the initial radiological discovery of cardiomegaly may indicate, depending on the clinical
context, the worsening of a known cardiac condition, an unsuspected cardiac disease or
a cardiac complication during another disease. In all cases, a more in-depth cardiological
assessment is indicated to clarify the diagnosis and establish appropriate therapeutic measures.

In this context, ML algorithms are being developed for the detection of cardiomegaly
on radiographs. These studies are facilitated by the availability of large CXR databases, such
as ChestX-ray8, CheXpert or MIMIC-CXR-JPG [12–14]. Encouraging results are reported.
For instance, when comparing sixteen different deep learning architectures of CNN, ROC
AUC scores up to 0.84 were found for the detection of cardiomegaly on a CXR validation
dataset of 202 images from CheXpert [15].

Automated analyses of written protocols mention cardiomegaly in 9 to 17% of cases in
these large CXR data sets. However, patients treated for heart disease are more likely to
present cardiomegaly and undergo repetitive CXRs. For instance, in the CheXpert dataset,
cardiomegaly is reported in 11% of the first studies against 13% of the follow-up studies. For
medical applications, the performance indicators of a classification method must be such
that there is little chance of missing a case while avoiding costly and resource-consuming
additional diagnostic procedures. These considerations imply that a balanced dataset is a
reasonable option for training the ML algorithm in such an application. Undersampling the
majority class is indeed a good strategy that keeps the computational cost within reasonable
limits [16], which was necessary to carry out the present study.

In less than a decade, deep learning has revolutionized the field of ML imaging, and
automated CXR analyses can now benefit from these advances. Convolutional neural
networks (CNN) have been the go-to pattern classification algorithms due to their well-
demonstrated approximation and generalization capabilities. However, training a deep
CNN in big data applications with a rich feature set is resource-intensive.

CNNs are based on the multiple perceptron model, in which a perceptron or an
artificial neuron mimics the neurons in the human brain. In the human brain, specific
regions of the brain are dedicated to responding to specific signals, e.g., images with faces
trigger a stronger response than images without faces in a region called the fusiform face
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area (FFA), which is present on the underside of the temporal lobe. Further, in the middle
layer of the brain’s visual cortex, specific neurons respond to specific shapes, edges, angles
and layers [17]. This idea of specific neurons responding to specific features is used in the
CNN model, in which each convolutional layer learns a specific feature/characteristic of
the image using the image kernels and filters.

A CNN model can be viewed as two parts. The first part acts as a feature transformer
that contains one or more layers that learn to identify and assign weights to the features
of the image, and the second part acts as a classifier layer that classifies the images into
different classes. Transfer learning is a useful technique that takes advantage of this two-
part design, in which a model that was trained on a set of images is reused for training and
classifying a completely different set [18]. The idea is to retain the convolutional layers that
learn the common features of any image, such as lines, edges and curves, and to replace
the classifier layers that are image-specific, thus reducing the resources required to fully
train the model from the beginning.

This technique makes it possible to download CNNs pre-trained on thousands of
image categories with millions of parameters. Using these models with their pre-trained
weights, one can classify specific sets of images by retraining only the last parts of the
model, where layers can be modified. The models pre-trained on colored images work
for grayscale medical images, such as those of CT, mammography, MRI or CXR [19,20],
and they have been developed for several conditions, including Alzheimer’s disease, brain
tumors, breast tumors and COVID-19. For the automated detection of a set of abnormal
findings in CXRs, transfer learning based on DenseNet-121 allows discrimination with
satisfactory metric scores for most features [12,13]. Using 952 images from the National
Institute of Health relabeled as “normal” or “heart failure” (defined as “cardiomegaly or
congestion”) by two cardiologists, Matsumoto et al. [21] reported an accuracy of 82% in a
model based on pre-trained VGG16.

Quantum neural networks were shown theoretically and experimentally to offer an
advantage over their classical counterpart in terms of trainability [22], which justifies their
use in medical applications [23]. To engineer a hybrid neural network, one can encode the
images in an initial quantum layer, as in a classical–quantum model aimed at COVID-19
prediction presented in [24]. Another option is to insert the quantum layer instead of the
classical one in the last part of a transfer learning model [25]. This CQ approach, proposed
for detecting Alzheimer’s disease from brain CT scans [26] and stenosis detection in X-ray
coronary angiography [27], was chosen to conduct this research.

A common problem with any diagnostic method based on deep learning is the opacity
of the decision-making process, which hinders healthcare professionals’ and patients’ trust
and acceptance [28,29]. Improved visual explanation by saliency methods, such as Grad-
CAM++ [30], allows for locating the region of interest of the automated search process
on a heatmap. For medical imaging, it is possible to check whether anatomically credible
heatmaps can be produced by the algorithm. Cardiomegaly detection is particularly well-
suited for this approach.

To the best of our knowledge, no description of a hybrid transfer learning CQ model
for the detection of cardiomegaly in CXRs has been published so far. Our aim was to verify
whether efficient CQ models can be designed using currently available software develop-
ment kits (SDKs) and whether, compared to the CC approach, they can have advantages
in terms of trainability, performance and trustworthiness. The objectives for carrying out
this project include mining and balancing an adequate CXR dataset, selecting a performing
reference model, inserting a parameterized quantum circuit (PQC) [31] in CQ models in
place of the classical classifier layer and establishing a common training protocol. Two
approaches were considered to assess the predictive performance. A 70/30 train–test split
was used for model selection from numerous prototypes, for the comparison of training
loss curves, and for the credibility assessment for saliency zones on GradCAM++ heatmaps.
K-fold cross-validation, which is more computationally demanding, was used for possible
overfitting detection, reference selection and QC vs. CC c statistical comparison of perfor-
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mance metrics. We also investigated in two Qiskit-based models the normalized global
effective dimension (NGED), a parameter related to trainability and performance [22,32].

2. Materials and Methods
2.1. Dataset and Data Curation

The dataset was mined from the Stanford CheXpert shared dataset [33] consisting of
224,316 chest radiographs of 65,240 patients, reflecting the general CXR flow of a large
Health Care Facility with both inpatient and outpatient centers. We aimed to establish
an algorithm able to detect cardiomegaly in such a flow. The CheXpert dataset was
selected because of the improved performance of the automated label extraction from
free-text reports, especially for cardiomegaly [13]. The posteroanterior (PA) CXR view is
recommended and has specific diagnostic criteria for cardiomegaly [34]. Therefore, we
selected the images corresponding to the first chronological PA view in the source dataset.
In the resulting reduced set of CXRs all from different patients, a subset of 1218 was labeled
positive for cardiomegaly. A balanced dataset was formed by drawing, in the same reduced
set, 1218 additional patients labeled negative (control subset).

One of us (Pierre Decoodt), a cardiologist with forty years of experience in the inter-
pretation of CXR for heart disease, blindly reviewed the 2436 randomly presented images
and requalified 111 of them, which were mislabeled “cardiomegaly” for 59 and “no car-
diomegaly” for 52. In addition to clinical judgment, a cardiothoracic index lower or equal
to 0.45 was required to requalify cardiomegaly as the control and greater or equal to 0.55 to
requalify the control as cardiomegaly. For cases judged as doubtful, the labels remained
intact. The rate of correct labels before requalification that we found was consistent with
the labeler performance reported for the global CheXpert dataset, which was 0.973 for
cardiomegaly and 0.909 for no cardiomegaly [13].

Table 1 describes the final dataset. All CXRs were from the general patient population
studied at the Stanford Health Care Facility. This ensured that the control group was
representative of the disease group, with no bias that could be introduced if the two classes
were sampled from different populations. It can be observed that patients with positive
labels for cardiomegaly were older. Male patients were the majority, but this was more
marked in the control subset. In the whole dataset, 61% of patients presented one or several
other abnormal CXR findings. Overall, the predominant conditions in the cardiomegaly
subset included lung opacity, edema, pneumonia, atelectasis, pleural effusion or other
pleural findings, and the presence of support devices, whereas pneumothorax was more
frequent in control cases. Typical examples of CXR are illustrated in Figure 1.
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Figure 1. Images from the cardiomegaly subset along with their counterpart from the control subset.
First column: no positive label for any other finding. Three last columns: cases of pleural effusion,
edema and lung opacity, which were the findings most frequently associated with cardiomegaly in
the dataset.
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Table 1. Final dataset description.

All Control Cardiomegaly

Number of Patients: 2436 1225 1211

Age: 58.6 ± 17.7 54.4 ± 17.2 62.9 ± 17.1 ***

Gender Male: 1520 (62%) 794 (65%) 726 (59%) *

One or Several Other
Findings: 1474 (61%) 559 (46%) 915 (75%) ***

Enlarged
Cardiomediastinum 293 (12%) 151 (12%) 142 (12%)

Lung Opacity 727 (30%) 266 (22%) 461 (38%) ***
Lung Lesion 191 (8%) 91 (7%) 100 (8%)

Edema 633 (26%) 133 (11%) 500 (41%) ***
Consolidation 647 (27%) 315 (26%) 332 (27%)

Pneumonia 244 (10%) 83 (7%) 161 (13%) ***
Atelectasis 405 (17%) 139 (11%) 266 (22%) ***

Pneumothorax 377 (15%) 215 (18%) 162 (13%) **
Pleural Effusion 1054 (43%) 435 (36%) 619 (51%) ***

Pleural Other 135 (6%) 46 (4%) 89 (7%) ***
Fracture 119 (5%) 59 (5%) 60 (5%)

Support Devices 558 (23%) 226 (18%) 332 (27%) ***
Significant differences between cardiomegaly and control by independent two-sample t-test for age and chi-
squared contingency for the other features are indicated in the right column. * p < 0.05, ** p < 0.01, ***: p < 0.001.

2.2. General Design of the Models

Both models share the same architecture. The preprocessed and vectorized images
were injected in a pre-trained CNN, used for extracting informative features. They then
followed a trainable binary classifier and finally a sigmoid layer (Figure 2). The CQ version
differed only by the presence of a PQC between two layers of the trainable classifier.
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2.3. Image Preprocessing and Vectorization

The CXR images were resized to 256× 256 pixels and then center-cropped to 224 × 224 pixels.
They were then converted to tensor and normalized using the mean and standard devi-
ation. The single-channel X-ray images originally in grayscale were transformed into a
three-channel format by repeating the values in a particular image across all channels. This
ensured compatibility with the tested pre-trained CNN.

2.4. Feature Extractor

A large selection of CNNs pre-trained on ImageNet 1 K V1 can be downloaded from
PyTorch. After some preliminary tests with 8 training epochs, we selected AlexNet [35]
and DenseNet-121 [36]. These two CNNs, renowned for their performance, differ greatly
in their architecture, number of layers (8 versus 121), number of parameters (61.1 million
vs. 8 million) and delivered feature vector f (4096 vs. 1024).

2.5. Trainable Classifier

In Figure 3 the classifiers of the CC and CQ models are depicted.
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Figure 3. Training models for classification: On the left, a model based on pre-trained DenseNet-121.
On the right, a model based on pre-trained AlexNet. In both versions, the flowchart forks into the
classical and quantum versions of the trainable classifier. n: number of qubits.

The trainable classical classifier consists of a sequence of linear (f, 512), ReLU and
linear (512, 2) layers.

The trainable quantum classifier consists of a sequence of linear (f, n), tanh, n-qubit
PQC and linear (n, 2) layers. For the Qiskit-based experiments, we tested 2 and 4 as the
dimension output D for the classifier. Similarly, we tested 4, 6, 8 and 10 as n and D values
for PennyLane-based models.
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2.6. Parameterized Quantum Circuit

To implement the hybrid classical–quantum models, we used the built-in methods
of Qiskit and PennyLane, allowing us to integrate the PQC into the Pytorch framework.
In Qiskit, we employed the CircuitQNN and TorchConnector functions from the Qiskit
Machine Learning package. A four-qubit PQC is presented in Figure 4. The ansatz consists
of repeated blocks of 2-qubit entanglement gates with a linear entanglement strategy and
1-qubit rotation gates (rotation angles being set by the circuit parameters).
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Figure 4. Qiskit rendering of the PQC with four qubits. After initialization in the ground state, all
qubits are first placed in a superposition state by applying Hadamard gates (H). A feature map is
produced by encoding each qubit by a ϕ rotation around the y-axis (Ry gates). Then, the ansatz
consists of a series of entanglement by 2-qubit CNOT gates, each followed by a θ rotation around the
y-axis at a quantum depth of 4.

2.7. Training

A 70/30 train–test split was applied to the dataset. We applied RandAugment and
50% RandomAutocontrast to the training data for each epoch.

All models were trained using the same random seed, with the learning rate and
weight decay set to 0.0001, Cross-Entropy loss as the cost function and Adam [37] as the
optimizer. We compared a standard and an enhanced protocol for training. The first
consisted of 20 epochs without “freezer”. In the latter, this phase was preceded by training
for 2 epochs with “freezer”, which froze the layer with pre-trained parameters acting like a
weight initializer so that the further 18-epoch training was improved. The batch size was
set to 8.

In Qiskit-based models, the computation was conducted in the Aer simulator stat-
evector device with ten shots, using the default gradient settings [38]. In PennyLane-based
models, we used as parameters the default qubit device, the torch interface and the “best”
differentiation method. The latter depends on the device and interface, being in the most
likely case Standard Backpropagation with Pauli-Z expectation values for each qubit [25].

2.8. Performance Metrics

The metrics we considered are listed in Table 2. All metric values mentioned in the
following tables were for the test subsets. They were calculated using the corresponding
functions from the metrics module of the open-access scikit-learn package [39]. The tables
of results obtained from 10-fold cross-validation show the mean over the folds as well as, in
brackets, the 95% confidence interval for the mean. For the comparison of a metric in two
models, we performed a paired t-test on the values observed for each fold’s test dataset.

2.9. Image Interpretation

The image interpretation was visualized with a gradient-weighted class activation map
using Grad-CAM++. To provide an idea of the acceptance by clinicians of the CC and CQ
models, we grouped all the heatmaps obtained in the test set for each model and submitted
them shuffled to one of us (Pierre Decoodt, a cardiologist), who blindly classified them as
trustworthy or non-trustworthy. A heatmap was considered trustworthy if the hot zone
comprised most of the cardiac silhouette. Heatmaps were classified as non-trustworthy
when the hot zone was either outside the cardiac area, extremely extensive, or not visible.
Heatmaps with multiple hot zones of similar size were also classified as non -trustworthy.
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Table 2. Metrics.

Abbreviation
in Tables Synonyms

AUC score AUC ---
Accuracy Acc ---

Balanced Accuracy B Acc ---
Precision 0 Prec 0 Negative predictive value
Precision 1 Prec 1 Positive predictive value

Recall 0 Rec 0 Specificity
Recall 1 Rec 1 Sensitivity

2.10. Normalized Global Effective Dimension

The trainability was assessed for the quantum layer on Qiskit by using the four-step
algorithm that the qiskit-machine-learning package provides for assessing the NGED [40].

3. Results
3.1. Selection of Models and Training Protocols

Given the wide spectrum of possible combinations, we adopted a step-by-step heuristic
to test model prototypes. We started by calculating the metrics using the 70/30 train–test
split approach in thirteen models (Table 3).

Table 3. Summary of model features.

Model
Name

Training
with

Freezer

Pre-Trained
CNN SDK n D

F-Dnet-C YES DenseNet-121 None --- ---
F-Axnet-C YES AlexNet None --- ---

F-Dnet-P-4q YES DenseNet-121 PennyLane 4 ---
F-Dnet-Q-4q-2D YES DenseNet-121 Qiskit 4 2
F-Dnet-Q-4q-4D YES DenseNet-121 Qiskit 4 4

N-Dnet-C NO DenseNet-121 None 4 --
N-Axnet-C NO AlexNet None --- --

N-Dnet-P-4q NO DenseNet-121 PennyLane --- --
N-Dnet-Q-4q-2D NO DenseNet-121 Qiskit 4 2
N-Dnet-Q-4q-4D NO DenseNet-121 Qiskit 4 4

F-Dnet-P-6q YES DenseNet-121 PennyLane 6 --
F-Dnet-P-8q YES DenseNet-121 PennyLane 8 --
F-Dnet-P-10q YES DenseNet-121 PennyLane 10 --

n: number of qubits, D: output dimension of the classifier.

As detailed in Appendix A, the results obtained by the single split approach (Table A1)
were used for a preliminary analysis of the train and test ROC and loss curves. The
calculation times are given in Table A2. The ROC curves for the train set in CC models led
to suspecting a possible effect of overfitting that could affect the metric values observed
in the test set. However, additional experimentation based on 10-fold cross-validation
(Table A3) did not confirm this issue. The single-split results were used to select ten models
for statistical comparison, to generate GradCAM++ heatmaps from the test subset and to
perform NGED analysis.

The selected CC and CQ models were subjected to ten-fold cross-validation, which
allowed us to obtain estimates of the mean and its 95% confidence interval for the metrics.
This more computationally demanding technique was used to choose the CC model used
as a reference, to investigate a possible overfitting effect (Table A3) and to establish the
performance of CQ models that might challenge the reference.

3.2. Performances of the CC Models

Table 4 compares the versions of CC models with and without the freezer option. The
metric values for the two DenseNet 121-based models are similar, with lower bounds for



J. Imaging 2023, 9, 128 9 of 20

accuracy and balanced accuracy greater than 0.85. For models based on AlexNet, the values
of the metrics are slightly lower, which is only statistically significant for precision 1 and
recall 0. The corresponding ROC curves are shown in Figure 5.

Table 4. Metrics by 10-fold cross-validation in CC models.

Model AUC Acc B Acc Prec 0 Prec 1 Rec 0 Rec 1

F-Dnet-C 0.931
[0.923, 0.939]

0.863
[0.853, 0.873]

0.862
[0.852, 0.873]

0.845
[0.831, 0.858]

0.884
[0.870, 0.897]

0.892
[0.883, 0.902]

0.832
[0.812, 0.853]

F-Axnet-C 0.933
[0.925, 0.940]

0.858
[0.852, 0.863]

0.858
[0.853, 0.864]

0.858
[0.843, 0.873]

0.858 *
[0.835, 0.880]

0.860 *
[0.838, 0.881]

0.857
[0.844, 0.870]

N-Dnet-C 0.934
[0.926, 0.942]

0.863
[0.855, 0.870]

0.862
[0.855, 0.870]

0.841
[0.828, 0.853]

0.889
[0.871, 0.908]

0.897
[0.876, 0.917]

0.828
[0.813, 0.843]

N-Axnet-C 0.921
[0.909, 0.933]

0.849
[0.836, 0.863]

0.850
[0.835, 0.864]

0.850
[0.834, 0.866]

0.848 *
[0.825, 0.872]

0.851 *
[0.830, 0.872]

0.848
[0.830, 0.865]

Differences from F-Dnet-C (paired t-test) are indicated by * p < 0.05.
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3.3. Performances of the CQ Models

Table 5 lists the metric values for CQ models, all with the freezer option. Compared
with the F-Dnet-C model, the AUC score is lower for F-Dnet-P-10q, F-Dnet-Q-4q-2D and
F-Dnet-Q-4q-4D (p-value < 0.01). The corresponding ROC curves are shown in Figure 6.

3.4. Grad-CAM++ Analysis

The blind examination for classification into trustworthy and non-trustworthy con-
cerns 2190 (3 × 730) heatmaps obtained with the three models: F-Dnet-C, F-Dnet-Q-4q-2D
and F-Dnet-P-4q. The results of this classification are presented in Table 6. Overall, trust-
worthy heatmaps were found in 61% of cases with the CC model, in 94% of cases with
the Qiskit-based CQ model (chi-square: p < 0.001 vs. CC) and in 92% of cases with the
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PennyLane-based CQ model (p < 0.001 vs. CC). Examples of comparisons between models
are given in Figure 7 with one case of a non-trustworthy heatmap.

Table 5. Metrics by 10-fold cross-validation in CQ models.

Model AUC Acc B Acc Prec 0 Prec 1 Rec 0 Rec 1

F-Dnet-P-4q 0.923
[0.912, 0.935]

0.862
[0.852, 0.872]

0.860
[0.849, 0.871]

0.832
[0.815, 0.848]

0.902
[0.883, 0.920]

0.910
[0.890, 0.931]

0.810
[0.779, 0.841]

F-Dnet-P-6q 0.922
[0.912, 0.933]

0.860
[0.843, 0.878]

0.860
[0.841, 0.878]

0.844
[0.822, 0.865]

0.882
[0.855, 0.909]

0.890
[0.863, 0.918]

0.829
[0.797, 0.862]

F-Dnet-P-8q 0.926
[0.919, 0.934]

0.862
[0.852, 0.873]

0.862
[0.851, 0.873]

0.844
[0.827, 0.861]

0.887
[0.860, 0.913]

0.893
[0.866, 0.920]

0.830
[0.803, 0.858]

F-Dnet-P-10q 0.912 **
[0.898, 0.925]

0.860
[0.849, 0.871]

0.861
[0.850, 0.872]

0.839
[0.816, 0.863]

0.888
[0.860, 0.917]

0.897
[0.869, 0.924]

0.826
[0.798, 0.853]

F-Dnet-Q-4q-
2D

0.901 **
[0.886, 0.915]

0.867
[0.859, 0.875]

0.866
[0.858, 0.874]

0.845
[0.830, 0.860]

0.896
[0.877, 0.914]

0.901
[0.874, 0.928]

0.831
[0.807, 0.855]

F-Dnet-Q-4q-
4D

0.911 **
[0.902, 0.920]

0.867
[0.859, 0.875]

0.867
[0.859, 0.876]

0.845
[0.829, 0.861]

0.894
[0.879, 0.909]

0.902
[0.887, 0.917]

0.832
[0.814, 0.850]

Differences from F-Dnet-C (paired t-test) are indicated by ** p < 0.01.
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Table 6. Grad-CAM++ image analysis.

Heatmap
Pattern Label CC

Model
CQ Model

(Qiskit)
CQ Model

(PennyLane)

Trustworthy
Control 209 354 342

Cardiomegaly 237 330 326
Total 446 (61%) 684 (94%) 668 (92%)

Non-
trustworthy

Control 160 15 27
Cardiomegaly 124 31 35

Total 284 (39%) 46 (6%) 62 (8%)
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these models with and without a freezer are shown. Without the freezer, the two-dim 

Figure 7. Original CXRs (left) along with the corresponding Grad-CAM++ heatmaps obtained
with the last convolutional layer from the three models compared for trusworthiness. (a): Normal
heart. Large hot zone including the heart with the CC model, hot zones covering the heart with
the CQ models. (b): Cardiomegaly and artificial pacemaker. Hot zones covering the heart with the
three models. (c): Cardiomegaly. Hot zone in the right lung base for the CC model (example of
non-trustworthy heatmap), hot zones covering the heart for the CQ models.

3.5. Normalized Global Effective Dimension

Figure 8a shows the NGED curves calculated in a function of the amount of data in
the Qiskit-based QC models. We can see that the four-dim output leads to a much higher
effective dimension over a wide range. In Figure 8b, the training loss curves observed
in these models with and without a freezer are shown. Without the freezer, the two-dim
model has higher loss values than those of the four-dim model. With the freezer, the loss
values are decreased much more for the two-dim model than for the four-dim model.
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Figure 8. (a) NGED for the quantum layer in the classifier in Qiskit four-qubit models with
four-dimensional (4-dim) and two-dimensional output (2-dim), each with 24 trainable parameters.
(b) Training loss curves observed in these models with and without freezer.

4. Discussion and Conclusions

In this manuscript, we aimed to study the effect of applying Quantum ML techniques
to the detection of cardiomegaly. This is a healthcare problem based on image processing
and learning techniques. In particular, we evaluated the performance and trainability of two
CC models based on DenseNet-121 and AlexNet, and we modified the DenseNet-121 model
by replacing a classical dense layer with a quantum layer leading to CQ models. Following
transfer learning training, two different schemas were conducted. In one approach, we
froze the weights from the initial layers of the architecture, and in the other approach, we
let the weights be updated by our cardiomegaly dedicated data.

We compared the results between the different methods, studied the NGED on the
Qiskit-based quantum layer and used Grad-CAM++ to compare the heatmaps obtained
from classical and hybrid solutions.

Our protocol required as many common parameters as possible between CC and CQ
models to compare them on equal footing. Tuning hyperparameters differently for each
model was avoided. We chose twenty epochs after verifying that no sign of an overfitting
effect on the test metrics appeared when training CC models up to this number of epochs.
Extending this analysis to the CQ models did not seem necessary because the concern
about overfitting was triggered essentially by the comparison of training and test ROC
curves obtained in the CC models. In addition, this would necessitate considerable time
given our computing resources.

The reasons for choosing the F-Dnet-C model as the reference were the generally
better test metrics for the versions with the freezer than those without the freezer and the
superiority of DenseNet121 over AlexNet for the same criterion via ten-fold cross-validation.
Using this approach, the PennyLane-based CQ models up to eight qubits, revealing no
statistical differences for any metric compared to the reference. The same was observed
for the Qiskit-based models, except that the AUC score was lower. With the exception of
the AlexNet-based CC models, the metric values we obtained from the 70/30 train–test
split were, in general, very similar to those found via ten-fold cross-validation. Whereas
the latter method is one of those recommended for comparing performance in the ML
diagnosis of medical images [40], the former retains its interest in exploring a wide range
of models with multiple options and for specific types of analysis, involving loss curves or
salience maps, for example.

Different factors can influence the efficiency of quantum transfer learning. Among
them, the quality and compatibility of the pre-trained models can be cited. This factor was
only studied here for choosing the classical reference model. The less-performing AlexNet
option was not tested for CQ models. We acknowledge that this could be an interesting part
of further studies. Another factor is increased complexity. In models with an increasing
number of qubits, the metric values remained the same, with the exception of a significantly
lower AUC score for ten qubits. We did not test quantum hardware, an important and
rapidly evolving factor. Using Qiskit, the dimension of the quantum classifier output was a
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factor that seemed to influence training. In this case, further experimentation, preferably
on hardware, can be contemplated for analyzing the impact on quantum parallelism.

The details of the quantum part of the algorithm deserve some comments. Adding a
PQC between two layers of the trainable classifier is a common technique, although not
always necessary or effective in all cases of quantum transfer learning. We made this choice
because it has proven its usefulness in other similar quantum applications. Using Qiskit,
the PyTorch connection allowed a classification task on a simulator and hardware [22],
and using Pennylane, the ‘default.qubit’ simulator was used for the implementation of the
model in an application involving CT scan images [26]. For adapting activation functions
to quantum circuits, one can use quantum gates, such as the SWAP test or the parametrized
quantum circuit (PQC), to transform the quantum state before and after applying the
activation function. In another option, the output of the quantum circuit is measured, and
the measurement result is used as input to a classical activation function. We chose the
approach that is integrated into the quantum SDKs that were available to us and that had
demonstrated its effectiveness in other applications. For a proper gradient computation
when using TorchConnector in Qiskit, the input_gradients parameter must be explicitly set
to True. Equations for the resulting default gradients are given in the Opflow section of the
Qiskit documentation. For PennyLane, the automatic “best differentiation method” that
we used is a prominent built-in feature that is fully described in its documentation. Other
options for the gradients could be considered and explored in further works, especially
if convergence issues are detected. The simulator parameters of the SDKs can be tested
in an initial phase. For example, 10, 100 and 1024 shots improve metric values to the
same extent, well beyond 1 shot in Qiskit-based models. A value of 10 is preferred for
these models, which require a long training time in the simulator. For PennyLane-based
models, the default number of shots is 1024. We acknowledge that the difference in AUC
scores between the models built on these different SDKs is most likely due to these shot
number discrepancies.

For heatmap analysis, our blinded human classification into trustworthy and non-
trustworthy cases was based on well-defined criteria described in the Materials and Meth-
ods section. These criteria had to be adapted for the detection of a single large organ inside
the thoracic cage, whereas other published ML studies on CXRs address multiple classes of
possibly concomitant abnormal findings [12,21,41,42].

The differences observed in the Grad-CAM++ heatmaps obtained from the three
models we examined can have several explanations. First, we used the test set CXRs
in the review process, which is more representative of what would be obtained in real
applications. The trade-off is that non-trustworthy heatmaps are more likely to show up
in test cases than in training cases. Second, the classical algorithm is inherently different
from those based on quantum SDKs. Moreover, the Qiskit and Pennylane algorithms
are not entirely similar, being based on different code and program functions, which
explains the difference in heatmaps in the two CQ models. Third, more aberrantly localized
salient zones, or multiple ones, are noted in control cases. Indeed, the target, the heart,
is by definition larger in cardiomegaly and therefore less often missed. Determining
why precisely the quantum approach performs better, in general, would require further
investigations. In the face of large amounts of data and parameters [43], satisfactory
visualization can be an emergent property of a CQ model confronted with medical images.
A high rate of trustworthy heatmaps is a strong argument for the acceptance of quantum
ML in diagnostic applications.

We also examined the possible gain in the trainability of the quantum approach. A
supervised classifier maps a higher dimensional input feature space to a lower dimensional
output class space. This mapping is largely determined by how well the model recognizes
the relations between the most relevant latent features and the features that do not con-
tribute to the decision classes [32]. A model learns feature mapping based on the training
data, and therefore, measuring the performance of a model on unseen data is extremely
important in assessing the risk involved in the model prediction. The measure of how well
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the model performs on unseen data is termed as the expressibility or the model’s ability to
generalize [44].

Expressive power or the generalization bound is a measure that plays an important
role in identifying an overfitting or underfitting model and the risk involved in the model
prediction. The generalization bound provides the bounding value (threshold) for the risk
assessment. For efficient assessment, the bounding value should consider the training
sample size and the richness of the class predictors output by the model [45]. As QNN
combines the principles of classical neural networks and PQC, the generalization bounds
applied to the classical networks can be adapted to QNN as well [46].

The NGED is a generalization bound that uses Fisher information. Fisher information
describes the geometry of the model parameter space and, in turn, the data distribu-
tion [47–49]. Fisher information also captures the model’s output sensitivity to changes in
the input parameter space, thus providing the relationship mapping between the input
data and the model output [18].

In QNN models, the cost function or the network gradient is evaluated in the quantum
simulator or hardware; then, a classical optimization algorithm trains the parameters of the
PQC to minimize the loss or cost of the function [50]. A flat loss landscape or the barren
plateau effect, therefore, largely affects the parameter optimization and, hence, the train-
ability of the QNN models. A barren plateau could be induced either by the noisy quantum
hardware or could be circuit-induced (due to random parameter initialization) [51].

In our experiments, we found that the best training performance was obtained in the
case of the two-dimensional CQ model, even if the NGED was smaller when compared with
the four-dimensional mode. This counterintuitive behavior could be explained based on
the fact that we only measured the effective dimension from the quantum layer, or it could
be based on the model complexity from the four-dimensional architecture. Nonetheless,
we are planning to study the NGED influence on model performance and trainability. In
particular, this would help to evaluate the barren plateau effect. Graphical visualization
of the algorithm convergence and a comparison of loss curves obtained from simulator
vs. real quantum devices would complete such experimental work. This would help set
up and evaluate strategies to mitigate the barren plateau effect, e.g., by modifying the
quantum ansatz or acting on the training parameters.

As a limitation, the high number of trainable parameters in the classical classifier
currently does not allow us to compare the CC and CQ approaches in terms of trainability
based on the global effective dimension. Indeed, this would require a very powerful
computational resource.

Our findings help define future directions for algorithm improvement, hardware
testing, and implementation in a real-life medical environment.

We believe the models can be improved by applying fine-tuning before/after the
first two steps with the freezer for a better accuracy outcome [52], tuning the hyper-
parameters and having a better-fitted quantum circuit in the quantum layer [22]. Another
possibility is applying quantum convolutional and max pool [53]. One can also consider
testing the hybrid approach on smaller pre-trained models, such as Resnet34 or Swin
Transformer [26,54].

A further step would be to test the CQ models on noisy simulators and NISQ devices.
The first approach is easily accessible but remains a delicate task [55] that does not nec-
essarily reflect the performance when using the hardware, which improves itself rapidly.
Although even more challenging [56], the evaluation of these models on real quantum
computers in terms of performance, resilience and credible visualization would allow us to
better affirm their feasibility in real situations. In this process, another full bench would be
advised to further study the usability of the models.

Additional research exploring the impact of these CC and QC models in a medical
setting may be contemplated. The more nuanced probability of cardiomegaly provided by
these types of transfer learning algorithms could have a different clinical meaning from
that of the simple reference label or the binary output. This probability is a feature that
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should be tested against established diagnoses and that should be possibly added to tabular
data used by statistical and ML applications in heart failure [4]. We can also use proposed
publicly available datasets and open-source software [57] to compare heatmaps generated
by different saliency methods in our models to confirm that some hybrid options exhibit
better localization performance.
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Appendix A

Table A1 lists the metric values observed in the thirteen experiments. Figures A1 and A2
display the ROC curves observed in these models for the training and test sets.

Table A1. Metrics for control (0) and cardiomegaly (1) by 70/30 train–test split.

Model Name AUC Acc B Acc Prec 0 Prec 1 Rec 0 Rec 1

F-Dnet-C 0.933 0.864 0.865 0.861 0.868 0.873 0.856
F-Axnet-C 0.860 0.785 0.785 0.785 0.785 0.791 0.778

F-Dnet-P-4q 0.931 0.862 0.862 0.885 0.840 0.835 0.889
F-Dnet-Q-4q-2D 0.917 0.862 0.862 0.838 0.889 0.900 0.823
F-Dnet-Q-4q-4D 0.925 0.842 0.842 0.790 0.921 0.938 0.745

N-Dnet-C 0.922 0.853 0.853 0.823 0.892 0.905 0.801
N-Axnet-C 0.908 0.822 0.822 0.839 0.806 0.802 0.842

N-Dnet-P-4q 0.908 0.832 0.831 0.787 0.894 0.913 0.748
N-Dnet-Q-4q-2D 0.833 0.779 0.780 0.810 0.754 0.737 0.823
N-Dnet-Q-4q-4D 0.873 0.804 0.804 0.788 0.822 0.837 0.770

F-Dnet-P-6q 0.904 0.866 0.865 0.841 0.895 0.905 0.825
F-Dnet-P-8q 0.936 0.858 0.857 0.818 0.911 0.924 0.789

F-Dnet-P-10q 0.932 0.860 0.860 0.850 0.871 0.878 0.842

https://github.com/quantum-ai-for-cardiac-imaging/cardiomegaly-chest-x-ray
https://github.com/quantum-ai-for-cardiac-imaging/cardiomegaly-chest-x-ray
https://stanfordaimi.azurewebsites.net/datasets/8cbd9ed4-2eb9-4565-affc-111cf4f7ebe2
https://stanfordaimi.azurewebsites.net/datasets/8cbd9ed4-2eb9-4565-affc-111cf4f7ebe2
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Figure A2. ROC curves for the QC models by 70/30 train–test split: (a) Training set. (b) Test set.

Table A2 contains approximate calculation times per epoch for all models that we
trained. For the models with Qiskit-based QPC, we used a 13,700 k CPU, and we used a
Cuda GPU for the other models.

Table A2. Processing units and calculation times per epoch.

Model Name Processing Unit Calculation Time per
Epoch

F-Dnet-C/N-Dnet-C GPU 1 min
F-Axnet-C/C-Axnet-C GPU 5 s

F-Dnet-P-4q/N-Dnet-P-4q GPU 3 min
F-Dnet-Q-4q-2D/N-Dnet-Q-4q-2D GPU and CPU 11 min
F-Dnet-Q-4q-4D/N-Dnet-Q-4q-4D GPU and CPU 11 min

F-Dnet-P-6q GPU 4 min
F-Dnet-P-8q GPU 5 min
F-Dnet-P-10q GPU 7 min

When comparing the freezer version to the standard version (ten first experiments
listed in Table A1), we observed higher metric values with the freezer option in all cases,
except when the feature extractor was the AlexNet CNN. Three additional models based
on PennyLane, with 6, 8 and 10 qubits, were tested in the freezer version only.

To better shed light on the superiority of the freezer-enhanced protocol over the
standard protocol, we compared the loss curves. In the CC models based on AlexNet
(Figure A3a), the shortest pre-trained feature extractor, the freezer slowed down the process,
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whereas the opposite was true in models based on DenseNet-121. In two of the three four-
qubit CQ models (six first curves of Figure A3b), all based on pre-trained DenseNet-121,
the process started lower and was accelerated with the freezer in two cases: the Qiskit
version with two-dimensional output and the PennyLane version. No notable freezer effect
was observed for the Qiskit version with four-dimensional output.
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For training (Figure A1a), a very high AUC score was obtained in the F-Dnet-C model.
Therefore, we looked at the 11 CXRs with a discrepancy between the label and prediction.
(Figure A4). In all these cases, the diagnosis obtained by automated label extraction from
free-text reports can certainly be disputed.

To complete our investigations about possible overfitting, ten-fold cross-validation
was performed in the CC models with different numbers of epochs (Table A3). In an
analysis of variance with the fold, number of epochs and feature extractor as the dependent
variables, no significant difference was observed among 10, 15 and 20 epochs for any
metric value.

Table A3. Metrics by ten-fold cross-validation in CC models for different numbers of epochs. Mean
and 95% CI for the mean.

Model * AUC Acc B Acc Prec 0 Prec 1 Rec 0 Rec 1

F-Dnet-C
10 Epochs

0.929 [0.919,
0.938]

0.862 [0.847,
0.877]

0.861 [0.847,
0.876]

0.843 [0.827,
0.860]

0.884 [0.861,
0.908]

0.892 [0.870,
0.915]

0.831 [0.809,
0.852]

F-Dnet-C
15 Epochs

0.931 [0.921,
0.940]

0.862 [0.850,
0.875]

0.863 [0.850,
0.875]

0.844 [0.820,
0.868]

0.884 [0.861,
0.906]

0.891 [0.870,
0.913]

0.834 [0.810,
0.859]

F-Dnet-C
20 Epochs

0.931 [0.923,
0.939]

0.863 [0.853,
0.873]

0.862 [0.852,
0.873]

0.845 [0.831,
0.858]

0.884 [0.870,
0.897]

0.892 [0.883,
0.902]

0.832 [0.812,
0.853]

F-Axnet-C
10 Epochs

0.928 [0.918,
0.938]

0.851 [0.839,
0.862]

0.851 [0.839,
0.862]

0.848 [0.829,
0.868]

0.854 [0.833,
0.876]

0.856 [0.830,
0.883]

0.845 [0.825,
0.866]

F-Axnet-C
15 Epochs

0.927 [0.911,
0.942]

0.857 [0.840,
0.874]

0.857 [0.839,
0.874]

0.855 [0.834,
0.877]

0.857 [0.839,
0.876

0.860 [0.841,
0.879]

0.853 [0.834,
0.873]

F-Axnet-C
20 Epochs

0.933 [0.925,
0.940]

0.858 [0.852,
0.863]

0.858 [0.853,
0.864]

0.858 [0.843,
0.873]

0.858 [0.835,
0.880]

0.860 [0.838,
0.881]

0.857 [0.844,
0.870]

* The number of epochs includes the 2 epochs for the freezer phase.
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Figure A4. Upper left: confusion matrix for the training set observed for the CC model with Densenet
121 as a feature extractor. Upper right box: two CXRs labeled as control and predicted cardiomegaly.
Lower box: 9 CXRs labeled as cardiomegaly and predicted control.
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