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Abstract: Despite the intensive use of radiotherapy in clinical practice, its effectiveness depends
on several factors. Several studies showed that the tumour response to radiation differs from one
patient to another. The non-uniform response of the tumour is mainly caused by multiple interactions
between the tumour microenvironment and healthy cells. To understand these interactions, five
major biologic concepts called the “5 Rs” have emerged. These concepts include reoxygenation, DNA
damage repair, cell cycle redistribution, cellular radiosensitivity and cellular repopulation. In this
study, we used a multi-scale model, which included the five Rs of radiotherapy, to predict the effects
of radiation on tumour growth. In this model, the oxygen level was varied in both time and space.
When radiotherapy was given, the sensitivity of cells depending on their location in the cell cycle was
taken in account. This model also considered the repair of cells by giving a different probability of
survival after radiation for tumour and normal cells. Here, we developed four fractionation protocol
schemes. We used simulated and positron emission tomography (PET) imaging with the hypoxia
tracer 18F-flortanidazole (18F-HX4) images as input data of our model. In addition, tumour control
probability curves were simulated. The result showed the evolution of tumours and normal cells. The
increase in the cell number after radiation was seen in both normal and malignant cells, which proves
that repopulation was included in this model. The proposed model predicts the tumour response to
radiation and forms the basis for a more patient-specific clinical tool where related biological data
will be included.

Keywords: radiotherapy; five Rs of radiobiology; tumour response; simulation; PET images

1. Introduction

Cancer is considered the leading cause of death in many developed countries [1], and
it is a major public health problem around the world [2]. In the future, this disease will
become the leading cause of morbidity and mortality in all regions of the world [3]. Cancer
is a family of diseases characterized by abnormal cell growth, which damages the cell’s
DNA. Radiotherapy represents one of the main curative approaches and plays a central
role in cancer therapy. Indeed, more than 50% of patients receive radiotherapy at some
point during their treatment [4]. Radiotherapy aims to deliver enough radiation to kill
tumour cells but as low as possible to limit damage to surrounding normal cells [5]. That is
why fractionated radiotherapy, in most cases, is the common technique used to treat cancer
with radiation [6]. Indeed, dividing the total dose into several smaller ones over a period of
several days reduces the toxicity of healthy cells [4].

The effectiveness of radiotherapy depends on several factors and especially on the
total dose delivered. However, the response of the tumour to a given treatment can vary
from one patient to another. Several underlying biological effects that could explain the
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variation in the biological response of tissues occurring during fractionated radiotherapy
have been identified. Such biological principles can be summarized by a simple viewpoint
called the five Rs of radiobiology: repair, repopulation, reoxygenation, redistribution in the
cell cycle and radiosensitivity [7].

The heterogeneity of the tumour response in patients with the same type of cancer
and the non-uniformity of tumour cells within the same individual tumour remain a key
challenge for the cure of cancer [8]. Understanding and predicting the response of the
tumour and normal tissues to treatment is therefore essential to provide useful information
on the effectiveness of radiotherapy. The development of a clinical decision-support system
based on predictive and prognostic data factors could help clinicians in their decision-
making [9].

In recent years, there has been a significant amount of interest in the search for an
optimal and personalized treatment plan [10–12]. Many models have been developed
to study tumour growth and the radiotherapy response to radiation [13]. Most of these
studies were based on simulations using mathematical models to describe the processes
determining the response of cells and tissues to radiation. For example, the model proposed
by Lind et al. [14] is based on the interaction of two Poisson processes and took into account
two distinct types of cell damage, potentially repairable and conditionally repairable.

The effects of repair and repopulation have been modelled [15]. In this work, pop-
ulation dynamics and the cell number after radiation were simulated by coupling the
linear-quadratic (LQ) model with a repopulation model. Furthermore, the effects of dam-
age repair, cellular repopulation and redistribution in the cell cycle have been modelled via
an analytical model describing the effect of radiation on cell inactivation [16].

Fakir et al. [17] presented a mathematical niche model for estimating tumour control
probability (TCP) characterizing the tumour repopulation due to the proliferation of cells
that survive after irradiation. A recent study by Yang et al. [18] focused on the process
of tumour repopulation during radiotherapy and its detection methods using 18F-FLT
PET. Badri et al. [19] developed a stochastic radiation-scheduling concept and incorporated
inter-patient variability. This approach was based on a linear-quadratic model, including
tumour proliferation, while tumour repopulation was based on a simple exponential law
starting after a “kick-off” time [20].

Several experimental studies have shown that tumour cells in a hypoxic environment
have a higher probability of surviving after irradiation than cells in a well-oxygenated situa-
tion. Oxygen availability is closely linked with the micro-vascular network. In this context,
Grogan et al. [21] presented a hybrid multiscale model to predict the cellular response to
radiotherapy. They used a cellular automaton approach of tumour growth and a model
for oxygen transport from blood vessels. Other models have been developed to study the
dynamics of hypoxia and the effect of reoxygenation in fractionated radiotherapy [22–26].
In general, most simulation methods remain theoretical and are rarely compared with ac-
tual clinical data. In addition, to our knowledge, no study on the modelling of the tumour
response to radiotherapy has taken into account these five processes together. Proposed
methods are rarely confronted with the actual tumour microenvironment of a given patient.
Furthermore, as stated above, hypoxia and the partial pressure of oxygen (pO2) [27] should
be taken into account when the response to radiotherapy [28] is studied. Although several
methods capable of simulating pO2 exist [29], the proposed approaches often neglect the
dynamic aspects of oxygen pressure during treatment [30].

A mathematical model for the tumour response that included the cell cycle effect in the
context of lung cancer was presented by Jeong et al. [24] for understanding the dynamics of
tumour cells during radiotherapy. A series of recent studies also included the effects of the
cell cycle [31,32]. Other analytical models focused on the impact of intrinsic radiosensitivity
on the tumour cell population [33–35].

It appears from these studies that an ideal predictive model should integrate all known
radiobiological processes [34] to take into account the personal biological parameters of
each patient, especially at the beginning of treatment. In the present study, the main
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objective was to evaluate the potential of incorporating the five Rs of radiobiology in a
simulation process. We developed an analytical model that included the effects of repair,
repopulation, redistribution, reoxygenation and radiosensitivity on the tumour response to
radiotherapy.

This new general approach is illustrated by the implementation of tumour [18F] HX4
PET images as input data. This tracer is a hydrophilic variant of the 2-nitroimidazole class
of radiotracers, which is used as a marker of hypoxia for the preclinical evaluation and
validation of PET imaging [36,37].

2. Materials and Methods
2.1. Model of Tumour Response to Radiotherapy

The proposed model was developed to describe the evolution and tumour response at
both macroscopic and microscopic scales. In this work, the macroscopic scale at the tumour
level is represented by PET images. These patient-dependent images are used as the input
data, and at this scale, the model consists of a series of N = Nx × Ny × Nz voxels, where
Nx, Ny, Nz were the numbers of voxels in each direction for the PET image.

The total number of cells inside a voxel was constant, according to a fixed cell density
µ (Table 1). Each voxel considered four populations of cells: tumour cells, capillary cells,
normal cells and dead cells that may be present after irradiation. The number of capillary
cells determined the state of oxygenation according to the vascular fraction vf (relative
volume of capillary cells within a voxel). Since the amount of oxygen available may be
heterogeneous in the cell microenvironment, a specific oxygen histogram was assigned to
each voxel. The shape of the histogram depended on the vascular fraction of the voxel and
was build according to the method described by Espinoza et al. [38]. Here, a series of six
different oxygenation patterns was built, each one corresponding to a specific histogram,
as depicted in Figure 1.
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Once each voxel has been described according to these parameters, the proportions of
cells evolve at each cell cycle time. At the microscopic scale, the model was based on the
cellular division to handle tumour growth, according to classical phases of the cellular cycle:

• G0 phase, also called quiescence phase where the cell has left the active cycle and has
stopped dividing.

• G1 phase, where the cell increases in size.
• S phase, or synthesis phase, where DNA is duplicated.
• G2 phase, preparing mitosis (synthesis of enzymes, etc.).
• M phase or mitosis, which is the last phase of the cell cycle, when division occurs.

Based on the work of Wille et al. [39], we speculated that the duration of the cell cycle
Tc is 24 h. The initial cell cycle phase distribution was assumed to be 14 h in G1, 6 h in S, 3 h
in G2 and 1 h in M. In general, there are two checkpoints in the cell cycle, one for controlling
transition from G1 to S and another for controlling transition from G2 to M. The transition
from S to G2 was assumed to be automatic. A cell that was in none of these stages was
considered in the quiescence phase (G0).

The cell cycle was arbitrarily divided into intervals of 1 h, which is also the duration of
each step in the simulation. A cell that entered phase G1 automatically passed through the
first intervals but underwent a transition test at the end of the phase. In the case of success,
the cell continued its cycle until the next checkpoint (at G2/M).

Checkpoint tests were given using a random variable that follows Bernoulli’s law [32].
The total number of cells at a checkpoint was thus governed by a random variable that
follows the binomial law. Given the large number of cells in the population concerned, this
binomial distribution was then approximated based on a normal distribution [32].

Concerning tumour response modelling, a cell in the cellular cycle can die, survive
and proliferate.

Table 1. List of parameters of the simulated tumour model.

Parameter Symbol Value

Cell density µ 106/mm3 [40]

Cell cycle time Tc 24 h

Upper asymptote C 1 [41]

Cell growth rate B 0.075 [41]

Oxygen partial pressure pO2 Calculated from histograms

Inflection point (the pO2 value at
the point of maximum incline) M 26.3 [41]

Capillary cell proliferation
(doubling time) ta 612 h [42]

Radiosensitivity coefficient α 0.273 Gy−1 [43]

Radiosensitivity coefficient β 0.045 Gy−2 [43]

Dose d 2 Gy

Maximum OER value m 3 [44]

Oxygen partial tension at
OER = (m + 1)/2 k 3 mmHg [45]

Half-life of dead cell resorption tr 168 h [22]

2.2. Model Components

A series of conventional radiobiological processes [32,41] was used as the main com-
ponents of the model.
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• Proliferation of tumour cells: the probability of cell division depends on the current
oxygenation status of the cell. Cell proliferation factor PF was calculated as follows:

PF = C. exp{−exp[B.(pO2 −M)]} (1)

where C is the superior asymptote, B the growth rate and M represents the pO2 value
at the curve inflexion point.

• Angiogenesis: the presence of hypoxia may induce angiogenesis [46]. In this case the
fraction of the capillary cells was multiplied by the factor PFa:

PFa = exp
(

ln(2)
ta
× time

)
(2)

where ta is the doubling time for capillary cells and time is the simulation time step
(1 h).

• Cell survival after irradiation SF:

SF = exp
(
− α

m
d.OER(pO2)−

β

m2 d2OER(pO2)
2
)

(3)

Here, α and β are the radio-sensitivity coefficients, m is the maximum ratio, d is the
dose and the OER is given by the following:

OER(pO2) =
mpO2 + k
pO2 + k

(4)

where k is the pO2 at half of the increase from 1 to m.
• Resorption of dead tumour cells: tumour cells that have died after irradiation will be

resorbed after a few days. This was reflected by the fraction of resorption:

RF = 1− exp
(
− ln(2)

tr
× time

)
(5)

Here, tr represents the half-life of dead cell resorption.
• Cell replacement: if the number of cells per voxel decreased after the resorption of

dead cells, it was necessary to redistribute some new cells in the voxel to maintain cell
density. For the sake of simplicity, resorbed cells were arbitrarily replaced by normal
cells or capillary ones, depending on the oxygenation model.

2.3. Factors Influencing Tumour Response According to the 5 Rs

In this study, the developed model was obtained by adding the 5 Rs of radiobiology to
the processes described above. In the literature, the values of these different parameters
differ depending on the type of cancer. With regard to our study, the parameter values
relate to the cancer “rhabdomyosarcoma”. Therefore, to determine each parameter, as well
as to combine the model components, we relied on previous studies as explained below.

2.3.1. Repair

The use of radiotherapy as a treatment modality exposes cells to ionizing radiation,
which damages DNA. Cell survival after irradiation depends on the cell’s ability to repair
itself and on the type of lesion. In fact, if DNA damage is irreparable, cells activate death
programs [47]. In the case of normal tissue cells, if they can repair the damage, it can only
be beneficial for the treatment result. In contrast, in the case of tumour cells, post-radiation
survival allows tumour cells to proliferate [48]. The success of radiotherapy therefore
depends on the extent of damage in the exposed tumour tissue [47].

In fractionated radiotherapy, by dividing the total dose into a set of fractions, repair
produces increased cell survival by allowing cells to recover after the individual radiation
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dose and consequently proliferation between fractions. Generally, the linear-quadratic
model is often used in radiobiology to describe the response to radiation [1]. It represents
a mathematical formula linking cell survival and the radiation dose and depends on two
parameters, α and β. The parameter α determines the initial slope of the cellular survival
curve, and β represents the accumulation of sublethal damage.

Dose splitting allows time for healthy tissue to recover and repair itself between
sessions, which is not the case for tumour cells as their repair system is disrupted by nature.

In this study, the density of surviving normal cells after irradiation is given by the following:

SFN =

(
−αd

(
1 + d

β

α

))
(6)

The density formula used in our model was inspired by the work presented by
Joiner et al. [1]. Dead normal cells will be replaced as dead tumour cells as described above
in “Cell replacement”. The control of DNA repair is closely linked to the redistribution of
the cell in the cellular cycle [49]. In fact, checkpoints during the cell cycle ensure that DNA
is intact before DNA replication and cell division.

2.3.2. Redistribution in the Cell Cycle

During irradiation, cells can be anywhere in the cell cycle, at a given phase, among G1,
S, G2 or M.

Cells are characterized by various radiosensitivities depending on their location in the
cell cycle. Cells in phase S are known to be more radioresistant, while cells in other phases
are relatively more sensitive to radiation [50]. Thus, the radiation dose delivered for an
asynchronous population of cells will probably induce more deaths for cells that are in the
sensitive phase. Consequently, cells that survive are those that were in resistant phases. As
a consequence, the surviving population is partially synchronized [51].

Damage to DNA after irradiation will block cell progression at cell cycle check-
points [52] causing cell accumulation at this point. This behaviour is expected to prevent
cells from entering into the division phase with fatal damage [53]. Over time, surviving
cells will continue to evolve in the cycle. If a second dose of radiation is delivered sometime
later, some of these cells will have left the resistant phase and will be in a more sensitive
phase, which will allow them to be killed more easily. In our study, we proposed to add a
weighting coefficient described by Joiner et al. [1] to manage the sensitivity of cells to their
phases before irradiation.

2.3.3. Repopulation

Conventional fractionation consists of delivering a small dose (2 Gy) daily on a week-
day during several weeks. This protocol allows normal tissues to repair potential radiation
damage between two consecutive fractions. However, surviving tumour cells can also
repopulate between fractions. Repopulation plays an important role in the outcome of
radiotherapy, since surviving tumour cells can generate new cells that were not present at
the beginning of the treatment.

Repopulation may have a significant role when the overall treatment time is long, as
seen in classical fractionation protocols. However, there are strategies that can reduce the
effect of repopulation through accelerated fractionation, which reduces the overall treat-
ment time by delivering two fractions per day instead of one. In addition, an accelerated
repopulation of malignant cells is often observed in a series of common cancers [54]. These
types of tumours show accelerated repopulation after two or three weeks of treatment.

In this work, we chose to vary the doubling time Tp, defined as the time required for
the tumour cell population to double without natural loss. As an example, during the first
two weeks Tp is set to 1200 h and becomes 120 h until the end of treatment [1,55].
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2.3.4. Reoxygenation

Local oxygen tension plays an important role in the radiotherapy response [54]. Several
studies showed that the poor prognosis of radiotherapy might be correlated with tumour
hypoxia [56,57]. Thomlinson and Gray [58] have suggested that human lung cancer contains
hypoxic areas, with necrotic areas closely related to the size of the tumour. In fact, when the
tumour size is greater than 1 mm, cells located at a distance from the vessels have reduced
access to oxygen, and the central part of the tumour becomes necrotic. On the contrary,
when the diameter of tumours is less than 1 mm, they were found to be fully oxygenated [1].
In addition, the effect of ionizing radiation targeting DNA is stabilized in the presence of
oxygen. In contrast, in hypoxic environments, tumour cells are two-to-three times more
resistant than well-oxygenated cells. Moreover, when radiation is separated into multiple
fractions delivered over weeks, cells that are relatively resistant due to hypoxia at the
beginning of the treatment may become reoxygenated.

Reoxygenation is the phenomenon of hypoxic tumours becoming oxygenated again
during radiotherapy treatment. Numerous studies have shown that the reoxygenation of
tumours may occur only 24 to 72 h after irradiation [59]. Reoxygenation is caused by several
mechanisms, such as reopening temporarily closed vessels or decreasing the respiration
of fatally damaged cells. Other mechanisms need longer intervals to occur, such as cell
death due to mitotic catastrophe or ischemia leading to tumour shrinkage and a decreased
distance between capillaries and tumour cells that allows oxygen to reach the hypoxic zone.

In this work, oxygen levels varied in time and space. The vascular fraction vf varied
during the treatment and changed from one voxel to another. In the model, vf depended
on the proportion of capillary cells in voxels. Initially, every voxel contained 80% of
tumour cells, and in the remaining 20%, 96.4% of normal cells and 3.6% of capillary
cells were present [60]. This distribution would remain valid throughout the simulation,
with dead cells replaced by capillary and normal cells in the proportions of 3.6% and
96.4%, respectively. The reoxygenation of malignant cells during radiotherapy can increase
their radiosensitivity.

2.3.5. Radiosensitivity

Tumours respond differently to radiation therapy. This variable response is correlated
with the intrinsic radiosensitivity of cells. Radiosensitivity was added to the four Rs in 1989
by Steel et al. [61]. This new member of the Rs of radiobiology highlights the fact that there
is an intrinsic radiosensitivity in different types of cells.

Tumour cell radiosensitivity is a significant prognostic factor for the overall response of
tumours and radiotherapy outcomes. Some studies were interested in trying to determine
and predict this inter-individual variability. In theory, it would be interesting to be able
to determine the intrinsic radiosensitivity of tumour cells, as well as the radiosensitivity
of healthy tissues, for each patient. Radiosensitivity, which is the relative susceptibility of
cells to ionizing radiation, is usually indicated by the parameters of the linear-quadratic
equations. For this reason, we used specific α and β parameters for each cell type, either
healthy or tumoural.

2.4. Simulations

In our study, four fractionation schemes were designed and simulated to quantify the
impact on the tumour response to radiotherapy (Figure 2).

In Figure 2, vertical arrows indicate the days when the radiotherapy session takes
place. The numbers 1 to 5 represent weeks. The first fractionation scheme studied is
conventional or standard fractionation (SP: standard protocol), with a 2 Gy dose delivered
5 days per week for 5 weeks. The second fractionation scheme is sometimes referred to
as DAHANCA (DP), in which a dose of 2 Gy is administered 6 days a week instead of 5,
leading to an overall treatment time of 4 weeks instead of 5. The third fractionation scheme
is a personal scheme (PP) in which a dose of 2 Gy is administered for 25 days without any
interruption (weekends are included). The fourth fractionation scheme shown in Figure 2 is
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the CHART protocol. During this protocol, 36 fractions of 1.5 Gy over 12 consecutive days
are administered. The treatment consisted of 3 fractions per day every 6 h. The tumour
response was simulated for each fractionation scheme using simulated tumour and then
PET images.
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performed. Four protocols were studied: Standard Protocol (SP), DAHANCA Protocol (DP), Personal
Protocol (PP) and CHART Protocol (CP). In the case of CP, three doses were delivered per day (for
other details, see the text).

2.5. Data

In this study, artificially created tumours with simple geometries were used to demon-
strate the main features of the model and to visualize the impact of the different biological
effects. The virtual tumour had a diameter of approximately 3 cm in accordance with the
work of Espinoza et al. ([60]).

Then, for validation, we used [18F] HX4 PET images from an image database generated
by our previous study [62], which are considered a reliable tool for the detection of hypoxic
tumour regions [37,63,64]. Data (images) from four mice with rhabdomyosarcoma tumours,
with two control mice that received NaCl while two others received TH-302 for 4 days,
have been used in this study. A [18F] HX4 PET image was acquired before treatment and a
second one was acquired on day four of the treatment. Irradiation was delivered on day 3.
During the treatment, animals were exposed to modified oxygen concentrations. Two mice
were treated under carbogen (95% oxygen, 5% CO2) and the other two were treated under
reduced oxygen breathing (7% oxygen):

• Mouse 1: NaCl + 95% oxygen;
• Mouse 2: TH-302 + 95% oxygen;
• Mouse 3: NaCl + 7% oxygen;
• Mouse 4: TH-302 + 7% oxygen.

The model input data are PET images and a distribution of the partial pressure of
oxygen. The model returns simulated PET images. Throughout this study, we hypothesized
that the number of tumour cells is proportional to glucose consumption as described
elsewhere [28,41].

To calculate the initial distribution of cells in each voxel, we searched for the voxel
with the maximum intensity (imax). Then, we divided the values of each voxel by the max.
Then, µt = 80% of the tumour cells were assigned to each voxel, and in the remaining 20%,
µn = 96.4% were normal cells and µc = 3.6% capillary cells.
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In a voxel, we have 106 cells/mm3 [60], and denoting imax as the maximum intensity
among all the intensity values of the voxels, the initial number of tumour cells in each voxel
is given by the following:

Ntum =
ivox

imax
×Vvox × µt × 106 (7)

where Vvox is the volume of a voxel and ivox is the intensity of the voxel.
Therefore, a new PET image can be generated during the simulation using the updated

value of the cell number value to calculate the intensities in this new image.

2.6. Tumour Control Probability (TCP)

TCP (Tumour Control Probability) is a model that predicts and quantifies the biologic
radiation response of tumours, the survival. The most used model is based on Poisson
statistics describing the distribution of the surviving tumour cells. In general, the LQ model
is used for calculating cell survival and it allows for the quantification of TCP for tumours.

Here, a TCP curve was generated by simulating the tumour response to radiotherapy.
We consider a tumour controlled if all tumour cells were killed.

3. Results

The presented model allows us to simulate the tumour response under radiotherapy.
In Figure 3, the temporal evolution of the total number of tumour cells is presented.
During the first 72 h, the increase in the number of tumour cells was due to the absence of
radiotherapy. After this initial phase, the effect of radiotherapy becomes visible. A daily
decrease in tumour cells followed by a recovery was observed due to the repopulation of
tumour cells between two radiations.

J. Imaging 2023, 9, x FOR PEER REVIEW 10 of 24 
 

 

 
Figure 3. Evolution of the tumour cell number during the treatment in the case of mouse 1. 

In Figure 4, tumour growth images are presented. Qualitatively, the visual compari-
son between real and simulated images shows that there is real similarity between them. 
The simulated image was obtained from the real images acquired before the beginning of 
treatment. Mice were under carbogen. Although these images were obtained after a single 
irradiation, we can see the effectiveness of radiotherapy, which is not the case in Figure 5. 

 
Figure 4. Comparison of simulated and real images for two mice under carbogen (95% oxygen, 5% 
CO2). Input images were acquired before the beginning of radiotherapy. Simulated and real images 
were obtained after a single irradiation (for other details, see the text). 

In Figure 5, it can be noted that there is a certain resistance of the cells, which is quite 
logical because the mice were under limited oxygenation. In the case of mice under breath-
ing 7% conditions, we imposed, at the beginning of the simulation, a hypoxic histogram 
to reproduce the conditions under which mice were treated. In addition, in the other case 
(under carbogen), we imposed a well-oxygenated histogram. 

In the case of mouse number 3, the effect of radiotherapy is not visible. In the case of 
mouse 4, we can see a slight change. This result is also visible in the case of mouse 4, 
despite treatment with TH-302, an anti-tumour agent that is activated in a hypoxic envi-
ronment. 

Figure 3. Evolution of the tumour cell number during the treatment in the case of mouse 1.

In Figure 4, tumour growth images are presented. Qualitatively, the visual comparison
between real and simulated images shows that there is real similarity between them. The
simulated image was obtained from the real images acquired before the beginning of
treatment. Mice were under carbogen. Although these images were obtained after a single
irradiation, we can see the effectiveness of radiotherapy, which is not the case in Figure 5.
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Figure 5. Comparison of simulated and real images for two mice under breathing 7% conditions.
Input images were acquired before the beginning of radiotherapy. Simulated and real images were
obtained after a single irradiation (for other details see text).

In Figure 5, it can be noted that there is a certain resistance of the cells, which is
quite logical because the mice were under limited oxygenation. In the case of mice under
breathing 7% conditions, we imposed, at the beginning of the simulation, a hypoxic
histogram to reproduce the conditions under which mice were treated. In addition, in the
other case (under carbogen), we imposed a well-oxygenated histogram.

In the case of mouse number 3, the effect of radiotherapy is not visible. In the case of
mouse 4, we can see a slight change. This result is also visible in the case of mouse 4, despite
treatment with TH-302, an anti-tumour agent that is activated in a hypoxic environment.

3.1. Repair

In our study, we modelled the response of normal cells to radiotherapy with the linear
quadratic model. In Figure 6, the temporal evolution of normal cells is presented. The blue
curve represents the evolution of normal cells using the linear quadratic model, which is
not the case in the red curve.
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Figure 6. The evolution of normal cell numbers during the treatment. Comparison of the evolution
using the LQ Model (blue curve) and without it (red curve) (for other details, see the text).

During the first 72 h, the decrease in the total number of normal cells is due to the
absence of radiotherapy. In fact, when radiotherapy is not administrated, the number of
tumour cells per voxel increased. Since there is a fixed cell density in a voxel, tumour
cells continued to proliferate at the expense of other cell types. Then, when radiotherapy
was administered, the number of dead tumour cells following irradiation gave way to
other cell types. Therefore, the number of normal cells increased after 72 h. Then, a slight
change in this number was noted between two irradiations caused by cellular sensitivity to
irradiation and cellular repopulation.

3.2. Redistribution in the Cell Cycle

The distribution of cells in the cell cycle affects the outcome of radiation therapy. A
weighting coefficient was added to manage the sensitivity of the cells according to their
location before irradiation (blue curve Figure 7), which is not the case in the orange curve.
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According to the work of Joiner et al. [1], we chose to modify the parameters during
each irradiation. The aim was to see the impact of this variation on the result of the
irradiation after one week of treatment. We observed in Figure 8 that from the third
day, there was a difference between the irradiation administered with variations in the
parameters (Figure 8a) and without variation (Figure 8b). It was deduced that variation of
the parameters allows for the more rapid control of the tumour.
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Figure 8. Tumour response in mice in the presence or absence of variations in radiosensitivity during
the cell cycle. (a): Weighting coefficients varied, and in (b), coefficients were constant (for other
details, see the text).

Figure 9 confirms the difference seen in Figure 8. In Figure 9a, parameters were varied
during every irradiation (for each irradiation per day, we have a new coefficient), and in
Figure 9b, the value of these parameters was constant during the treatment. In this figure,
we have drawn an interactive 3D surface plot. These plots display a three-dimensional
graph of the intensities of voxels in the image. In our study, we considered the closer
the voxel intensity is to the black colour, the more we controlled the tumour. Indeed, the
darkest areas are the areas where there is more oxygen. Thus, fewer tumour cells are in
these areas.

In Table 2, a percentage of cells in each phase of the cell cycle has been shown. It is
observed that the percentage of cells in G1 after 24 h increases slightly and remains stable
in phase M. On the other hand, the percentage of cells in phase S decreased but it increased
in phase G. This observed evolution corresponds to experimental data presented in the
study [65].

In Figure 10, a percentage of cells in each cell cycle phase before and after radiation
therapy is shown. It was observed that there was a decrease in the percentage of cells after
radiotherapy in phases G1, S and M, which was not the case for phase G2. Compared to
the initial condition, for a dose of 2 Gy, there was a large increase in cells in phase G2 after
radiotherapy. The blockage of cells in G2 following radiation exposure can be attributed
to the activation of cellular repair mechanisms. As a result, the percentage of cells in M
phase decreased at the same time. The percentages of G1 and S cells also declined following
irradiation [65].
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Table 2. Evolution of phases (without treatment).

Time (h)
Percentage of Cells in:

G1 S G2 M

0 68.44 20.04 8.77 2.75

24 68.58 16.44 12.22 2.75

J. Imaging 2023, 9, x FOR PEER REVIEW 14 of 24 
 

 

Figure 9. The interactive 3D surface plots displayed a three-dimensional graph of the intensities of 
voxels. (a): Parameters of radiosensitivity were varied with every irradiation. Of note, for each irra-
diation per day, a new coefficient was used, and in (b), parameters were fixed (for other details, see 
the text). 

In Table 2, a percentage of cells in each phase of the cell cycle has been shown. It is 
observed that the percentage of cells in G1 after 24 h increases slightly and remains stable 
in phase M. On the other hand, the percentage of cells in phase S decreased but it increased 
in phase G. This observed evolution corresponds to experimental data presented in the 
study [65]. 

Table 2. Evolution of phases (without treatment). 

Time (h) Percentage of Cells in: 
G1 S G2 M 

0 68.44 20.04 8.77 2.75 
24 68.58 16.44 12.22 2.75 

In Figure 10, a percentage of cells in each cell cycle phase before and after radiation 
therapy is shown. It was observed that there was a decrease in the percentage of cells after 
radiotherapy in phases G1, S and M, which was not the case for phase G2. Compared to 
the initial condition, for a dose of 2 Gy, there was a large increase in cells in phase G2 after 
radiotherapy. The blockage of cells in G2 following radiation exposure can be attributed 
to the activation of cellular repair mechanisms. As a result, the percentage of cells in M 
phase decreased at the same time. The percentages of G1 and S cells also declined follow-
ing irradiation [65]. 

 
Figure 10. Percentages of cells in each cell cycle phase (before and after radiotherapy). 

In Figure 11, evolution of the cell cycle phases over time is presented. The irradiation 
takes place at t = 20 h. It is observed that following radiotherapy, the percentage of cells 
in G1 and S decreases and increases in G2. After this disturbance (t = 30 h), the percentage 
in G1 and S increases and that in G2 decreases. 

0

10

20

30

40

50

60

70

80

90

100

G1 S G2 M

Pe
rc

en
ta

ge
 o

f c
el

ls 
(%

)

Cell cycle phases

Pretreatment

After Radiotherapy

Figure 10. Percentages of cells in each cell cycle phase (before and after radiotherapy).

In Figure 11, evolution of the cell cycle phases over time is presented. The irradiation
takes place at t = 20 h. It is observed that following radiotherapy, the percentage of cells in
G1 and S decreases and increases in G2. After this disturbance (t = 30 h), the percentage in
G1 and S increases and that in G2 decreases.
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Figure 11. Evolution of percentage of cells in each cell cycle phase over time. The cells were irradiated
at t = 20 h.
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3.3. Repopulation

During the first two weeks of radiotherapy, Tp will be equal to 1200 h and then
change to 120 h until the end of the treatment. In Figure 12, the blue curve represents
tumour development considering repopulation, but in the red curve, cell repopulation is
not considered.
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Figure 12. Evolution of number of tumour cells with or without tumour repopulation over time.

3.4. Reoxygenation

Here, we considered the spatiotemporal evolution of oxygen during radiotherapy
treatment.

In Figure 13, we compared the tumour response with the spatiotemporal evolution of
oxygenation (blue curve) and constant oxygenation (red curve). We can see that our model
is sensitive to changes in the rate of the partial pressure of oxygen.
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Figure 13. The response of tumour cells according to tumour oxygenation.

3.5. Radiosensitivity

In this study, the radiosensitivity parameters were varied to see their impact on the
tumour response. The values of these parameters have been reported by three different
studies. At the start, we used linear quadratic model parameters α = 0.339 and β = 0.067,
which gave a α/β ratio equal to 5.06 Gy [66]. Second, the tumour response was simulated
with α = 0.04 and β = 0.0089 (ratio α/β = 4.94 Gy) [32]. Finally, we worked with an α/β
ratio = 6.06 Gy [1].
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By modifying the α and β radiosensitivity parameters, a different tumour response is
obtained (Figure 14). This shows that our model considers intrinsic radiosensitivity.
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Figure 14. Evolution of tumour cell numbers over time according to the α/β ratio.

To demonstrate the main features of the model and visualize the impact of different
fractionation patterns on tumour response, an artificially created virtual tumour with
simple geometries was used in this study as a first step. Then, to validate the results
obtained with the simulated tumour, the tumour response was simulated using a real
image of a rhabdomyosarcoma tumour.

3.6. Tumour Response to Different Fractionation Schemes
3.6.1. Simulated Tumour Response

In this study, four fractionation schemes were simulated. The tumour response to
radiotherapy was then studied for each treatment regimen. It can be seen in Figure 15
that the personal protocol allows the tumour to be controlled more quickly than the other
protocols. It is closely followed by the CHART protocol.
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(a) Standard Protocol: SP, (b) DAHANCA Protocol: DP, (c) Personal Protocol: PP and (d) CHART
Protocol: CP.
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The following figure confirms the result observed in Figure 15. The simulation of
the response of the simulated tumour to radiotherapy leads to different responses for the
different treatment regimens (see Figure 16a). The PP and CP protocols provide faster
tumour control than the conventional regimen and the DAHANCA protocol.
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Figure 16. Tumour response to radiotherapy. (a) Evolution of tumour cell numbers over time, and
(b) the TCP curve for the simulated tumour. The TCD50 values (in Gy) of the TCP curves are 17.7,
17.9, 20.1 and 23.4 for PP, CP, SP and DP, respectively.

The tumour response was quantified in terms of cell survival and TCP curves (Figure 16b).
The TCD50 (the dose required to control 50% of tumours locally) was calculated. The TCD50
values (in Gy) of the TCP curves are 17.7, 17.9, 20.1 and 23.4 for PP, CP, SD and DP, respectively.

3.6.2. Tumour Response to Radiotherapy

In this study, we used [18F] HX4 PET images of mice with rhabdomyosarcoma as
input for our simulation model. Figure 17 demonstrates that with the CHART protocol, we
have better local control of the tumour.
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Figure 17. The evolution of tumour cell numbers over time for a rhabdomyosarcoma tumour based
on each protocol: Standard Protocol (SP), DAHANCA Protocol (DP), Personal Protocol (PP) and
CHART Protocol (CP).

In Figure 18, the TCP curve is plotted. Three fractionation protocols have been brought
together: CHART, staff and DAHANCA. According to this curve, these three protocols are
more efficient in terms of local tumour control than the classic or standard model. As with
the simulated images, the values of TCD50 were calculated. The values were found to be
13.23, 13.24, 13.72 and 18.18, respectively for CP, PP, DP and SP.
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18.18, respectively for CP, PP, DP and SP.
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Figure 19 illustrates tumour development for each fractionation scheme. The images
obtained on the seventh day after the start of treatment show that the CHART protocol has
better tumour control, especially compared to the conventional protocol.
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4. Discussion

In the context of the numerical simulation of tumour growth and response to radio-
therapy, we proposed to combine two series of biological processes. The first set includes
the main processes often studied independently so far, such as tumour cell proliferation,
angiogenesis, cell survival after irradiation, resorption of dead tumour cells and cell re-
placement. The second set includes the main concepts of what is referred to as the five
Rs of radiobiology. These five Rs are cell cycle redistribution, reoxygenation, intrinsic ra-
diosensitivity, cell repopulation and repair. This is the first approach where these concepts
are integrated into a unified environment, using both the microscopic cell cycle scale and
the macroscopic population scale. To our knowledge, no other study on the modelling of
the tumour response to radiotherapy considered these processes altogether. Most previous
studies indeed simulated these processes separately [67], for example without considering
reoxygenation despite its importance in the response to treatment. The approach presented
here has several important advantages, such as versatility and the possibility of using it in
different contexts with all kinds of input data, for example patient-specific biological data.

More specifically, we have shown that our approach responds correctly to the modifi-
cation of input parameters, through application to a virtual cell population. We have also
shown that it is possible to quantify the impact of fractionation on the response, by studying
a theoretical population. An example of a practical evaluation is also proposed, using,
as input data, a set of preclinical [18F] HX4 PET images acquired under different oxygen
conditions. Images obtained after simulation were consistent with the real post-irradiation
images. Moreover, our model has been used to test [18F] FDG PET images (non-hypoxia
tracer) of patients with rectal cancer, and the results are promising (data not shown).

In this study, we investigated the impact of four different fractionation schemes on
the evolution of a cell population. The objective was to find the protocol that allowed for
better control of the tumour while limiting healthy tissue damage. The results showed that
the reduction in treatment time has a considerable effect on local tumour control. In the
cases of simulated and real tumours, the CHART protocol showed better tumour control,
especially when compared with the conventional protocol. In the case of rectal cancer,
studies have shown that the CHART protocol, as a preoperative treatment for rectal cancer,
is feasible and appears to be associated with low acute and late toxicity. In the study of
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S. Brooks et al. [68], the authors found that local control was encouraging and therefore
justified a more in-depth evaluation of this protocol. Thus, they proposed the incorporation
of chemotherapy, which could also be considered as an option of investigation in the future.

Images used in this work were images of mice treated with NaCl or TH-302. TH-302
is an investigational hypoxia-activated prodrug used to treat cancer. TH-302 is activated
only in hypoxic regions where the oxygen level is very low. It was developed to target the
hypoxic zones existing in tumours. Generally, it is used combination with chemotherapy
and shows rather satisfactory results. Recently, in the study of Peeters et al. [62], the
authors studied the efficacy of the combination treatment of TH-302 and radiotherapy. In
perspective, it would be better to model the TH-302 effect on the tumour and combine its
effect with that of radiotherapy and then compare the simulated images with the images of
the mice obtained.

As future work, it will be interesting to simulate different dose-painting strategies
targeting hypoxic regions in tumours. Indeed, a non-uniform response can be observed
within the tumour due to the heterogeneity of oxygenation. This point is consistent with
the fact that hypoxic cells are more radioresistant than well-oxygenated ones, which can
negatively affect the radiotherapy result. Simulation could provide insights about the
non-uniform dose distribution required to destroy an equal proportion of cells within a
heterogeneous tumour. In recent work, research demonstrated that radiotherapy induces
an immune response. During radiotherapy, some immunosuppressive barriers might
increase. This process can lead to tumour resistance. Boustani et al. [69] reviewed the
effect of fractionation and the dose on the anti-tumour immune response. They propose a
sixth R to the five Rs of radiobiology. This sixth one is reactivation of the immune system.
Therefore, on the horizon, it would be interesting to find a way to model this sixth R.

5. Conclusions

For radiotherapy, the treatment outcome is determined by several factors. Some factors
diminish the effect of radiation therapy, for example, the repopulation of tumour cells and
repair from sublethal damage. Some factors increase the local control of the cancer, such as
processes of reoxygenation and the redistribution of tumour cell into more sensitive phases
of the cell cycle. The impact of the individual factor varies across different tissues, but it is
important to consider all of these factors when developing a successful radiotherapy model.
In the presented work, we tried to develop a model considering all five Rs of radiobiology.
The model developed could be expanded in the future to include patient biological data for
a truly specific clinical tool.
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