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Abstract: With continuous improvements in oil production, the environmental problems caused by
oil exploitation are becoming increasingly serious. Rapid and accurate estimation of soil petroleum
hydrocarbon content is of great significance to the investigation and restoration of environments in
oil-producing areas. In this study, the content of petroleum hydrocarbon and the hyperspectral data of
soil samples collected from an oil-producing area were measured. For the hyperspectral data, spectral
transforms, including continuum removal (CR), first- and second-order differential (CR-FD, CR-SD),
and Napierian logarithm (CR-LN), were applied to eliminate background noise. At present, there are
some shortcomings in the method of feature band selection, such as large quantity, time of calculation,
and unclear importance of each feature band obtained. Meanwhile, redundant bands easily exist in
the feature set, which seriously affects the accuracy of the inversion algorithm. In order to solve the
above problems, a new method (GARF) for hyperspectral characteristic band selection was proposed.
It combined the advantage that the grouping search algorithm can effectively reduce the calculation
time with the advantage that the point-by-point search algorithm can determine the importance of
each band, which provided a clearer direction for further spectroscopic research. The 17 selected
bands were used as the input data of partial least squares regression (PLSR) and K-nearest neighbor
(KNN) algorithms to estimate soil petroleum hydrocarbon content, and the leave-one-out method
was used for cross-validation. The root mean squared error (RMSE) and coefficient of determination
(R2) of the estimation result were 3.52 and 0.90, which implemented a high accuracy with only
8.37% of the entire bands. The results showed that compared with the traditional characteristic band
selection methods, GARF can effectively reduce the redundant bands and screen out the optimal
characteristic bands in the hyperspectral data of soil petroleum hydrocarbon with the method of
importance assessment, which retained the physical meaning. It provided a new idea for the research
of other substances in soil.

Keywords: hyperspectral; characteristic band; soil petroleum hydrocarbon content; estimation;
GARF-PLSR

1. Introduction

Since the 20th century, with the rapid growth of the global economy, oil consumption
has also increased. In oil exploitation, transportation, storage, production, and processing,
accidental leakage and the unreasonable discharge of oily wastewater have caused serious
pollution to soil [1]. Petroleum hydrocarbon is a type of persistent organic pollutant, and
its low reactivity and antidegradation pose a serious threat to the ecological environment
and human health [2,3]. To assess the potential risk of soil pollution and monitor oil
pollution, researchers try to measure the content of petroleum hydrocarbons in soil. The
common methods are gas chromatography, mass spectrometry, liquid chromatography,
and solid-phase microextraction [4]. However, the above methods are complex, costly,
time-consuming, and unsuitable for large-area detection. Therefore, a model for the rapid
and accurate estimation of soil petroleum hydrocarbon content should be established.
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With continuous advancements in remote sensing technology, hyperspectral imaging
is developed on the basis of imaging spectroscopy. Hyperspectral imaging can record the
reflectance information of targets through thousands of closely arranged wavelengths [5,6].
Compared with traditional optical remote sensing (single-band and multi-band) with a
low spectral resolution, it has more imaging channels, continuous spectral range, and more
flexible spectral selectivity, which greatly improve the detection capability of targets [7].
Hyperspectral imaging can also reduce the phenomena of different objects having the same
spectrum and the same objects having different spectra and detect substances that cannot
be detected using traditional remote sensing technology.

Valuable achievements have been attained using hyperspectral technology, such as
the estimation of soil heavy metal content, and such technology has been applied to other
related fields [8,9]. Considerable research has shown that hyperspectral imaging is closely
related to the moisture [10–13], nutrient [14–19], and heavy metal contents [20–26] and
other indicators [27,28] of soil. The application of hyperspectral imaging in the oil pollution
detection of soil has also achieved accomplishments. For instance, Foudan et al. [29] utilized
hyperspectral images to detect oil spill areas and showed that hyperspectral imaging can
eliminate the limitations of traditional methods to the greatest extent. The distribution
of oil spill areas by using hyperspectral imaging is also more accurate than that by using
traditional methods. Horig et al. [30] used Hymap data to identify oil-contaminated soil
and found that they are effective for detecting oil pollution in soil via visible-infrared
spectroscopy. A spectral band of 1730 nm can be used as the key characteristic band for
petroleum hydrocarbon detection. Kuhn et al. [31] proposed the concept of a hydrocarbon
index for hyperspectral imaging and considered that the larger the hydrocarbon index
is, the higher the degree of hydrocarbon accumulation will be. Fan et al. [32] measured
the hyperspectral data and petroleum hydrocarbon content of samples and analyzed the
relationship between soil spectral characteristics and petroleum hydrocarbon content by
using a univariate prediction model and stepwise regression method. However, there
are some shortcomings in the method of feature band selection, such as large quantity,
time of calculation, and unclear importance of each feature band obtained. Meanwhile,
redundant bands easily exist in the feature set, which seriously affects the accuracy of the
inversion algorithm.

Feature engineering is the key to hyperspectral applications. Compared with the
traditional hyperspectral feature extraction methods (PCA, LDA, ICA, etc.) [33], this arti-
cle proposes a new characteristic band selection method for soil petroleum hydrocarbon
hyperspectral imaging based on Genetic Algorithm and Random Forest (GARF). GARF
regards the importance of hyperspectral bands as the evaluation index and selects a subset
of hyperspectral images as characteristic bands, which can contain most of the important
information with a small number of bands. It can effectively reduce the dimension of
hyperspectral bands and make the characteristic subset have a clear physical meaning,
which provides a basis for further study of the physicochemical mechanism in the hy-
perspectral imaging of soil petroleum hydrocarbon. The characteristic bands selected via
GARF were used as input data of partial least squares regression (PLSR) and k-nearest
neighbor (KNN) to estimate the content of petroleum hydrocarbons in soil samples. The
experimental results showed that this method obtains an excellent estimation result, which
provides a novel method for large-scale accurate, rapid, and low-cost detection of soil
petroleum hydrocarbon. We conducted all experiments on a computer with Intel® Core™
(Santa Clara, CA, USA) i7-8700K CPU at 3.70 GHz, 16 GB running memory, and all of our
algorithms were coded using python and the open-source modules Scikit-learn.

2. Materials and Methods
2.1. Soil Sample Collection and Spectral Data Acquisition

The soil sample collection area was in Daqing City, Heilongjiang Province, which is
located in the southwest of Daqing Oilfield. The sampling area has a temperate continental
climate, with four distinct seasons, annual precipitation about 600 mm, and abundant
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water resources. The types of soil in the sampling area are chernozem and meadow soil;
the pH ranges from 5.4 to 10.7, with an average of 9.0, belonging to weak alkaline soil [34].
When collecting soil samples, we took each sampling point as the center with sampling
area 1 m2. Five random locations of soil were stripped of impurities and collected at
each sampling grid, and then were put into the sampling bag and mixed fully, with a
sampling depth within 15 cm. In consideration of objective factors, such as oil well layout,
oil leakage, and traffic, 28 soil samples were collected in the study area (Figure 1). The
petroleum hydrocarbon was measured using the gas chromatography method (BS-EN-ISO
16703:2011). Three of the soil samples had abnormal values, in which the concentration of
petroleum hydrocarbon was considerably higher than other samples. The analysis showed
that the abnormal samples were caused by mixing black oily sludge. Oily sludge is a
kind of sludge mixed with heavy oil, such as asphalt and various refined and residue oil,
which is not inherent in nature. Therefore, the three abnormal samples were removed,
and the spectral data of the remaining 25 soil samples were measured (Table 1). An ASD
FieldSpec3 spectro-radiometer (Analytical Spectral Devices Inc., Boulder, CO, USA) was
applied to measure the spectra of soil samples, and the spectral range was determined to
be 350–2500 nm. A 50 W halogen lamp was used as the light source to simulate sunlight,
and the zenith angle was 30◦. The field of view angle and the measurement distance of the
probe were 15◦ and 5 cm, respectively. A whiteboard was used for reflection calibration,
and measurements of the soil spectrum were carried out in a dark laboratory. Each sample
was measured 15 times to ensure the accuracy of the spectral data. The average spectral
value was calculated as the reflectance value of the sample. In the ranges of 350–379 nm
and 2401–2500 nm, the signal-to-noise ratio was low. Thus, the bands before 380 nm
and after 2400 nm were discarded. The sampling interval of the spectrometer was 1 nm;
hence, 2021 bands were obtained in a range of 380–2400 nm. Owing to the high spectral
resolution, information overlap existed between adjacent bands, which made the results
highly vulnerable to noise. Therefore, the spectral data were resampled, and the interval
was 10 nm.
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Figure 1. The position of sampling sites in the study area.

Table 1. Statistical description of the measured petroleum hydrocarbon content of soil samples
(Min: minimum; max: maximum; ave: average; SD: standard deviation; CV: coefficient of variation).

No. Min (g/kg−1) Max (g/kg−1) Ave (g/kg−1) SD (g/kg−1) CV

25 0.0081 34.1 8.46 11.02 130.23%
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2.2. Spectral Data Preprocessing

On the basis of denoising and resampling, the initial spectrum was processed through
continuum removal (CR), which can highlight the absorption, reflection, and emission
characteristics of the spectrum [35]. First- and second-order differential (CR-FD, CR-SD)
and the Napierian logarithm (CR-LN) were used to eliminate the noise in the background
of the CR spectrum [36]. The initial spectrum of soil samples is shown in Figure 2a.
The initial reflectance of the soil samples was between 0 and 0.25, and the fluctuation
shape of the spectral curves of each sample was similar. In the visible bands, with the
increase in wavelengths, the reflectance gradually enlarged and tended to be stable at
1200 nm. In the near-infrared bands, the reflectance of the samples fluctuated greatly. Two
distinct absorption valleys were distributed at approximately 1400 and 1900 nm, and a
slightly sunken one existed at 2200 nm. Figure 2b–e show the results of four different
transformations of the initial spectrum. All the four transformations can amplify the
initial spectrum. After transformations, the reflectance fluctuated more remarkably at
approximately 1400, 1900, and 2200 nm.

J. Imaging 2023, 9, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 2. Five spectral forms of samples: (a) initial reflectance; (b) continuum removal of reflectance; 
(c) first derivative of reflectance; (d) second derivative of reflectance; (e) napierian logarithm of re-
flectance. 

2.3. Model Principle 
Feature selection is a technology for dimension reduction, which is the process of 

selecting a feature subset from a feature set. In the hyperspectral field, feature selection is 
also called band selection [37]. Compared with feature selection, feature extraction may 
obtain slightly better results in most cases, but the features converted through feature ex-
traction have poor interpretability. The inherent physical meaning of hyperspectral imag-
ing is also lost. However, feature selection directly selects a feature subset from the origi-
nal feature set, such that it retains the physical meaning as opposed to feature extraction 
[38]. In view of the above reason, band selection is more widely used in hyperspectral 
dimensionality reduction than feature extraction. For hyperspectral imaging, dozens of 
optimal characteristic bands are difficult to select from hundreds or thousands of spectral 
bands on account of hundreds of millions of band combinations. At present, two strate-
gies, namely group search and point-by-point search, are applied to select a feature subset 
from a complex feature set. The former method is to generate several candidate feature 
subsets continuously, reserve relatively good subsets, feed back to the subset generation 
strategy, evaluate and select new subsets, and repeat the above process until the candidate 
feature subsets meet the set requirements. The optimal feature subset can be considered 
as the result of feature selection. The latter method is to start from an empty set and select 
one (or more) feature from the feature set to join the subset until the subset contains the 
required number of features or to start from the set including all features and delete the 

Figure 2. Five spectral forms of samples: (a) initial reflectance; (b) continuum removal of re-
flectance; (c) first derivative of reflectance; (d) second derivative of reflectance; (e) napierian logarithm
of reflectance.

2.3. Model Principle

Feature selection is a technology for dimension reduction, which is the process of
selecting a feature subset from a feature set. In the hyperspectral field, feature selection is
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also called band selection [37]. Compared with feature selection, feature extraction may
obtain slightly better results in most cases, but the features converted through feature
extraction have poor interpretability. The inherent physical meaning of hyperspectral imag-
ing is also lost. However, feature selection directly selects a feature subset from the original
feature set, such that it retains the physical meaning as opposed to feature extraction [38].
In view of the above reason, band selection is more widely used in hyperspectral dimen-
sionality reduction than feature extraction. For hyperspectral imaging, dozens of optimal
characteristic bands are difficult to select from hundreds or thousands of spectral bands
on account of hundreds of millions of band combinations. At present, two strategies,
namely group search and point-by-point search, are applied to select a feature subset from
a complex feature set. The former method is to generate several candidate feature subsets
continuously, reserve relatively good subsets, feed back to the subset generation strategy,
evaluate and select new subsets, and repeat the above process until the candidate feature
subsets meet the set requirements. The optimal feature subset can be considered as the
result of feature selection. The latter method is to start from an empty set and select one (or
more) feature from the feature set to join the subset until the subset contains the required
number of features or to start from the set including all features and delete the features that
meet the conditions one by one (or more) until the number of remaining features meets the
set requirements.

2.3.1. Genetic Algorithm

Genetic algorithm (GA) is a typical group search algorithm, which is based on natural
selection and genetic theory. It combines the survival of the fittest rules in the process of
biological evolution with the random information exchange mechanism of chromosomes
in a population [39,40]. Furthermore, GA is also an efficient global optimization search
algorithm, which abandons the traditional search strategy and simulates the biological
evolution process in nature to search a feature subset randomly. It regards a possible
solution to a problem as an individual or a chromosome of a population and codes each
individual into a symbol string to simulate the evolution process of Darwinian genetic
selection and natural elimination. In accordance with the evolutionary rules of survival of
the fittest, each individual is evaluated using a predetermined objective fitness function,
and the better population is retrieved continuously. At the same time, the global parallel
search method is used to search the optimal individuals in the optimization population to
reserve an optimal solution. The implementation process of GA is as follows:

1. Coding: The transformation of a feasible solution of a practical problem from its
solution space to the search space that can be processed using GA is called coding.
The most common coding method is binary coding.

2. Population analysis and design: GA randomly generates a certain number of individ-
uals, from which better individuals are selected to form the initial population. In the
iterative process, the larger the population size is, the higher the chance to obtain an
optimal solution, and the smaller the possibility of the algorithm falling into a local
minimum. However, the large population size will lead to an increase in the time
consumption of the algorithm.

3. Fitness function: A fitness function is applied to evaluate the optimization process of
individuals in the population and estimate the degree close to the optimal solution.

4. Crossover: GA imitates the process of gene recombination into new chromosomes
in nature. Some genes in chromosomes are exchanged between two pairs of chromo-
somes, and a crossover operator is used to form two new individuals.

5. Mutation: Mutation is introduced to induce the formation of new individuals and
increase the ability to find the optimal solution.

6. Termination of calculation: The individual with the maximum fitness value reserved
in the evolution process is selected as the output of the optimal solution.
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2.3.2. Random Forest

Random Forest (RF) is an integrated algorithm composed of numerous decision
trees. The idea of RF is to build an excellent tree, which needs to select excellent features.
Therefore, the importance of each feature must be judged. RF randomly changes the value
of a feature and then compares the error rate of the test set before and after the change.
It adopts a point-by-point search strategy. The difference in error rate is regarded as the
importance of the feature, and the mean decrease in accuracy (MDA) is considered the
index to evaluate the feature importance of RF [41].

MDA =
1
n ∑n

t=1

(
errOOBt − errOOB′t

)
(1)

where n is the number of based learners, and errOOB′t is the out-of-pocket error after noise
is added. The more the MDA index decreases, the greater the effect of the corresponding
characteristic on the estimation results, and the higher its importance will be.

2.3.3. Partial Least Squares Regression

Partial least squares regression (PLSR) is a multiple linear regression algorithm, which
is one of the most used regression algorithms in hyperspectral imaging [42]. When hyper-
spectral data are used to estimate soil petroleum hydrocarbon content, the independent
variable (X) in the estimation model is soil spectral data, and the dependent variable (Y) is
the petroleum hydrocarbon content. The process of PLSR is summarized as follows:

X = TPT + E (2)

Y = UQT + F (3)

where X is the predictive matrix, Y is the response matrix, and T and U are the projection
matrices of X and Y, respectively. P and Q are the orthogonal load matrices, and matrices
E and F are the error terms.

2.3.4. K-Nearest Neighbor

K-nearest neighbor (KNN) is a supervised machine learning algorithm. The basic idea
of KNN is to traverse the training set, find the k training samples closest to the new sample
according to the distance formula, and use the majority voting principle to determine the
prediction value of the new sample. It is widely used for dealing with classification and
regression problems [43].

2.3.5. Performance Evaluation Scales

To evaluate the performance of models in this study, root mean squared error (RMSE)
and coefficient of determination (R2) were used as indicators to assess the accuracy and
stability of the models:

R2 = 1− ∑n
i=1(yi −Yi)

2

∑n
i=1(yi − y)2 (4)

RMSE =

√
1
n ∑n

i=1(yi −Yi)
2 (5)

where n is the number of samples, yi is the measured value, Yi is the predicted value, and y
is the average of the measured values. The lower the RMSE is, the closer the R2 is to 1, and
the higher the accuracy and stability of the estimation model are.

3. Results and Discussion

We used GA to screen the hyperspectral imaging and select the characteristic bands
of soil petroleum hydrocarbon. However, the combination of characteristic bands found
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using GA was still complex. To further eliminate redundant features, RF was used to sort
the importance of characteristic bands and conducted secondary screening to select the
optimal characteristic bands of soil petroleum hydrocarbon, whose importance was greater
than the average. The optimal characteristic bands were regarded as the input data of the
PLSR and KNN to estimate the soil petroleum hydrocarbon content. In order to facilitate
the determination of parameters, we used the Grid Search method in this experiment. The
Grid Search method only needs to input the parameter range, and it can automatically
adjust parameters and output the optimal results, avoiding the tedious work of manual
adjustment. It is a very suitable automatic parameter adjustment method for small data sets.
The data set was divided into two parts by using the leave-one-out method. The advantage
of this method is that every iteration used the maximum number of samples as the training
set and made the estimation results clearly reflect the accuracy of the model (Figure 3).
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3.1. Selection of Optimal Characteristic Bands

GA was used to screen the initial and transformation spectra in accordance with
the genetic mechanism and natural selection. The population size, iterations, crossover
rate, and mutation rate of GA were 50, 100, 0.6, and 0.02, respectively. Figure 4 shows
the distribution of bands marked using GA for five types of spectra. On the basis of the
operation of selection, crossover, and mutation with continuous genetic iteration, the bands
with better fitness function values were reserved (bands were marked as 1), whereas the
bands with worse fitness function values were eliminated (bands were marked as 0). The
numbers of characteristic bands for initial, CR, CR-FD, CR-SD, and CR-LN spectra were
108, 91, 98, 108, and 91, respectively (Table 2). Characteristic bands of five spectral forms
are listed in Appendix A.

Table 2. Statistical table of bands selected using GA.

Spectral Form Number of Resampled Bands Number of Selected Bands

Initial 203 108
CR 203 91

CR-FD 203 98
CR-SD 203 108
CR-LN 203 91

Table 2 shows that the number of bands selected using GA was still large, and data
redundancy remained among spectral bands. The band combination was screened for
a second time through the function of out-of-bag estimation of RF, and the bands with
greater-than-average importance were selected as the optimal characteristic bands. This
process not only greatly reduced the dimension of the bands but also retained the most
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important characteristic information, which provided an effective data basis for the subse-
quent estimation of soil petroleum hydrocarbon content. Table 3 shows the number and
importance of optimal characteristic bands after secondary screening by using RF. Figure 5
depicts the distribution of optimal characteristic bands and the importance value.
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Table 3. Importance of optimal characteristic bands after secondary screening by using RF.

Spectral Form No. Ave Sum

Initial-GA 47 0.0093 0.721
CR-GA 17 0.0102 0.822

CR-FD-GA 33 0.0110 0.810
CR-SD-GA 34 0.0093 0.818
CR-LN-GA 30 0.0110 0.790

3.2. Estimation Accuracies of Soil Petroleum Hydrocarbon Content

PLSR is a nonparametric regression analysis method based on factor analysis, which
is highly suitable for modeling under the condition of a small number of high-dimensional
samples. Many studies have shown that it has excellent performance in the spectral
estimation of soil material content [44–46]. Table 3 indicates that the optimal characteristic
bands of soil petroleum hydrocarbon hyperspectral imaging selected using GARF can
extract most of the important information in only a small amount of bands: CR-GARF had
the best effect, in which 82% of the important information was contained in 17 characteristic
bands (420, 1220, 1230, 1720, 1760, 1780, 1790, 1830, 2190, 2210, 2260, 2300, 2310, 2340,
2350, 2360, 2390 nm, only 8.37% of entire bands). Partial characteristic bands selected by
GARF were similar to the conclusions reached by predecessors: Cloutis et al. studied the
reflection characteristics of petroleum hydrocarbon in the visible near-infrared bands and
summarized that there were two absorption bands near 1730 nm and 2310 nm [47]; Gao et al.
perceived that in the near-infrared bands, crude oil solid had relatively obvious absorption
bands near 1700 nm and 2300 nm [48]; nine absorption peaks of oil-contaminated soil
were identified in the 1725–14,000 nm range through indoor spectral measurements by
Zhu et al., with three of them (1725, 2310, 2348 nm) located in the visible near-infrared
bands [49]; Feng et al. screened the above characteristic bands and believed that the double
absorption peaks near 1748 nm and 2330 nm were the key wavebands for detecting the
petroleum hydrocarbon in soil [50]; based on the sampling analysis of Gudong Oilfield,
Fan et al. determined that the 1690–1790 nm range was the main area for estimating the
content of petroleum hydrocarbon in soil [32]; Wang et al. conducted spectral analysis of
soil samples with different oil contents using the visible near-infrared bands and found
that the double absorption near 1748 nm and 2330 nm can be used as characteristic bands
for soil oil pollution research [51]. The characteristic bands obtained in the above study
obviously coincided with the characteristic bands selected in this article within band ranges
of 1720–1790 nm and 2300–2350 nm, which proved the rationality of GARF.

Then, we input the initial, CR, and CR-GARF spectra into PLSR and KNN for com-
parative analysis to validate the performance in estimation of soil petroleum hydrocarbon
content. Table 4 and Figure 6 show that CR-GARF-PLSR can accurately estimate the content
of soil petroleum hydrocarbon with fewer bands (RMSE = 3.52, R2 = 0.90), which indicated
that GARF can validly reduce redundant bands and screen out the optimal characteristic
bands of soil petroleum hydrocarbon. Compared with the estimation accuracy of Initial-
PLSR (RMSE = 6.83, R2 = 0.62), that of CR-PLSR (RMSE = 5.50, R2 = 0.75) was improved,
which demonstrated that CR can highlight the characteristic information of the initial
spectrum, remove background noise, and improve the estimation result. From Figure 6c,d,
PLSR was more accurate than KNN in the estimation of soil petroleum hydrocarbon content.
For validation of GARF in the band selection of the CR spectrum, the characteristic bands
of the CR spectrum selected using GARF calculated the correlation coefficient among bands
and between the petroleum hydrocarbon content of soil samples. Figure 7 demonstrated
that the optimal characteristic bands selected using GARF had a high correlation with
soil petroleum hydrocarbon content (|correlation coefficient| ≥ 0.6) [52]. The correlation
coefficient among bands was insignificant except for adjacent intervals (Figure 8).
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Table 4. Estimation accuracies of soil petroleum hydrocarbon content.

Model RMSE R2

Initial-PLSR 6.83 0.62
CR-PLSR 5.50 0.75

CR-GARF-PLSR 3.52 0.90
CR-GARF-KNN 4.70 0.82
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4. Conclusions

In this article, two tasks were implemented in order to estimate soil petroleum hy-
drocarbon content: a. laboratory analysis on the collected samples with an ASD spectro-
radiometer; b. hyperspectral estimation based on laboratory analysis. For rapid and
accurate estimation of soil petroleum hydrocarbon content, CR-GARF-PLSR was proposed.
In the experiment, the RMSE and R2 of the model were 3.52 and 0.90, which illustrated
that it was an effective method in estimating soil petroleum hydrocarbon content. The
experimental conclusions were as follows: 1. CR can eliminate the background noise in
spectral data, highlight the absorption and reflection characteristics of spectral curves,
and contribute to a more accurate estimation result. 2. GARF can effectively remove the
redundant bands in soil petroleum hydrocarbon hyperspectral imaging and retain the
optimal characteristic bands, which is a new method for feature selection based on machine
learning. 3. Compared with other models, CR-GARF-PLSR had better performance in
estimating soil petroleum hydrocarbon content, which provided a new idea for the research
of other substances in soil. However, there are still some difficulties in the detection of
oil pollution in soil by using hyperspectral technology. For instance, the differences in
the composition of oil and the environment in different oil fields and the water content
in crude oil will definitely have an impact on the measured spectra. The corresponding
characteristic bands will also change accordingly, so the scalability and applicability of the
model need further verification. At the same time, the method proposed in this paper still
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needs indoor testing, which will increase the cost of the experiment. In the near-infrared
band, absorbance is also a common spectral measurement parameter, which may be helpful
in improving experimental accuracy.

In this study, we established a new model for hyperspectral characteristic band selec-
tion and estimation of soil petroleum hydrocarbon content, which achieved an excellent
performance. Furthermore, the research in this paper can be improved in the future. Due
to the limitation of policy, we only collected a small number of samples. If the number of
samples is enough, we can use more advanced regression methods, such as XGBoost and
convolutional neural network, to make the final result more accurate. Similarly, we cannot
remove samples containing other contaminations, except for black oily sludge, because
of the limited number of samples. If we can fulfill this assumption, our experimental
accuracy may be improved. With the resolution of the mixed pixel and the noise gener-
ation in field applications, the combination of this research and airborne hyperspectral
technology has great potential in large-scale accurate and low-cost rapid detection of soil
petroleum hydrocarbon.
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Appendix A

Table A1. Characteristic bands of Initial selected by GA.

Position of Characteristic Bands (nm)

400 420 430 450 460 490 500 510 550 560 580 590
600 610 620 630 640 680 690 710 720 740 750 760
770 810 820 840 850 890 950 970 980 990 1030 1040

1050 1070 1100 1110 1120 1130 1140 1150 1210 1220 1230 1260
1270 1280 1290 1300 1310 1320 1330 1350 1380 1390 1400 1410
1460 1480 1490 1500 1520 1540 1550 1560 1580 1620 1630 1650
1660 1670 1730 1740 1760 1770 1810 1840 1860 1880 1890 1910
1940 2020 2040 2060 2070 2080 2150 2160 2170 2180 2190 2210
2220 2240 2250 2260 2280 2290 2300 2310 2350 2360 2390 2400
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Table A2. Characteristic bands of CR selected by GA.

Position of Characteristic Bands (nm)

390 410 420 430 440 460 490 520 540 560 580 590
620 640 650 670 680 690 730 790 800 830 880 890
900 920 960 970 980 1010 1040 1050 1080 1140 1170 1180

1220 1230 1240 1260 1290 1330 1360 1390 1400 1460 1480 1500
1510 1540 1550 1560 1570 1610 1630 1660 1720 1760 1780 1790
1830 1850 1890 1910 1920 1930 1940 2000 2010 2030 2040 2060
2070 2080 2090 2100 2110 2120 2130 2140 2150 2190 2210 2250
2260 2300 2310 2340 2350 2360 2390

Table A3. Characteristic bands of CR-FD selected by GA.

Position of Characteristic Bands (nm)

380 390 410 450 460 500 510 520 530 540 550 560
580 620 630 670 710 730 740 760 780 790 810 820
840 870 880 900 910 930 940 1000 1030 1050 1060 1080

1090 1100 1120 1140 1150 1200 1220 1240 1340 1350 1360 1380
1390 1410 1440 1460 1480 1490 1500 1520 1530 1540 1610 1630
1640 1650 1660 1670 1710 1720 1760 1780 1790 1830 1840 1850
1880 1900 1960 1970 1990 2000 2030 2060 2070 2080 2110 2120
2160 2190 2230 2240 2250 2260 2270 2280 2290 2300 2320 2340
2370 2400

Table A4. Characteristic bands of CR-SD selected by GA.

Position of Characteristic Bands (nm)

400 420 430 440 450 470 480 510 520 540 570 580
590 600 610 620 670 680 690 710 740 760 770 780
810 820 830 850 860 870 880 890 910 920 930 940
960 980 1010 1040 1080 1100 1130 1180 1200 1240 1260 1280

1310 1330 1350 1380 1400 1410 1430 1440 1450 1470 1490 1530
1550 1560 1580 1600 1610 1630 1640 1680 1690 1740 1750 1760
1770 1780 1800 1810 1820 1840 1860 1870 1880 1890 1910 1940
1950 1970 1980 2000 2020 2040 2050 2070 2080 2090 2170 2190
2200 2210 2220 2240 2260 2290 2300 2320 2330 2350 2390 2400

Table A5. Characteristic bands of CR-LN selected by GA.

Position of Characteristic Bands (nm)

390 410 420 430 440 450 490 500 510 520 540 560
580 600 610 620 630 640 680 690 730 750 760 770
790 810 830 840 850 900 950 960 970 980 1010 1030

1040 1050 1060 1070 1080 1140 1180 1210 1220 1230 1240 1250
1280 1330 1360 1390 1410 1440 1480 1500 1510 1540 1560 1570
1610 1630 1660 1720 1760 1780 1830 1850 1890 1920 1930 1960
1970 2000 2030 2040 2050 2070 2080 2100 2110 2120 2130 2140
2150 2210 2250 2300 2310 2360 2390
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